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Abstract 
 
Motivation : Canonical methods for gene-set enrichment analysis assume independence 
between gene-sets. While the assumption may be reasonable when the redundancy is low, 
its validity breaks down when gene-sets are overlapping or even redundant with each other. 
In practice, heterogeneous gene-sets from different sources are often used, leading to hit 
gene-sets that are partially or fully overlapping, which compromises statistical modelling and 
complicates results interpretation.  

Results: We rephrase gene-set enrichment as a regression problem by treating 
genes-of-interest membership as a binary target variable, and gene-set membership as 
binary dependent variables. The goal is to identify a minimum set of gene-sets that best 
predict whether or not a gene belongs to a set of genes of interest. To accommodate 
redundancy between gene-sets, we propose to solve the problem with regularized 
regression techniques such as the elastic net. We found that regression-based results are 
consistent with established methods, but much more sparse and therefore interpretable. 
 
Availability : We implement the model in an R package, gerr (g ene-set e nrichment with 
regularized regression), which is freely available at https://github.com/TaoDFang/gerr and 
has been submitted to Bioconductor. The scripts and the data used in this paper are 
available at https://github.com/TaoDFang/GeneModuleAnnotationPaper. 

Contact: Jitao David Zhang (jitao_david.zhang@roche.com), Roche Pharma Research and 
Early Development, Roche Innovation Center Basel,  F. Hoffmann-La Roche Ltd. 
Grenzacherstrasse 124, 4070 Basel, Switzerland. 

 
Introduction 
 
A plethora of gene-set analysis methods have been proposed. Popular choices include            
Fisher’s exact test, GSEA (A. Subramanian et al., 2005), CAMERA (Wu and Smyth, 2012),              
while many other tools using various statistical models and procedures are available            
(Rahmatallah et al., 2014; de Leeuw et al., 2016; Rahmatallah et al., 2016).             
Methodologically, they can be classified into self-containing and competitive methods          
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(Goeman and Bühlmann, 2007). Practically, they are applied in contexts where the user             
wishes to gain biological insight from a set of genes of interest (GOI hereafter).  
 
We observe that most proposed methods are based on two implicit assumptions. First, there              
is only one set of GOI to be tested for enrichment of gene-sets at a time. If there is more                    
than one set, each set is tested independently and the results of multiple sets are simply                
merged. Second, most methods operate independently on each gene-set and thereby           
implicitly assuming independence between gene-sets. There are good reasons for both           
assumptions. First, it is not rare that users are only interested in one set of GOI and in                  
finding out whether a few gene-sets are over- or under-presented in the set. Second, treating               
both sets of GOI and gene-sets independently simplifies the software implementation and            
allows enrichment analysis even of one single gene-set for one set of GOI. Computational              
techniques such as parallelization (Sergushichev, 2016) and approximation (Zhang et al.,           
2017) can be easily implemented to speed up execution. Finally, when the gene-sets are              
derived from a single data source, the redundancy between the gene-sets, i.e. proportion of              
shared genes between two gene-sets, can be small, and therefore the gene-sets may             
indeed be treated empirically as independent. Under the circumstances when gene sets are             
organized in a hierarchical structure, such as Gene Ontology (GO), it is possible to reduce               
results redundancy of the gene sets using graph decorrelation (Alexa et al., 2006;             
Grossmann et al., 2007). More often than not, however, gene-sets are not hierarchically             
organized and the independence is implicitly assumed. 
 
In practice, however, the two assumptions, particularly the independence between          
gene-sets, are often violated. Gene-sets from different sources are commonly aggregated           
for enrichment analysis, therefore redundant gene-sets can be called as hits. For instance,             
DAVID (Huang et al., 2009), a popular web tool for gene-set enrichment analysis,             
aggregates by default gene-sets that reflect disease association (e.g., OMIM, Hamosh et al.,             
2005), functional category (e.g., UniProt keywords, The UniProt Consortium, 2019 ), Gene           
Ontology (Ashburner et al., 2000, The Gene Ontology Consortium, 2018), pathways (e.g.,         
KEGG pathway, Kanehisa et al., 2016 ) and protein domains (e.g. Interpro, Mitchell et al.,              
2019 ). Additionally, users can select other gene-sets that will be appended. Gene-set            
enrichment analysis is then performed on one set of GOI uploaded by the user, using a                
modified version of Fisher’s exact test running on each gene-set independently. Such an             
aggregation-and-test-independently strategy is not only used by the DAVID tool, but is            
followed by many published studies using different sets of GOI, gene-sets, and            
methodologies. 
 
While some gene-sets are hardly overlapping with each other, others do share a significant              
proportion of genes as common members. For instance, genes associated with the keyword             
chemotaxis in UniProt are highly redundant with genes associated with the           
biological-process term cell chemotaxis in GO. If a set of GOI is indeed enriched of               
chemotaxis-relevant genes, both gene-sets will be reported as hits. It is apparent that when              
many enriched gene-sets are partially or fully overlapping, not only the independence            
assumption underlying statistical modelling is compromised, the interpretation will become          
complicated because a common set of genes may underlie many hit gene-sets with different              
names.  
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One way to assist human interpretation is to cluster gene-sets with similar compositions post              
hoc. For instance, the DAVID Gene Functional Classification Tool is based on the kappa              
statistics, a similarity measure of gene-sets based on gene composition, and a fuzzy             
heuristic multiple-linkage partition algorithm to cluster gene-sets that are similar with each            
other into so-called annotation clusters (Huang et al., 2007). The results are often very              
useful because they organize gene-sets reflecting identical or relevant biological aspects           
together, and the resolution of the clustering can be modulated by user-defined parameters.             
Nevertheless, users still have to examine gene-sets within each annotation cluster to derive             
a high-level understanding of pathways and gene-sets that are enriched. Apparently, this            
does not scale when many annotation clusters are identified or when many sets of GOI are                
to be tested simultaneously, which is sometimes the case in network biology and especially              
in the area of community detection, where network modules are identified and the functions              
of these modules need to be elucidated. For instance, Choobdar et al. (2019) recently              
reported a community challenge that assesses network module identification methods          
across complex diseases, where more than three hundred consensus modules are reported.            
It will be slow, error-prone, and most likely not reproducible to manually curate gene-set              
enrichment analysis results to remove redundancy in such cases.  
 
Another issue often met in practice is that one may have more than one set of GOI, for                  
instance, multiple gene modules, and wishes to identify gene-sets that are either enriched in              
each set of GOI irrespective of their enrichment in other sets, which we name simple               
enrichment to contrast against characteristic enrichment, where uniquely enriched         
gene-set(s) when compared with other sets of GOI are of interest. A simple approach would               
be to run gene-set enrichment analysis using the same set of gene-sets individually and              
independently on each set of GOI. Consequently, in the case of characteristic enrichment,             
significantly enriched gene-sets can be filtered post hoc to identify gene-sets that distinguish             
each set of GOI from others. Note that such an approach will require two levels of post hoc                  
operations: firstly treating gene-sets as independent from each other, and secondly treating            
sets of GOI as independent from each other. 
 
Instead of applying post hoc methods to enrichment problems with multiple sets of GOI and               
many gene-sets with potential redundancy, we asked whether it is possible to explicitly             
model the overlapping nature of gene-sets and the two questions of interest - simple              
enrichment and characteristic enrichment - using a single unified statistical framework. This            
led us to transpose the task of gene-set enrichment as a regression problem. The key insight                
is that we can treat gene-sets as dichotomous feature vectors of genes with two possible               
values: one if a gene is in the gene-set, and zero otherwise.  
 
From this perspective, the problem of simple enrichment, namely enrichment of gene-sets in             
a set of GOI among all possible genes of consideration (commonly known as background or               
universe), can be seen as a regression problem with many partially correlated features             
(gene-sets in this case) as predictors, and the membership of GOI as a dichotomous              
response variable, which takes the value of one if a gene belongs to the GOI, and zero                 
otherwise. In this setting, the problem of characteristic enrichment can be addressed by             
multinomial regression, a natural extension of linear and logistic regression. 
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Given that we are interested in a minimum set of gene-sets that describe the GOI, many                
regularized regression algorithms can be used, including the Lasso method (Tibshirani,           
1996), Ridge regression (Hoerl and Kennard, 1970), or linear support vector machines            
(Hastie et al., 2004). In the current study, we demonstrate the principle and feasibility using               
the elastic net (Zou and Hastie, 2005), an established statistical procedure that combines             
regularization and feature selection. We show that regularized regression is able to derive             
biologically meaningful and succinct lists of gene-sets that reflect biological functions           
enriched in GOI, without post hoc human interference. 
 
 

Algorithm and Implementation 
 

 
 
Figure 1: Schematic representation of the algorithm, with a toy example with four genes of 
interest in a background of nine genes and eight gene-sets. Generally, the user specifies the 
set of GOI, the set of background genes (panel A), and a list of gene-sets that are potentially 
redundant with each other (panel B). Gene-enrichment with regularized regression 
formulates the task of gene-set enrichment analysis as a regression problem with GOI 
membership as a dichotomous target variable and gene/gene-set association as the 
independent variables, using a link function f that can be specified by the user (panel C). 
Feature selection is achieved by identifying gene-sets with coefficients that are non-zero, 
more specifically that are positive for over-representation. In this example, gene-sets 

are selected. Empty cells in column vectors and the matrix indicate zero., ω , ω , ωω2  3  4  6  
 
A schematic representation of the algorithm can be found in Figure 1. We use to denote a              G     
set of GOI and to denote the set of all genes of consideration, i.e, background or    B              
universe. can be for instance all genes encoded in a genome or a subset of it that is B                  
measured. We assume that , namely any gene in must also in . We use to    G⊆ B      G     B    Y  
denote a binary vector indexed by genes in ; we assign if and only if when        B    yi = 1       gi ∈ G  
(gene  belongs to the set of GOI).i  
 
We use to denote the set of gene-sets that we use to annotate , with gene-sets  Ω             G   n   

as elements. Each gene-set can be expressed as a binary, ω , ..., ωω1  2   n       (i , , .., n)ωi = 1 2 .         
vector indexed by genes in , with a value of if the gene is a member of and     B      1         ωi   0  
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otherwise. Therefore, equivalently, we can use to denote a binary matrix, with genes in      Ω          
rows and gene-sets in columns, that associates gene-sets with genes in (therefore also           B    
genes in ).G   
 
Following these notations, the statistical model of generalized linear regression (Agresti,           
2015) has the form of 
 

,(Y )f = βΩ + ε  
 
where function denotes the inverse of the link function, which in the case of linear  f               
regression is the identity function, and in the case of logistic regression is the logit function                
that maps from the domain of to the real-number domain . is the column vector of      0, ][ 1      R  Y      
gene membership in , denotes the column vector of coefficients of gene-sets, and   G  β           ε  
denotes the error term that is assumed to be independently and identically distributed             
following the normal distribution. A similar definition of the problem was used by Mi et al.                
(2012). The important distinction, however, is that we use regularization to mitigate            
non-independence between gene set, while in the former approach the logistic regression            
was used to rank gene sets, not to select a relevant and non-redundant set.  
 
With regard to the choice of appropriate link function, previous studies (Hellevik, 2009) and              
our observations (supplementary document 1) showed that the results of linear models are             
both stable and meaningful, therefore the linear model is constructed by default in the gerr               
package, though logistic models are equally supported. 
 
To accommodate redundancy between gene-sets, we propose to use the regularization           
technique. Typical choices include (1) Lasso, a type of L1 regularization, which, loosely             
speaking, shrinks coefficients of less important features to zero, (2) Ridge, a type of L2               
regularization, which, loosely speaking, halfs the coefficient if two variables are identical, and             
(3) the elastic net, a hybrid of L1 and L2 regularization, controlled by the hyperparameter .               α  
If two gene-sets are highly redundant, Lasso will assign a higher coefficient randomly to one               
of them, while keeping coefficients with low importance equal to zero; Ridge will assign              
equal coefficients to both of them, while non-zero estimates even for features with low              
impact on the model. Elastic net combines advantages of both approaches: it will estimate              
non-zero values for coefficients of correlated features while setting coefficients for features            
of low importance exactly to zero. In our analysis, we applied the elastic net variant with                α
=0.5, using the implementation in the R glmnet package (Friedman et al., 2010). By              
adjusting the parameter, users can control the sparsity of the results, i.e. numbers of              
selected pathways.  
 
We are interested in the coefficient vector , particularly the gene-sets with large positive       β        
values. They correspond to gene-sets that associated stronger with compared with other         G     
gene-sets. We set the constraint that the coefficients must be non-negative, namely, we only              
consider over-representation of gene-sets, where genes in a gene-set are more frequently            
present in GOI than random as specified by a null model, and ignore cases of               
under-representation.  
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Practically, the gene-sets can be derived from any data sources. For the purpose of              
demonstration, we use a union set derived from GO and the Reactome pathway database              
(Fabregat et al., 2018).  
 
The regression model, the example gene-set collection for demonstration, as well as a             
number of helper functions are implemented in the R package gerr (g ene-set e nrichment             
with regularized regression) that is published under the Artistic-2.0 open-source license. gerr            
allows users to extract enriched gene-sets from the elastic net regression analysis, and to              
control the sparsity of results by adjusting the parameters. For gene-sets identified by the              
regression analysis, gerr also returns the enrichment analysis result using Fisher’s exact test             
for comparison. In case that selected gene-sets are originated from GO and/or the             
Reactome database, which implement tree data structures, gerr returns the distance from            
the selected node to the root nodes as well as the subtree structure to help users                
understand the biological context of the selected gene-sets. 

 
Results 

Model verification and performance evaluation 
We verified the model of gerr and evaluated its performance with simulation studies, which              
are described in full detail with reproducible codes and data in the vignette of the package                
(supplementary document 2). Here we highlight the key concepts and results. 
 
We used 500 randomly selected curated gene-sets from MSigDB (A. Subramanian et al.,             
2005) for simulations. The gene-sets are of varying sizes, containing tens up to more than a                
thousand genes, and a subset of them share common genes. 
 
To verify the model, we select one gene-set, artificially assign its member genes as GOI, and                
use the gerr package to identify enriched gene-sets. The procedure is run once for each               
gene-set. An ideal model will return one and only one gene-set, namely the input gene-set,               
as the positive hit. For 88% of all the cases, gerr managed to do so. Otherwise, gerr returned                  
true-positive hits without exception and no more than three false-positive hits among 500             
tests (false positive rate <= 3/500, or 0.006).  
 
As a comparison, we performed analysis with the same set of gene-sets using one-sided              
Fisher’s exact test, testing for over-presentation, and FDR-correction with the          
Benjamini-Hochberg method (Benjamini and Hochberg, 1995). According to previous         
reviews and analysis (Khatri and Drăghici, 2005; Hackenberg and Matthiesen, 2008), FDR is             
probably the best choice if gene-sets are likely to be related. By setting cut-off at FDR<0.05,                
this procedure (FET+FDR hereafter) returned many more false-positive hits in most cases            
(Figure 2A, median false positive rate 0.014, with a median absolute deviation of 0.021).  
 
Furthermore, we note that the false-positive hits of gerr are mainly caused by gene-sets with               
high level overlapping with the true positive hit. The average overlap coefficient, defined by              
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for any two sets and , between false positive hits and the trueA |/min(|A|, |B|)| ⋂ B       A   B         
positive hit is much higher than the case in FET+FDR or than the expected values if                
gene-sets are drawn randomly (Figure 2B). Therefore, the verification step, despite of its             
simplicity, suggests that the elastic net model underlying gerr may have good sensitivity and              
specificity for the task of gene-set enrichment. 
 

 
Figure 2: Model verification and performance evaluation with simulation studies. (A) In model             
verification, both gerr and FET+FDR had 100% sensitivity. However, FET+FDR often           
returned false-positive hits (median: 7) whereas gerr returned no more than 3 false positive              
hits. (B) Mean overlap coefficient between false positive hits returned by gerr and the true               
positive hit is much higher in case of gerr than FET+FDR or otherwise randomly expected.               
(C-E) Sensitivity (true positive rate, or TPR), specificity (1-false positive rate, or 1-FPR), and              

score (harmonic mean of precision and sensitivity) of gerr, by varying parameters. SixF 1              
values of were tested. Only one is shown here, though the patterns apply to other values  pn               
(see the full visualizations in supplementary document 2). (F-H) Like (C-E), but results of              
FET+FDR. (I-K) the difference of performance between gerr and FET+FDR.  
 
Next, we evaluated the specificity, sensitivity, and precision of the gerr model in a              
probabilistic framework. We assumed a generative model of GOI, where the probability of a              

gene belonging to a set of GOI is modelled by . The model g        G     ppg∈G = ∑
 

Ω
pg|ω ω + pgn    

specifies an additive model of the probability that is modelled by the probability of the               
gene-set contributes to GOI, expressed as , multiplied by the probability that is ω      pω       g   
selected to contribute to GOI given that contributes to GOI, expressed as , summed       ω      pg|ω   
over all genet-sets, and then adding the gene-specific term that models the probability         pgn      
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that the gene contributes to GOI independent of its associations with gene-sets. The two   g             
parts on the right side of the equation can be observed as a gene-set dependent and a noise                  
term, respectively. The total probability is defined in the range .0, ][ 1  
 
For simplicity, we make the assumption that both and follow binomial distributions,        pω  pg|ω     
and a single noise level applies to all genes. Under these assumptions, we varied the     pn            
values of , , and in a set of hopefully plausible ranges and assessed sensitivity  pω  pg|ω   pn            
(false positive rate), specificity (1-false negative rate), and score of the gerr model. As a        F 1        
reference, performances of the FET+FDR procedure and the difference between the two are             
reported using the same parameter settings (Figure 2C-K). The results suggest that within             
most of the tested parameter space, gerr is robust against the noise item of the generative                
model of GOI, and shows higher sensitivity, specificity, and precision than the FET+FDR             
procedure. 
 
In short, model verification and performance evaluation with simulation studies suggest that            
gerr may work reasonably well if a set of GOI is constructed either by genes of a single                  
gene-set or by the proposed additive model with noise term. In reality, GOI can be               
constructed in many different ways and the additive model may not always hold.             
Nevertheless, the simulation studies suggest that the performance of gerr can rival or even              
exceed the performance of well-established FET+FDR procedure. 

Case-study with consensus modules identified by a community effort in 
the DREAM challenge 
 
Given the good performance of our approach in simulations, we applied the gene-set             
enrichment with regularized regression model to a real-world data set in order to evaluate its               
performance. To this end, we leveraged the consensus modules identified by a community             
effort in the Disease Module Identification DREAM Challenge (Choobdar et al., 2019). In this              
project, researchers from all over the world used diverse methods to detect disease-related             
gene modules from diverse human molecular networks such as STRING (Szklarczyk et al.,             
2015) and InWeb (Li et al., 2017). As part of the outcome, the crowd-sourcing approach               
generated 377 consensus modules from the STRING molecular interaction network.  
 
We first applied gene-set enrichment analysis with the FET+FDR procedure to each            
consensus module as a set of GOI, using the union of Gene Ontology and Reactome               
gene-sets. Next, we applied gene-set enrichment analysis with regularized regression using           
gerr and compared the results of both procedures.  
 
Across modules, we found that regularized regression returned far more sparse results            
(median=9.0, interquartile range/IQR=8.0) compared with FET+FDR (median=54.0,       
IQR=53.0), i.e. many fewer gene-sets are called for each consensus module (Figure 3A),             
though the numbers of selected gene-sets are positively correlated (Figure 3B, Spearman            
correlation’s coefficient ). Importantly, the biological information represented by the  .70ρ = 0         
gene-sets selected by the two procedures is highly consistent. This was assessed by             
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manually curating the titles and associated descriptions of the enriched gene-sets for many             
modules, and we attempt to capture the consistency with visualizations in Figure 3C and D,               
using enriched GO terms. The distribution of gene-set level overlap coefficient in Figure 3C              
shows that for most modules, gerr essentially captures a subset gene-sets of the results of               
FTE+FDR. Alternatively, we can consider the leading-edge genes following the convention           
of GSEA (Aravind Subramanian et al., 2005), which are defined genes within GOI that are               
associated with significantly enriched gene-sets. The distribution of overlap coefficients of           
leading-edge genes identified by either method is shown in Figure 3D. For most modules,              
gerr effectively identifies a subset of leading-edge genes that are also identified by             
FTE+FDR.  
 
The enrichment of biological information is demonstrated by the distribution of normalized            
ranks (0 for gene-sets with the lowest FDR values, 1 for gene-sets with the highest FDR                
values) of gene-sets in Figure 3E, and more compellingly, of genes in Figure 3F. To               
generate both figures, gene-sets are ranked by the FDR values reported by the FET+FDR              
procedure. Gene-sets that are identified by both gerr and FET+FDR are visualized in             
contrast to the gene-sets that are only identified by FET+FDR. Figure 3E already shows that               
hits of gerr rank higher than FET+FDR hits. When considering genes underlying hit             
gene-sets, genes associated with gene-sets identified by gerr are almost three times more             
likely to rank at the top than genes of gene-sets identified by FET+FDR alone (Figure 3F).  
 
Furthermore, we found that gene-sets identified by gerr contain far more genes that belong              
to GOI than gene-sets identified by FET+FDR (supplementary document 3, figure 1); and             
that for many modules, gerr even identified gene-sets that are not selected by FET+FDR              
(supplementary document 3, figure 2). These findings are consistent with our observations in             
the simulation studies that gerr can have higher sensitivities, especially when the noise term              
in the generative model is strong, and when relatively few genes in gene-sets contribute to               
GOI. 
 
Taken together, gene-set enrichment with regularized regression is able to identify a            
succinct list of gene-sets that are representative of the biological functions associated with             
many sets of GOI as defined by the consensus modules identified in a community challenge. 
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Figure 3. Comparison of hit gene-sets returned by gerr ( ) and by the FET+FDR         .5α = 0      
procedure (5% false discovery rate) from 377 consensus disease-related gene modules           
detected from the STRING network (Choobdar et al., 2019). (A) Whisker-box plot of counts              
of hit gene-sets of each module. The horizontal bar indicates the median value, the boxes               
span between the first and the third quartile, outliers that are beyond 1.5 times the               
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interquartile range (IQR) are plotted individually as dots. (B) Scatter plot of the number of hit                
gene-sets of each module selected by both methods. The red dashed line represents .             y = x  
(C) Distribution of overlap coefficients of hit GO terms returned by both methods of each               
module. The overlap coefficient in most modules is between 0.5 and 1, suggesting that the               
gene-sets returned by gerr are often a subset of gene-sets returned by FET+FDR. (D)              
Distribution of overlap coefficients of genes that are both present in a module and associated               
with the hit GO terms. (E) Normalised rank between 0 (top-ranking by ascending FDR              
values) and 1 (bottom-ranking) of gene-sets that are selected by gerr and FET+FDR (red),              
and gene-sets that are selected by FET+FDR alone (green). Gene-sets selected by gerr             
tend to enrich towards the top of the ranking. The enrichment is much strong if we consider                 
the normalised rank of genes, as shown in (F). Genes that are associated with one or more                 
gene-sets in a module are ranked by the lowest FDR value of gene-sets it belongs to.                
Apparently, gene-sets identified by gerr contain many genes that belong to top-ranking            
gene-sets. Therefore gerr enriches biological information despite sparse solutions. 
 
 

Conclusions and discussions 
 
In this paper, we present a new perspective to the problem of gene-set enrichment. By 
considering the membership of genes in GOI as a binary response and gene-sets as 
features, we transform the gene-set enrichment problem to a regression problem explicitly 
allowing a dependency between individual gene sets. From this viewpoint, we propose the 
method of gene-set enrichment with regularized regression, and demonstrate its value by an 
implementation based on the elastic net regularization technique. Software codes and data 
are freely available through the open-source R package gerr and the GitHub repository.  
 
The motivation and outcome of gene-set enrichment with regularized regression is quite 
different from canonical gene-set enrichment analysis techniques that have been 
comprehensively reviewed in multiple studies including (Huang et al., 2009) and more 
recently (Rahmatallah et al., 2016). While most other methods seek to identify all gene-sets 
that are over- or under-presented in a set of GOI, or more broadly, all gene-sets that are 
associated with some classification scheme of genes and finally some phenotype, gerr aims 
at identifying a minimum set of gene-sets that are representative. Apparently, there can be a 
potential loss of information in the latter approach since some gene-sets may be ignored 
simply due to redundancy with other gene-sets, or due to the parameter setting that controls 
the sparsity of the results. The gain is nevertheless also obvious: the regression approach is 
able to identify a few gene-sets that are strongly associated with the set of GOI, and the 
application of regularization techniques such as the elastic net ensures that the regression 
problem is well-posed even there are overlapping genes between gene-sets. The gain can 
be particularly valuable for humans to interpret the results when many gene-sets are 
aggregated from different sources and therefore redundancy and dependency can hardly be 
ignored. 
 
When many redundant gene-sets are used, a sparse solution to the gene-set enrichment 
problem has been so far only possible if the gene-sets are organized in a tree structure that 
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can be exploited by the gene-set enrichment analysis method, e.g. topGO (Alexa et al., 
2006). Otherwise, most methods assume independence between gene-sets, an assumption 
that is unfortunately often invalid thanks to the ever-increasing volume of biological 
knowledge that is embodied in heterogeneous, partially redundant gene-sets. 
Gene-enrichment with regularized regression, in contrast, applies both to structured 
gene-sets, e.g., GO and Reactome, and loosely structured or unstructured gene-sets, such 
as those in the MSigDB database (Aravind Subramanian et al., 2005) and the CREEDS 
database (Wang et al., 2016) that are constructed by manual or semi-automatic curation of 
multiple datasets. Given that technologies such as single-cell and spatial omics (Sturm et al., 
2018; Rodriques et al., 2019) and functional genomic screening (Haney et al., 2018; 
Pluvinage et al., 2019) are enriching our knowledge in cell-type and cell-state-specific gene 
expression and function at an unprecedented high rate, we envision that number of 
gene-sets that are available for enrichment analysis will grow exponentially, and most of 
them will be unstructured (at least for the near future), necessitating redundancy-agonistic 
methods like gerr. 
 
Another major advantage of the regression approach is that it can be naturally extended to 
accommodate other data types of the dependent variable. In this work, we used linear 
regression to demonstrate the feasibility, though logistic regression is equally legitime. In this 
vein, different types of dependent variables can be modelled by choosing an appropriate link 
function (McCullagh and Nelder, 1989). For instance, in contrast to the simple enrichment 
model that we described here, the characteristic enrichment, in which one set of GOI is 
compared against other sets of GOI and therefore can be seen as a classification problem, 
can be tested using multinomial regression. On the other side of the model, the association 
between gene-sets and genes can be extended to more complex relationships beyond 
binomial (for instance effect size as continuous variables), and in case of necessity, 
covariates can be modelled in the framework of linear regression.  For instance, it is almost 
trivial to control for gene sets biases, such as gene length, simply by incorporating such a 
bias it into the model, similar to Mi et al. (2012 ). The great flexibility of generalized linear 
models (Dobson and Barnett, 2008) allows developers and users extend the scope of gerr to 
be used in many areas of bioinformatics and genomics analysis where gene-set level 
interpretation is important, including disease understanding and drug discovery (Moisan et 
al., 2015; Drawnel et al., 2017). 
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