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Advances in fluorescencemicroscopy have introduced new
assays to quantify live-cell translation dynamics at single-
RNAresolution. We introduceadetailed, yet efficient sequence-
based stochastic model that generates realistic synthetic
data for several such assays, including fluorescence corre-
lation spectroscopy (FCS), ribosome runoff assays (ROA)
after Harringtonine application, and fluorescence recovery
after photo-bleaching (FRAP). We simulate these experi-
ments under multiple imaging conditions and for thousands
of human genes, andwe evaluate through simulations which
experiments aremost likely to provide accurate estimates
of elongation kinetics. Finding that FCS analyses are optimal
for short or long length genes, we integrate ourmodel with
experimental FCS data to capture the nascent protein statis-
tics and temporal dynamics for three human genes: KDM5B,
β -actin, and H2B. Finally, we introduce a new open-source
software package, RNA Sequence to NAscent Protein Sim-
ulator (RSNAPSIM) to easily simulate the single-molecule
dynamics of any gene sequence for any of these assays and
for different assumptions regarding synonymous codon us-

Abbreviations: aa, amino acid; CAI, Codon Adaptation Index; FCS, Fluorescence Correlation Spectroscopy; FPS, Frames Per Second;
FRAP, Fluorescence Recovery After Photobleaching; MCP, MS2 Coat Protein; POI, Protein of Interest; ROA, Run Off Assays; RMSE,
Root Mean Squared Error; rSNAPsim, RNA Sequence to NAscent Protein Simulator; SEM, Standard Error of theMean; ump, Units of
Mature Protein.
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age, tRNA level modifications, or ribosome pauses. RSNAP-
SIM is implemented in Python and is available at: https:
//github.com/MunskyGroup/rSNAPsim.git.
K E YWORD S
Single-molecule, translation, live-cell, stochastic, modeling, FRAP,
FCS

1 | INTRODUCTION

The central dogma of molecular biology (i.e., DNA codes are transcribed intomessenger RNA, which are then translated
to build proteins) has been a foundation of biological understanding since it was stated by Francis Crick in 1958. Yet,
despite their overwhelming importance to biological and biomedical science, many of the fundamental steps in the gene
expression process are only now becoming observable in living cells through the application of real time single-molecule
fluorescence imaging approaches. Imaging single-molecule transcription was first achieved two decades ago through
the use of theMS2 system [1], which uses bacteriophage gene sequences to encode for specific and repeated stem-loop
secondary structures in the transcribedmRNAs. These stem-loops are subsequently recognized and bound bymultiple
fluorescently-taggedMS2Coat Proteins (MCP), which produce bright fluorescent spots that allow for the detection and
spatial tracking of single-mRNA [2]. Tracking these labeled RNA hasmade it possible to observemany aspects of RNA
dynamics that were previously obscured using bulk RNAmeasurements, such as the production of RNA from different
alleles [3], themovement of mRNA–protein complexes from nucleus to cytoplasm through nuclear pores [4], and the
association of RNAwith different regions of the cell [5].

Evenmore recently, imaging single-molecule translation has also become possible through the discovery of similar
approaches [6, 7, 8, 9, 10]. In this case, the mRNA is modified to encode for multiple epitopes in the open reading
frame of a protein of interest (POI). As the protein is translated, these epitopes are quickly recognized and bound
by fluorescent antibody fragment probes, Fig 1A. By combining the MS2 approach with these epitope recognition
sites, the co-localization of mRNA spots and nascent protein spots reveal single-mRNAmolecules that are undergoing
active translation, as shown in Fig 1B. As was the case for single-RNA tracking, precise spatiotemporal imaging of
translation siteswithin single living cells allows formultiple advances in comparison to bulk or single-cell assays [11]. For
example, Morisaki and Stasevich, [12] recently reviewed three different approaches to track the translation dynamics
for individual mRNAmolecules over time and then use these data to infer translation rates. The first design is related to
Fluorescence Correlation Spectroscopy (FCS), in that the nascent protein fluorescence signal is monitored over time
and used to compute the autocorrelation function (G(τ), Fig 1C, bottom). The time, τF CS , at which G(τ) reaches zero
denotes the characteristic time for a ribosome to translate the gene from the tag region to the end of the protein of
interest [6]. A second approach tomeasure translation rate is to chemically block translation initiation (e.g., through
application of a drug such as Harringtonine, as depicted in Fig 1D, top). In this run off assay (ROA) approach, the time,
τROA , at which the fluorescence signal disappears corresponds to the time for a single ribosome to translate the entire
coding region, including the tag region itself [10]. A third technique, shown in Fig 1E, uses Fluorescence Recovery After
Photobleaching (FRAP) to optically eliminate the nascent protein fluorescence associated with a single mRNA and then
record the recovery of the signal to its original level. As for the FCS approach, the time of total recovery, τF RAP , relates
to the time required for a single ribosome to complete translation from the tag region to the termination codon [9, 8].

The temporal resolution offered by live single-mRNA, nascent translation imaging makes it possible to directly
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visualize and quantify initiation, elongation, and termination processes in live-cells [13]. Single-molecule studies have
uncovered previously unknown events andmechanisms taking place during translation, such as the presence of active
and inactive transcripts in specific locations in the cell [9, 6], different elongation rates caused by codon optimized
sequences [10], the spatiotemporal translation of specific genes in specific cellular compartments [7, 8], ribosomal
frameshifting with bursty dynamics [14], and non-canonical forms of translation [15].

As these experimental techniques rapidly evolve, they induce a growing need for precise and flexible computational
tools to interpret the resulting data and to design the next wave of single-RNA translation experiments. To help fill
this gap, we present a versatile new set of theoretical and computational tools to complement the experimental study
of translation at single-molecule resolution. We demonstrate the generality of our analyses by simulating results
for several different single-molecule experiments for a large database of human genes. We explore these different
combinations of gene and experiment to askwhichmethodologies are better tomeasure specific biophysical parameters
and for which types of genes. We then constrain ourmodel by fitting it to experimental data for several genes. Finally,
we describe and demonstrate the use of a new open-source and user-friendly software package: RNA Sequence to
NAscent Protein Simulation (RSNAPSIM), which allows the user to easily simulate the single-molecule dynamics of any
gene. Finally, we discuss future directions and the potential limitations of the current form of this new technology.

2 | RESULTS

2.1 | Modeling Single-RNA Translation Dynamics

To simulate translation with single-molecule resolution, we developed a stochastic model consisting of a set of reactions
where random variables {xi } represent the fluctuating occupancy of the ribosomes at a specific i th codon along a single
mRNA,

∅
w0(x1, . . . , xnf )
−−−−−−−−−−−−→ x1

wi (x2, . . . , xnf +i )
−−−−−−−−−−−−−→ xi

wi+1(xi+1, . . . , xnf +i+1)
−−−−−−−−−−−−−−−−−→ . . .

wt
−−−→ xL , (1)

where L is the length of the gene in codons, nf is the ribosome footprint, and x = [x1, x2, . . . , xL ] ∈ ÂL is a binary
vector of zeros and ones, known as the occupancy vector, which represents the presence (xi = 1) or absence (xi = 0) of
ribosomes at every i th codon. The initial reaction in themodel describes the initiation step, where the ribosomes bind to
themRNA at the ratew0(x1, . . . , xnf ). Ribosomes are large biomolecules that occupy around 20 to 30 nuclear bases (or
seven to 10 codons) once bound to themRNA [16]. This is captured in themodel by specifying the ribosome footprint,
nf = 9, which guarantees that initiation cannot occur if another downstream ribosome is already present within the
first nf codons, Fig 2A. This binding restriction can bewritten simply as:

w0 = k i

nf∏
j=1

(1 − xj ), (2)

where k i is the initiation constant, and the product is equal to one if and only if there are no ribosomeswithin the first nf
codons.

Similarly, one can represent the elongation reactions, where the ribosomemoves along themRNA from codon to
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codon in direction 5’ to 3’ according to:

wi = ke (i ) · xi

nf∏
j=1

(1 − xi+j ), for i = 1, ..., L − 1; (3)

where ke (i ) is the elongation rate, and the product again enforces ribosome exclusion. To implement the effect of
codon-usage bias and tRNA availability during protein synthesis, we adopt a similar argument to that presented by
Georgoni et al., [17]: rare codons are correlatedwith low tRNA abundance, which cause a longer waiting time for the
ribosome to synthesize the given amino acid at that codon. As tRNA concentrations have been related to codon usage
[18], we assume each codon’s elongation rate is proportional to its usage in the human genome according to:

ke (i ) = k̄e · (u(i )/ū), (4)

whereu(i ) denotes the codon usage frequency in the human genome (given inAppendix Table S1 from [19]), ū represents
the average codon usage frequency in the human genome, and the global parameter k̄e is an average elongation constant,
which can be determined through experiments.

Although simple in its specification, the abovemodel allows formany adjustments to explore different experimental
circumstances. As a few examples, one could represent translation inhibition analyses such as those performed in [7]
by making the initiation rate, k i , a function of time or external input; one can analyze effects of synonymous codon
substitution by replacing codons with their more or less common relatives; one may represent codon depletion, as
studied in [17] by reducing the corresponding rates ke (i ) for all i corresponding to the depleted tRNA; or one could
explore the effects of pausing or traffic jams at specific codons by reducing ke (i ) at specific codons. We will explore
several such circumstances below.

With our simple specification of the translation initiation, elongation and termination reactions, we can now simu-
late randomtrajectories,x(t ), whichwecollect to formbinaryoccupancy trajectorymatricesX = [x(t1)T , . . . , x(tNt )T ]T

∈

ÂNt ×L , where each row refers to the i th position on the gene, and each column represents a specific time t j . To visu-
alize ribosome movement trajectories, each random X can be plotted in two dimensions (position v.s. time) to form
kymographs similar to those extensively used to represent organelle movement [20]. For example, Fig 2B shows a
visualization ofX for a case study on the β−actin gene. Each line from left to right on the kymograph corresponds to the
movement of a single ribosome from initiation to termination. We note that averaging along the columns ofX (i.e., in
the vertical direction of the kymograph) yields the time-averaged loading of the ribosomes at each codon position, and
summing across the rows ofX (i.e., in the horizontal direction of the kymograph) yields the number of ribosomes for that
mRNA at each instant in time.

To relate ourmodel describing ribosomeoccupancy to experimentalmeasurements of translation spotfluorescence,
we introduce a fluorescence intensity vector that converts the instantaneous occupancy vector, x(t ), to the total number
of translated epitopes available to bind to fluorescent markers. This intensity vector can bewritten as:

I (t ) =
L∑
i=1

ci · xi (t ) = cxT, (5)

where c = [c1, c2, . . . , cL ] and each ci is the cumulative number of fluorescent probes bound to epitopes encoded at
positions (1, . . . , i ) along themRNA. For example, cwould be defined as c = [0, 0, 1, 1, 2, 2, 3, 3, ..., 3] for an RNA sequence
with epitopes encoded at positions [3, 5, 7]. We note that the random occupancymatrices,X, are easily converted to
intensity time traces using the simple algebraic operation I = [

I (t1), . . . , I (tNt )
]
= cXT.
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2.1.1 | ApproximateModel for StatisticalMoments of Nascent Transcript Kinetics

When ribosome loading is sparse (e.g., for slow initiation or fast elongation such that (k i /k e � 1/nf )), ribosome
collisions will become negligible, and the nonlinearities in Eqs. 2-3 have less effect on the overall ribosome dynamics.
Under such circumstances, it is possible to derive a simplified linear systemmodel for the elongation dynamics. In the
linear model, the propensity of the codon-dependent elongation step (Eq. 2) is simplified towi (xi ) = k i xi such that the
ability of a ribosome to add another amino acid only depends on the current position of the ribosome, and not on the
footprint of other ribosomes.

We define the reaction stoichiometrymatrix to describe the change in the ribosome loading vector, x, for every
reaction as:

Si ,j =

1 for all i = j ,
−1 for all i = j − 1,

(6)

where i corresponds to each codon in the protein of interest. The first column of S corresponds to the initiation reaction,
the next L − 1 columns refer to elongation steps when an individual ribosome transitions from the i th to the i + 1th
codon, and the final column corresponds to the final elongation step and termination. Maintaining the same order of
reactions, and neglecting ribosome exclusion, the propensities of all reactions can be written in the affine linear form as:

w = w0 +W1x, (7)

wherew0 is a column vector of zeros with the first entry k i andW1 is a matrix defined as:

[W1]i ,j =


ke (i ) for all i = j + 1,
0 otherwise .

(8)

Using the definition of the fluorescence intensity from Eq. 5, the first two uncenteredmoments of the intensity I (t )
can bewritten in terms of the ribosome position vector x as:

Å{I (t )} = Å{cx} = cÅ{x}, (9)
ΣI (0) = Å{(I (t ) − Å{I (t )})

2 } = cΣx(0)cT, (10)

where Å{x} and Σx(0) are themean and zero-lag-time variance in the ribosome occupancy vector, respectively. For the
approximate linear propensity functions in Eq. 7, the moments of the ribosome position vector are governed by the
equations [21]:

dÅ{x}
d t

= SW1Å{x} + Sw0 (11)
dΣx
d t

= SW1Σx + ΣxWT
1 ST + Sdiag(W1Å{x} +w0)ST . (12)

By setting the left hand side of Eq. 11 to zero, the steady statemean ribosome loading vector can be found by solving
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the algebraic expression:

SW1Å{x} + Sw0 = 0. (13)

Similarly, the steady-state covariancematrix, Σx , in the ribosome loading vector is given by the solution to the Lyapunov
equation (from right hand side of Eq. 12):

SW1Σx + ΣxWT
1 ST + Sdiag(W1Å{x} +w0)ST = 0. (14)

The autocorrelation dynamics of the nascent protein fluorescence intensity is defined:

G (τ) = Å{c(x(t ) − Å{x(t )})(x(t ) − Å{x(t )})T cT } = cÅ{(x(t ) − Å{x(t )})(x(t ) − Å{x(t )})T }cT (15)
= cΣx(τ)cT, (16)

where Σx(τ) is the cross-correlation of the ribosome occupancies at a lag time of length τ . Noting that the probe design,
c, is constant with respect to τ , it is only necessary to find the cross-correlations of the ribosome occupancy. Following
the regression theorem [22], these correlations are given by the solution to the set of ODEs,

dΣx(τ)
dτ

= φΣx(τ), (17)

where the initial condition is provided by steady-state covariance of the process (i.e., the solution for Σx(0) in Eq. 14)
and the autonomousmatrix of the process is given byφ = SW1. Integrating Eq. 17, the autocorrelation of the intensity
G (τ) can be found using Eq. 16.

2.1.2 | Simplified TheoreticalModel for Nascent Translation Kinetics
In the limit of low initiation events and long genes, the probe region can be approximated by a single point, and the above
model can be simplified even further to allow direct estimation of steady state translation features. First, since the
average time for a ribosome tomove one codon is∆t i = 1/ke (i ), the total average time it takes a ribosome to complete
translation from the start codon to the end of themRNA is:

τ =
L∑
i=1

1

ke (i )
, (18)

where L is the gene length. Using the codon-dependent translation rates from Eq. 4, we canmodify Eq. 18 to

τ =
1

k̄e

L∑
i=1

ū

u(i )
. (19)

If one could experimentally measure τExp using one of the techniques described above, then k̄e could be estimated as:

k̄e ≈
1

τExp
L∑

i=np

ū

u(i )
, (20)
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where np is the effective codon position of the fluorescent tag. In practice, the specification of np will vary depending
upon the type of experiment (e.g., FCS, FRAMor ROA) used to estimate τExp, as will be discussed inmore detail below.

Given the apparent association time of a ribosome on themRNA (τ) and the initiation rate (k i ), the distribution for
the number of visible ribosomes on a transcript at steady state can also be estimated using this simplifiedmodel. Under
the assumption that each initiation event is an independent and exponentially distributed random event, the number
of ribosomes downstream from the nth

b
codon, and therefore the fluorescence in units of mature proteins, would be

approximated by a Poisson distribution withmean (and variance) equal to

µ ≈ σ2 ≈ k i · τ . (21)

For a more realistic treatment of the fluorescence intensity, one could assume that the multiple probes are spread
uniformly over a finite region, such that the fluorescence will increase linearly as ribosomes pass through the probe
region. To approximate this gradual increase in fluorescence, Eq. 21 can be corrected by a multiplicative factor (see
Methods) as:

µI ≈ k i · τ

(
1 −

Lt
2L

)
, (22)

σ2I ≈ k i · τ

(
1 − 2

Lt
3L

)
, (23)

where Lt is the length of the tag region (e.g., Lt = 318 aa for the 10X FLAG ‘Spaghetti Monster’ SM-tag used in [6]).

To demonstrate the close agreement between the full stochastic model, the reduced linearmomentsmodel, and
the simplified theoretical analysis, Table 1 compares themodel generated values for each of the quantities τ , µI , and
σ2I for three different human genes H2B (L = 128aa), β -actin (L = 375aa), and KDM5B (L = 1549aa), using reported
parameters of k i = 0.03 s−1 and k̄e = 10 s−1 [6]. For further comparison, Fig 2C compares estimates of τ (top), µI
(middle), and σ2I (bot t om) for the β -actin gene for each of the three analyses, and as a function of different initiation
and elongation rates. This comparison demonstrates that, at least for fast elongation rates, the full stochastic analysis
and the moments-based computation are in excellent agreement to estimate the effective time as well as the mean
and variance in the level of nascent proteins per RNA. However, when the initiation rate approaches k̄e/nf , ribosome
collisions becomemore prevalent, which substantially lengthens the effective elongation time (Fig 2C top), and leads to
a saturation of ribosomes (Fig 2Cmiddle and bottom), and these nonlinear behaviors are not captured by themoment-
basedmodel. For longer genes, the simplified theoretical estimates from Eqs. 18-21 are also in good agreement with
the complete model. For shorter genes, it becomes less realistic to approximate the tag region with a single point
or a continuous ramp, and the error of this approximation leads to poorer estimates of the elongation time and the
Poisson approximation over-estimates the true variance (see H2B in Table 1). However, even for short genes, the linear
moments-basedmodel, which includes the exact positions of all probes and the codon usage, provides amore accurate
estimate of the true system behaviors.

Having demonstrated close agreement of the simplified theoretical models with the full stochastic simulations, we
next explore howwell different experiment designs should be expected to work to estimate translation parameters
from single-RNA translation dynamics.
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2.2 | Evaluation of Experimental Assays toQuantify Translation Kinetics
Using themodels above, and if we knew the average time that ribosomes take to translate a single complete protein
from a given gene, τ (g ), we could estimate k̄ (g )e using Eq. 20.

With this in mind, we next consider three experimental approaches that have been used to estimate τ (g ) in recent
experimental investigations (Fig 1C-E): fluorescence correlation spectroscopy (FCS), run-off assays (ROA), and fluo-
rescence recovery after photobleaching (FRAP). Using our full stochastic models to generate synthetic data and the
simplified theoretical model to interpret this data, we ask how accurately would each of these three assays work to
identify k̄ (g )e for a comprehensive list of 2,647 human genes from the PANTHER database [23] and under different
imaging conditions corresponding to different frame rates or numbers of mRNA spots.

In the FCS approach, we compute the autocorrelation function,G (τ), of the simulated fluorescence intensities,
and fromG (τ)we estimate the time lag, τF CS , at which correlations disappear (see Fig 1C andMethods). In the ROA
approach, we simulate the addition of a chemical compound, such as Harringtonine, which binds the 60S ribosome
subunit and prevents ribosome assembly [24], and we record the average time, τROA , at which protein fluorescence
disappears from the RNA (see Fig 1D andMethods). To approximate variability in the specific time at which the drug
reaches themRNA and blocks ribosome initiation, we assume that the time of initiation blockage occurs at a normally
distributed time of 60 ± 10 seconds [25]. In the FRAP analysis, we simulate an instantaneous fluorescence bleaching of
all nascent proteins and then record the average time, τF RAP , at which fluorescence recovers to the average steady
state level, Fig 1E [26]. To reduce the effect of noise in these calculations, we applied a linear fit to ROA and FRAP
experiments and determined τROA and τF RAP when these intensities intersect defined thresholds of zero intensity for
ROA or themean recovered intensity for FRAP. For FCS, we estimate τ05 as the time the autocorrelation function drops
below 5% of the zero-lag covariance and calculate τF SP = τ05/0.95.

The specific location of probes along the mRNA has different effects on the fluorescence kinetics for the three
experimental analyses. The characteristic decorrelation time in FCS and recovery time in FRAP are both set by the
time it takes a single ribosome to translate from the tag region to the end of themRNA. To reflect this, we define the
approximate probe location, npFCS or npFRAP in Eq. 20, as the beginning of the tag region. In this case, the beginning
of the tag region is at the beginning of the gene, but in general, we note that moving the fluorescent tag regions
downstream toward the 3’ end would shorten the effective timesmeasured using FCS or FRAP. In contrast, for the ROA,
the characteristic time is defined by how long it takes fromwhen translation initiation is blocked until all ribosomes
complete translation. Because this time depends solely on the gene length, and not on the probe placement, we assume
npROA = 1, independent of probe placement. In addition to these effects on average experiment timescale estimates,
we note that placing probes as near as possible to the 5’ end of the mRNA or using longer proteins increases the
fluorescence signal-to-noise ratio for all three approaches and can reduce estimation uncertainties.

To generate simulated data, we assumed that all 2,647 genes in the library have a global average translation rate
of k̄e = 10 sec−1 and an initiation rate of k i = 0.03 sec−1. For each experiment type and each gene, we simulated
time lapse microscopy data for 100 independent RNA and for 300 frames at 1/3 frames per second (FPS). We then
estimated τ (g ) from these simulations using each of the three experimental methodologies, and we estimated the
corresponding average elongation rate using the specific gene sequence and Eq. 4. Under these conditions, Figs 3A-C
(top) show the resulting distributions of estimated k̃e for long genes (> 1000 codons, n = 658, purple), medium length
genes (500 − 1000 codons, n = 1719, blue), and short genes (< 500 codons, n = 270, orange) using each of the three
experimental approaches. When all genes were analyzed at the same imaging conditions (100 spots, 300 frames, 1/3
FPS), the FCS approachwas themost accurate with rootmean squared (RMSE) of 0.64, 1.27, and 1.40 for short, medium
and long genes, respectively. For comparison, ROA had RMSE of 2.22, 2.52, and 1.78 and FRAP had RMSE of 5.22, 4.58,
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and 2.68 for the same combinations of genes and imaging conditions.
We next extended our analysis to consider different numbers of spots and different frame rates at which to collect

the data, but under the assumption that the total number of frames would remain fixed at 300. Fig 3A shows the
corresponding resulting RMSE for different combinations of these experiment designs. As expected, we found the
sampling rate and number of mRNA spots to directly affect the estimated k (F CS )e . FCSwas the only technique capable
to estimate the true elongation rate within a RMSEFCS ≤ 2.0 sec−1 for short, medium and long genes. For short genes,
this could be accomplishedwith as few as 10 spots with a frame rate of 1/3 FPS.Medium length and long genes could
also be accurately quantifiedwith 10 spots at frame rates of 1/3 FPS or 1/10 FPS.

The ROAwas also capable to estimate the elongation rate to an accuracy of RMSEROA < 2.0 sec−1 for medium
and long genes, and for fast frame rates, the ROA approach could bemore accurate than FCS. However, when applying
the ROA method to short genes, we obtained RMSEROA > 2.0 sec−1 under all combinations of sampling rates and
repetition numbers at 100 or fewer spots, Fig 3B. This effect can be explained in that the number of ribosomes actively
translating each mRNA is small and highly susceptible to stochastic effects in the case of small genes. We also note
that the error using ROA depends strongly on the precision of the estimate for the specific time at which translation
is blocked after application of Harringtonine; if the average value of this time is unknown, or if variations exceed our
assumed standard deviation of 10 seconds, then accuracy using ROA is severely diminished, especially for short genes.

We found that FRAP substantially overestimates the elongation rates for short size genes, which can be observed
on Fig 3C, where it is shown that recovering a RMSEFRAP < 2.0 sec−1 was not possible for any of the considered
combinations of number of RNA spots and sampling rates. We argue that the estimate of elongation rates using FRAP is
limited by the intrinsic formulation of thefluorescent probe design. FRAP requires an intensity generatingmechanism to
reestablish the fluorescence to a pre-perturbation steady state. For single-molecule translation studies, this mechanism
relies on ribosomal initiation events that are rare and highly susceptible to variability [6, 7, 8, 9]. This variability is
reflected in the estimated τFRAP and in the final estimated elongation rate. Even for themore favorablemedium and
long length genes, our results indicate that for FRAP, a large number of mRNA spots (>100 mRNA spots) would be
needed to achieve accurate estimates (Fig 3C).

2.3 | Calibrationof theStochastic TranslationModel usingQuantitativeData fromSingle-
RNA Translation Experiments

Having determined that the FCS approach provides the most consistent estimate of elongation rate for genes of
different lengths, we next turn to published experimental FCS data that quantified the fluctuation dynamics for three
human gene constructs of different lengths: KDM5B (1549 aa), β -actin (375 aa) andH2B (128 aa) [6]. Each construct
encodes for an N-terminal 10X FLAG ‘Spaghetti Monster’ SM-tag (318 aa) followed by the specific protein of interest
(POI), and the stop codon for each POI was followed by 24 repetitions of theMS2 tag in the 3’ UTR region. For each
construct, theMS2 signal was used to track themRNAmotion in three dimensions, and the co-localized fluorescence
intensity of the FLAG SM-tag was quantified as a function of time. Thesemovies were collected using frame rates of 1
sec for H2B (n=10), 3 sec for β -actin (n=17), and 10 sec for KDM5B (n=44), and each trajectory was tracked for 300
frames per mRNA. Figs 4A-C (left) show example time traces (in arbitrary units of fluorescence) for the nascent protein
level per individual mRNA for each of the three genes.

To quantify the steady state variability of nascent proteins per mRNA, the units of protein fluorescence were
converted to units ofmature protein (ump) using a calibration construct that contains only a single epitope for FLAG ([6],
seeMethods). After calibration, the effective numbers ofmature proteins permRNAwere estimated for 300 translating
mRNA spots for each gene, the histograms of collectedmeasurements were normalized to estimate the probability of
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having i nascent protein per mRNA, Pdat(i ), for each gene, and the results are presented by the gray lines in Figs 4A-C,
middle.

We explored if the full stochastic model could be fit to capture simultaneously the experimentally measured steady-
state distribution of nascent proteins and the temporal dynamics of nascent protein fluctuations on single mRNA.
For model calibration, we defined εKS as the Kolmogorov-Smirnoff distance between the simulated and measured
distributions of nascent protein per mRNA:

εKS = max
k

����� k∑
i=0

Pmod(i |θ) −
k∑
i=0

Pdat(i )
����� , (24)

where θ represents themodel parameters, and Pmod(i |θ) and Pdat(i )were the simulated andmeasured probability for
anmRNA to have a fluorescence intensity corresponding to i units of mature proteins (ump). As non-translating spots
could not be separated from spots below a basal FLAG intensity in the experimental datameasurements, comparison
between simulations andmeasured distributions ignore all spots with an intensity value less than 1/2 ump.

To compare temporal dynamics of the experiment and data, wematch the normalized autocorrelation function for
the fluorescence intensity predicted by themodel to that of themeasured time-lapse experiments (details inMethods).
Specifically, we quantified the two-norm difference in themeasured and simulated autocorrelations, εt, according to:

εAC =
√∑T

t=1(Gmod (t |θ) −Gdat a (t ))
2

T
, (25)

whereGmod(t |θ) andGdat(t )were the simulated andmeasured autocorrelations, respectively.
To enforce that themodelwouldfit simultaneously to both the steady state distributions and the temporal dynamics,

we defined amulti-objective function to quantify the total difference betweenmodel and data as:

ε(g ) = ε
(g )
KS + ε

(g )
AC, (26)

for any gene denoted by g .
Codon-dependent translation rates were assumed to be consistent among the three genes, as defined in Eq. 4, but

the three genes were allowed to have different initiation rates, {k (g )
i
}. Under this assumption, themodel has a total of

four parameters. Upon fitting these parameters to minimize ε = ε(H2B) + ε(β−actin) + ε(KDM5B), we found that themodel
could capture both the experimental distributions of nascent proteins per mRNA and the autocorrelation plots for all
three genes, as shown in Fig 4A-C (middle and right). Optimized parameters and their uncertainties (seeMethods) were
found to be:


k̄e = 9.8 ± 1.24sec

−1,

k
(H2B)
i

= 0.07 ± 0.01sec−1,

k
(β−actin)
i

= 0.039 ± 0.005sec−1,

k
(KDM5B)
i

= 0.02 ± 0.002sec−1 .

(27)

2.4 | Exploring Effects of Parameters on RibosomeActivities and Translation Dynamics
After determining that ourmodel was sufficient to reproduce the experimentally measured fluctuation dynamics for
H2B, β -actin, and KDM5B, we next extended our analyses to consider a broader range of translation parameters.
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Specifically, we sought to explore the effects of variations to initiation and elongation rates as well as effects of
synonymous codon substitutions or modulation of tRNA concentrations.

2.4.1 | RibosomeCollisions are Rare atMost Experimentally Observed Translation Initia-
tion and Elongation Rates

Previous experimental reports [6, 7, 8, 9, 10] estimated a range of values from 0.01 to 0.08 sec−1 for the translation
initiation rate, k i , and range from 3 to 13 aa/sec for the average elongation rate, k̄e . Using β -actin gene as a reference,
Fig 5-A depicts the variation in ribosome density as a function of the base parameters k i and k̄e , and Fig 5B shows the
number of times an average ribosomewould collide with an upstream neighboring ribosome during a single round of
translation. For most parameter combinations, ribosome loading was predicted to be very low (i.e., fewer than one
ribosome per 100 codons) and collisions were rare (i.e., fewer than 10 collisions in an average round of translation).
However, for slow elongation and fast initiation, such as thosemeasured byWang et al. [7]), a ribosome could collide
with other ribosomes an average of ∼ 20 times for a gene the length of β -actin. To further illustrate the effects that
these initiation and elongation rates would have on ribosome dynamics on different genes, Fig. 5C shows simulated
kymographs for SunTag24x-Kif18b [10], Flag-10x-KDM5B [6], and SunTag56x-Ki67 [9], each with their previously
reported initiation and elongation rates. In addition, Appendix Figures S1 and S2 providemore detailed results of the
translation elongation simulations for β -actin translation at multiple initiation rates and elongation rates, respectively.
Each of these kymographs indicate that ribosome dynamics can vary from collision-free dynamics (SunTag24x-Kif18b
and Flag-10x-KDM5B) to dynamics with multiple collisions (SunTag56x-Ki67) and that collisions can becomemore
prevalent at high initiation rates or low elongation rates.

2.4.2 | CodonUsage Affects Translation Speed and Ribosome Loading
Simulations of genes H2B, β -actin, and KDM5B showed that each gene’s codon order has an influence on the overall
ribosome traffic dynamics, creating a non-uniform distribution of ribosomes along the mRNA (Appendix Figure S3).
This observation of codon dependence led us to lookmore deeply into possible effects that optimization could have on
observable translation dynamics. Appendix Figure S4 depicts simulated kymographs for the β -actin protein for three
synonymous sequences containing: (i) natural codons, (ii) most frequent synonymous codon (optimized), and (iii) least
frequent synonymous codon (de-optimized). For each case, Appendix Figure S4B illustrates the corresponding ribosome
loading profiles; Appendix Figure S4C shows the simulated distribution of FLAG intensities in units of mature proteins,
and Appendix Figure S4D presents the corresponding simulated fluorescence autocorrelation functions. Appendix
Figure S5 and S6 show similar results for the H2B and KDM5B genes, respectively.

In all cases, optimized gene sequences speed-up ribosome dynamics, and de-optimized sequences cause a slower
elongation rate that could be observed in the autocorrelation plots given in Appendix Figures S4D, S5D and S6D.
Moreover, for constant initiation rates, faster elongation would lead to lower ribosome loading (Appendix Figures S4B,
S5B, S6B) and therefore lower fluorescence intensity distributions (Appendix Figures S4C, S5C, S6C). All three genes
under consideration had natural codon usage that was enriched for the most common codons (i.e., the natural and
common codon usage dynamics are very similar), such that the translation rate, ribosome loading, and fluorescence
intensity could be substantially altered only by substitution to rare codons. We note that the substitution of rare codons
would lead to slower elongation and substantially higher numbers of ribosome collisions.
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2.4.3 | Depletion of tRNA Levels can Induce Ribosome Traffic Jams
In addition tomodulating translation speed through codon substitution, it is possible to perturb these dynamics through
experimental modulation of tRNA concentrations. For example, Gorgoni et al., [17] used amutated allele to the gene for
tRNACUG to reduce the concentration of the glutamine tRNA. To study how ribosome dynamics can be affected by the
removal or addition of specific tRNA, we simulated the translation dynamics of H2B, β -actin, and KDM5B at several
different concentrations for tRNACT C . Appendix Figure S7 shows the effect of decreasing tRNACT C concentration
on the ribosome association time (left) and elongation rate (right). The simulations show that ribosome dynamics are
relatively unchanged provided that the tRNACT C concentration remains above approximately 10% of the native level.
In contrast, depleting tRNACT C concentration below 10% of wild-type levels could lead to ribosome stalling, which was
reflected in long ribosome association times and low effective elongation rates. Ribosome traffic-jams are observed
under very low tRNACT C concentration as shown in Appendix Figures S8 to S10. The prevalence of the CTC codonwas
found to be important in that the effect of tRNACT C depletion occurs at higher tRNACT C concentrations for the CTC
codon rich KDM5B gene than for the other two constructs.

2.5 | RNA Sequence to NAscent Protein Simulation (RSNAPSIM)
To facilitate the simulation of single-molecule translation dynamics, all models and analyses described above have been
incorporated into a user-friendly Python toolbox, which we have called RSNAPSIM. This toolbox combines a graphical
user interface (GUI) divided intomultiple tabs, graphical visualizations, and tables to present calculated biophysical
parameters (see Fig 6). This simulator performs stochastic simulations considering thewidely acceptedmechanisms
affecting ribosome elongation, such as codon usage and ribosome interference. The toolbox is available in Python
2.7/3.5+ andwrappers for optimized C++ code are providedwith installation instructions.

RSNAPSIM takes as an input the gene sequence in Fasta format or an NCBI accession number. The user can decide
on the type (FLAG, Sun-Tag, or Hemagglutinin), number, and placement of different epitopes upstream, downstream
or within the protein of interest. The toolbox provides the user with a visualization of the gene sequence and the
overall gene construct including the position of the POI and the positions of the Tag epitopes. From the concatenated
tags and POI sequences, RSNAPSIM automatically generates a discrete single-RNA translation model with single
amino acid resolution and codon-dependent translation rates. Once generated, thesemodels can be simulated using
stochastic dynamics, and the results can be quantified in terms of predicted translation spot intensity fluctuations (i.e.,
single-RNA translation time traces or kymographs), ribosomal density profiles, and fluorescence signal autocorrelation.
The graphical user interface also provides for easy generation of simulated results for several different experimental
assays, including FCS, FRAP, and ROA. From these simulation results, biophysical parameters such as the overall
elongation rate or ribosome association rate are automatically calculated and returned to the user. The toolbox provides
additional interfaces for the user to design and simulate gene sequences with substitution between natural, common, or
rare codons for any combination of amino acids or tomanually adjust the concentration of tRNA for specific codons.
Simulations are saved automatically so that the user can compare translation dynamics for multiple different gene
constructs.

The open source toolbox was tested in Mac, Windows, and Linux operating systems and is available at: https:
//github.com/MunskyGroup/Translation_Simulator.git. Simulating a gene with 1567 codons for 100 repetitions
of 5000 seconds each takes less than 1minute using a laptop computer with a core i7 and 32GB of RAM.
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3 | DISCUSSION
Imaging translation in living cells at single-molecule resolution is still a nascent technology with a limited number of
experimentally studied genes [6, 7, 8, 9, 10, 14, 15], but the number of such studies is expected to grow considerably in
the near future [12]. Computational models can aid in this research by predicting the best utilization of experiments to
quantify biophysical parameters from single-molecule data. Here, we introduce a theoretical framework that includes
themost widely acceptedmechanisms affecting ribosome elongation, including codon usage and ribosome interference
[27]. To complement previous models that have sought to reproduce data from earlier bulk cellular assays [17], and
ribosome profiling data [28, 29], our focus has been to integrate single-mRNA stochastic dynamicsmodels with data
from in vivo single-RNA translation dynamics experiments.

We developed a general codon-dependent model, where nascent protein distributions and autocorrelation func-
tions were generated by detailed stochastic simulations that tracked the positions of ribosomes relative to their
neighbors. However, in the absence of perturbations to change initiation and elongation rates, most ribosomes do not
encounter others during elongation (Fig 2), at least not at currently accepted elongation and initiation rates from the
literature [6, 7, 8, 9, 10]. This observation justifies an assumption of sparse ribosome loading and independent ribosome
motion, which allow the linear reaction rate reformulation of the codon-dependent translationmodel into a simplified
stochastic moment model (Section 2.1.1) and further reduction led to analytical expressions for the steady state mean
and variance of fluorescence in units of mature protein levels per mRNA (Eq. 21) and for the decorrelation time (Eq. 18).
For initiation rates at or below reported experimental values, the simplified analytical model and the full model are in
strong agreement (Fig 2). However, increasing initiation rates relative to the base elongation rate, insertingmore rare
codons into the sequence, or depleting tRNA levels for some codonswill increase the number of ribosome collisions
and violate the simplifying assumptions (Figs 2C, 5). In such circumstances, the full stochastic model predicts slower
effective elongation rates, longer ribosome association times, and accumulation of more ribosomes permRNA.

With the full and reduced models in hand, it become possible to predict howwell three modern methodologies
would estimate elongation rates from single-molecule measurements: fluorescence correlation spectroscopy (FCS)
[12], fluorescence recovery after photo-bleaching (FRAP) [12, 9, 8], and run-off assays (ROA) after perturbation with
inhibitory drugs [10, 7]. Through simulations on 2,647 genes, we demonstrated that estimating elongation rates for long
genes (>1000 codons) could be achieved with great accuracy using any of thesemethodologies, provided that a minimal
number of mRNA spots are considered andwith an appropriate temporal resolution as demonstrated in Fig 3. However,
our results suggest that FCSwould be themost likely method to provide an accurate elongation rate estimate (Fig 3A),
especially for small andmedium size genes. Although our simulation results suggest that FCS is the best single-molecule
option to estimate elongation rates, it is important to remark that FCS analysis requires the tracking andmeasurement
of intensity for single spots over long periods of time, and such measurements are susceptible to photo-bleaching
andmolecular motion. The former issue has been addressed through application of optical techniques such as highly
inclined thin illuminationmicroscopy [30] and the latter could be addressed through application of molecular tethers to
reducemotion [10]. On the computational side, one could potentially address concerns of bleaching or motion relative
to the imaging plane by including hyper-parameters to describe these dynamics and then fit these hyper-parameters
concurrently withmodel parameters using Bayesian analyses.

Run-off assays using Harringtonine to prevent translation initiation can give accurate estimates when genes are
long, but the accuracy of such an approach is highly diminished for shorter genes (Fig 3B) or if the precise time of drug
action on themRNA is not known. Our analyses suggest that run-off assays directly depend on the number of ribosomes
actively translating themRNA at the time of perturbation, and since this number is highly susceptible to stochasticity on
small genes, the ROAwould require analysis of a much larger number of spots to achieve accurate rest estimates. Our
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analyses show that FRAP gives poor estimates for all genes of all sizes, and for all tested experimental designs, Fig 3C.
The recovery of the intensity after photobleaching depends heavily on the initiation rate, which has been found to be
an order of magnitude smaller than the elongation rate, making the recovery a highly stochastic process as well. We
directly compared the error size for the studiedmethods, obtaining that the error in FRAP and ROA is two times larger
than in FCS, Appendix Figure S11.

Using FCS data, we demonstrated that a codon-dependent translation model containing one universal average
elongation rate and one gene-dependent initiation rate could capture quantitatively the distribution of nascent proteins
per actively translatingmRNA, as well as the temporal dynamics for three different genes expressed in humanU2OS
cells (Fig 4). Combining these estimates of initiation and elongation rates with reported values for the same rates
identified using othermethods and for other genes, we could predict ribosome dynamics and nascent protein intensities
for reported gene sequences [6, 10, 7, 8, 9, 14, 15], (Fig 5). Those results allowed us to conclude that relatively fast
elongation rates helpmaintain substantial space between ribosomes on a singlemRNA. As a result, these ribosomes
should not often collide, and the final ribosome-mRNA association times should remain unchanged for typical initiation
rates, natural codon usage, and normal tRNA availability, as shown in Appendix Figure S3. Nevertheless, ribosome
dynamics may be affected by genetic or environmental perturbations, such as increased initiation rates (Appendix
Figure S1), reduction of elongation rates (Appendix Figure S2), enrichment for rare codons (Appendix Figure S4 to S6),
or depletion of tRNA (Appendix Figure S7 to S10).

The present model and RSNAPSIM toolkit have intentionally beenmade as general and adaptable as possible to
efficiently simulate and capture themost acceptedmechanisms taking place during translation, i.e. codon-dependent
elongation and ribosome interference. At present, the specific rates of codon-dependent elongation are only approxi-
mate and based on the prevalence of the the corresponding tRNA in the human genome. Bymodifying this assumption,
it is possible to further improve fits for the elongation dynamics shown in Fig 4, and one could find codon dependent
rates to explain the diversity of experimentally measured elongation rates depicted in Fig 5. For now, we argue that data
from fewer than a dozen genes (and in different cell lines) is as yet insufficient to fully constrain codon dependent rates
for all 64 codons. However, as new data is collected for more andmore genes, we envision that it will become possible
to tune these parameters with greater precision and to capture a greater complement of genes.

In addition to variation in initiation, elongation, codon usage, and tRNA concentrations, many other factors have
been described to affect ribosome dynamics. These include, but are not limited to, ribosome stalling or drop-off, pauses
due to secondary structures of the specific mRNA, and the electrostatic and hydrophobic interactions between the
mRNA and the ribosome [27, 29]. We expect that increased prevalence of single-RNA translation experiments will
add to the current understanding and reveal additional mechanisms taking place during translation. At the same
time, such discoveries are bound to create new layers of model complexity. Although thesemechanisms have not yet
been implemented in our present model, they can be captured easily through modification of the set of elongation
parameters, ke (i ). For example, the RSNAPSIM toolbox allows for direct modification of elongation rates at an specific
codon, which can be used tomimic pauses at certain locations. Furthermore, all of the computational analyses describe
above are easily adapted to allow for simultaneousmulti-frame andmulti-color translation, as we have implemented
in a parallel study to capture the dynamics of single-mRNA translational frame-shifting [14]. Amain limitation in the
experimental determination and quantification of translationmechanisms is the specific design of experiment tomake
that quantification. For example, in its current form, the introduction of tag regions in the open reading frame of
the gene of interest can dramatically alter the overall translation dynamics. As depicted in Fig 1B, the tag region is
around 300 codons in length, and this added length can substantially bias themeasurement biophysical parameters,
especially when quantified using FRAP or runoff assays (see Fig 3). On one hand, ourmodel can help to explain these
differences (Appendix Figure S11), but more importantly, the models themselves can be used to test in simulation
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different experimental designs that are more likely to reveal important biophysical mechanisms or parameters. We
envision that user-friendly simulations, such as those provided by RSNAPSIM, can be used to optimize combinations of
probe placement, gene length, codon usage differences, video frame rates, drug-based perturbations, or specifications
of movie length. Such simulation-based designs can be conducted prior to any new experimental analysis and then
used again to fit the results of those experiments, to pinpoint discrepancies that may reveal newmechanisms, and to
refinemodel parameters andmechanisms. Such an integration of experiment and computational model can help set the
stage for more efficient experiments that specifically target and quantify the full complement of factors that modulate
translation dynamics in living cells.

4 | MATERIALS AND METHODS

4.1 | Studied gene constructs
To constrain our analyses, we use published gene sequences used on single-molecule translation studies. An initial set of
sequences were obtained fromMorisaki et al., [6], these constructs encode an N-terminal region with 10 repeats of
FLAG-SM-tag followed by one of three different genes of interest: KDM5B (1549 aa), β -actin (375 aa) andH2B (128 aa),
the 3’ UTR region contains 24 repetitions of theMS2 stem-loops. A second source of gene sequences comes from Yan,
et al., [10], this gene construct encodes 24 repeats of SunTag followed by the gene of interest kif18b (1800 aa), and the
3’ UTR contains 24 repeats of the PP7 bacteriophage coat protein. A sequence encoding 56 SunTag repeats, the gene of
interest Ki67 (3177 aa), and the 3’ UTR containing 132 repeats ofMS2 stem-loops was obtained from Pichon et al., [9].
Finally, multiple gene constructs were build using 10 repeats of FLAG-SM-tag followed by a human gene. The studied
human genes come from a comprehensive list of 2,647 gene sequences obtained from the PANTHER database [23].

4.2 | Correction tomean and variance offluorescence intensity for the theoreticalmodel
Neglecting ribosome exclusion, and under an assumption of memory-less initiation with exponential rate k i , the number
of ribosomes to initiate translation in a fixed time, τ , is described by a Poisson distribution with mean and variance
equal to k i τ . For a single probe site, we can fix τ as the time it takes a ribosome tomove from that site to the end of the
mRNA, and themean and variance of nascent protein fluorescence can be estimated in terms of units of mature protein
fluorescence according to Eq. 21.

However, for probes that are spread out across a finite tag region, this distribution requires a slight correction
to account for ribosomes within the probe region that only exhibit partial protein fluorescence. Let α(s) denote the
intensity, scaled in units of mature protein, exhibited by a ribosome at the position, s , along themRNA as follows:

α(s) =

{
s/Lt for 0 ≤ s < Lt
1 for Lt ≤ s ≤ L (28)

Under an assumption of uniform codonusage, a given ribosomeon themRNAhas equal probability to be at any site along
themRNA. If there are an average ofmu mRNA total on themRNA, then the number at each location is approximated
by a Poisson distribution with mean and variance both equal to mu/L · ds . Recall that the mean of the sum of two
independent random variables is the sum of twomeans. Therefore, to find the total mean intensity contribution for all
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ribosomes on an averagemRNA (Eq. 22), we can integrate along the length of themRNA to find:

µI =

∫ L

0

µ

L
α(s)ds, (29)

=

(
1 −

Lt
2L

)
µ. (30)

Similarly, we recall that the variance of a random variable with variance σ2 and scaled by α is equal to α2σ2 and the
variance for the sum of two such variables is the sum of the corresponding variances. Therefor, by noting that µ = σ2,
we can find the total variance of intensity on a single mRNA (Eq. 23) as:

σ2I =

∫ L

0

µ

L
α(s)2ds, (31)

=

(
1 −

2Lt
3L

)
µ. (32)

4.3 | Fluorescence Correlation Spectroscopy (FCS)
FCS is usually implemented by computing and comparing the autocorrelations of fluorescence intensities of one or
more particles within small fixed volumes [31, 32], but similar correlation analyses have been used to quantify intensity
fluctuations for tracked single particles [2]. For our analysis, we compute the temporal autocorrelation times of the
FLAG fluorescence signal intensity for amoving volume that is centered around themoving RNA spot.

To estimate the rate of translation elongation, we took the following approach: first, each experimental and
simulated intensity time courses were centered to have zero mean by subtracting the average intensity of the time
series. Next, we computed the correlation function of the fluorescence intensity for each intensity spot according to the
standard formula:

G (τ) = Å{(It − µt )(It+τ − µt+τ )}, (33)

where τ denotes the time delay and Å{v } denotes the expectation of some arbitrary value v .
To reduce the effects of high-frequency shot noise and tracking errors that are not considered in themodel, the null-

delay autocorrelationG (0)was removed from the analysis [33]. The autocorrelations for τ > 0were then normalized
with respectG (∆t ), where∆t > 0 corresponds to frame rate for that experiment (i.e.,G (∆t ) is the co-variance of spot
intensity between two successive frames). After normalization, we implemented themulti-tau algorithm described in
detail elsewhere [34]. For statistical purposes, autocorrelations for multiple intensity time courses were calculated, and
their value was averaged. Final results are reported asmean values and standard error of themean (SEM). This signal
analysis allowed us tomeasure the dwell time (τF CS ) at whichG (τ) = 0, fromwhich the average ribosome elongation
rate can be calculated as:

k
(F CS )
e = L/τF CS . (34)

4.4 | Parameter Uncertainty
Parameter uncertainty analyses was calculated by building parameter distributions that reproduce results within a 10%
error, calculated from 1,000 independent simulations using randomly selected parameter values. Simulations were
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performed on theW.M. Keck High Performance Computing Cluster at Colorado State University.

4.5 | NumericalMethods
For solving themodel under stochastic dynamics we used the direct method fromGillespie’s algorithm [35] coded in
Matlab 2018b and Python 2.7. ODEmodels were solved in Python 2.7.
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TABLE 1 Comparingmodel dynamics.
StochasticModel Moments-BasedModel TheoreticalModel

KDM 5B , L = 1867aa
mean (µ) 5.2 ± 0.02 5.07 5.01
var (σ2) 4.5 ± 0.03 4.90 4.93
period (τ) 187.78 ± 0.94 180.0 185.23

β − act i n , L = 693aa
mean (µ) 1.31 ± 0.004 1.34 1.42
var (σ2) 1.08 ± 0.003 1.17 1.28
period (τ) 62.17 ± 0.27 60.0 60.94

H 2B , L = 446aa
mean (µ) 0.75 ± 0.002 0.77 0.82
var (σ2) 0.56 ± 0.001 0.59 0.68
period (τ) 42.96 ± 0.07 42.0 41.80

Mean and variance of intensity are given in units of mature proteins (ump). The period (τ) has units of seconds.
Elongation and initiation rates are k̄e = 10s−1 and k̄ i = 0.03s−1, respectively. Lengths include the tag region of 318aa.
Stochastic simulations were performed for 500 simulated spots, with a frame rate of 1 sec, and for 2,000 frames. Error
values represent the standard deviation of 3 repetitions of independent simulations.
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F IGURE 1 Translation studies with single-molecule resolution. A) Imaging single-molecule translation dynamics
is achieved by themeasurement of fluorescence spots that are producedwhen nascent proteins display epitopes that
are recognized by antibody fragments bound to fluorescent probes. The gene construct encodes a 10X FLAG SM tag
followed by a protein of interest (POI) and the 24XMS2 tag in the 3’ UTR region. B)Microscopy image showing
translation at single-molecule resolution; red spots represent single mRNA, and green spots represent nascent proteins.
Below is a representative trace showing the intensity fluctuation dynamics of a single-transcript translating
10X-FLAG-KDM5B. C) Simulated time courses representing the characteristic single-molecule fluctuation dynamics. A
representative trace is selected and highlighted. At the bottom of the figure is given the autocorrelation function (G )
calculated from simulated time courses. The time at which the autocorrelation function hits zero represents the
dwell-time (τF CS ). D) Harringtonine inhibits the translation initiation step by binding to the ribosomal 60S subunit. Plot
shows the average fluorescence after Harringtonine treatment. Without new initiation events, the fluctuations
diminish causing the intensity to drop to zero at time τROA . E) FRAP causes a rapid drop in the fluorescent intensity and
a subsequent recovery that is proportional to the time needed by ribosomes to produce new nascent proteins with
non-photobleached probes. The bottom plot shows the temporal dynamics of FRAP, where it can be observed by the
abrupt decrease in intensity and a recovery time (τF RAP ) correlated with the gene length. All simulations correspond to
KDM5B for 100 spots and a frame rate of 1 FPS. Error bars represent the standard error of themean.
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F IGURE 2 Modeling single-molecule translation. A) Translation is divided into threemain processes: initiation,
elongation, and termination. The ribosome footprint represents the physical space occluded by the ribosome, enforcing
that that no two ribosomes can occupy the same space and time. B) Kymographs represent ribosomemovement as a
function of time. In the figure, the x-axis is the codon position and y-axis is time. Each line represents a single ribosome
trajectory. The average slope is proportional to the effective ribosome elongation rate. The plot to the right shows the
relationship between ribosomemovement and fluorescence intensity, and the plot below shows the ribosome loading
at each codon position, calculated as the average ribosome reads at each codon position for multiple time points Nt . C)
Comparison of the average elongation time (top) and themean (middle) or variance (bottom) of fluorescence intensity
as calculated using the simplifiedmodel (Eqs. 18 to 21), a linear moments-basedmodel (Eqs. 9 to 17), and a full
stochastic model (Eqs. 1 to 5). Gray area represents previously reported parameter values for ribosome initiation.
Panels B and C correspond to simulations for the β -actin. Asterisks represent the specific parameter combination used
for Table 1.
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F IGURE 3 Comparing experimental methodologies to estimate ribosome elongation rates. Elongation rate
estimate experiments were simulated for 2,647 human genes, using (A) fluorescence correlation spectroscopy (FCS), (B)
run-off assays (ROA), and (C) fluorescence recovery after photobleaching (FRAP). Top panels show the distributions of
estimated k̃e for long genes (> 1000 codons, n = 658, purple), medium length genes (500 − 1000 codons, n = 1719, blue),
and short genes (< 500 codons, n = 270, orange) using 100mRNA spots for 300 frames at 1/3 FPS. The true elongation
rate is denoted by a vertical dashed line. Bottom panels show the RMSE in elongation rate estimation as a function of
the number of mRNA spots and the sampling rate. Red boxes highlight all experimental designs that yield a RMSE < 2.0.
The ‘true’ elongation rate was set at k̄e = 10, and the initiation rate was fixed at k i = 0.03 sec−1 for all simulations.
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F IGURE 4 Fitting single-molecule data with the full stochastic model. Experimental data shows the fluctuation
dynamics of a gene constructs encoding a N-terminal 10X FLAG ‘Spaghetti Monster’ SM-tag (green) followed by a
protein of interest and finally a 24XMS2 tag (red) in the 3’ UTR region. Three proteins were studied: A) KDM5B
(magenta), B) β -actin (cyan) and C) H2B (orange). Middle figures show the simulated (colors) andmeasured (black)
probability for anmRNA to have a fluorescence intensity corresponding to i units of mature proteins (ump). Right
images show the autocorrelation function (G ) calculated from experimentally measured (black error bars) and
computationally simulated (colors) autocorrelation functions. Error bars in the experimental data and shadow bars in
the simulated autocorrelation plots represent the standard error of themean. Elongation and initiation rates were
obtained by parameter optimization, using the Hooke and Jeeves Algorithm ([36]). Optimized parameters and their
uncertainties (seeMethods) are provided in Eq. 27.
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F IGURE 5 Ribosome dynamics under experimentally reported initiation and elongation rates. A) Simulated
mean number of codons between ribosomes for the β -actin gene as function of initiation and elongation constants. In
the plot, previous literature initiation and elongation values are highlighted by the squares [6, 10, 7, 8, 9], and values
estimated in this study are denoted by asterisks. B) Simulated number of collisions per ribosome as a function of
initiation and elongation constants. C) Top panel, kymograph showing the ribosomal dynamics for 24X-SunTag-Kif18b
using experimentally determined parameters k i = 1/100 sec−1 and k̄e = 3.1 aa/sec [10]. Center panel, kymograph
showing the ribosomal dynamics for 10X-FLAG-KDM5B using experimentally determined parameters k i = 1/30 sec−1
and k̄e = 10 aa/sec [6]. Bottom panel, kymograph showing the ribosomal dynamics for 56X-SunTag-ki67 using
experimentally determined parameters k i = 1/13 sec−1 and k̄e = 13.2 aa/sec [9]. White lines in kymographs represent
single ribosome positions, and green spots represent ribosome collisions.



24 AGUILERA LUIS ET AL.

F IGURE 6 RNA Sequence to NAscent Protein Simulation (RSNAPSIM). A) RSNAPSIM is divided into four upper
tabs and three lower tabs. Upper tabs allow the user to select and adjust sequences and then run simulations under
varying conditions. Sequence selector allows the user to load a raw text file or GenBank file for their simulation needs.
An option to poll GenBank via accession number is also available. All simulation parameters are also set on this tab. B)
After a file is loaded, RSNAPSIM allows the user to change the tRNA copy numbers and codon types under the Codon
Adjustment tab. Post simulation, the lower tabs display simulation information such as average intensity over time of N
simulations. C) Screen-shot of a kymograph. The kymograph tab allows the user to create their own kymographs with
varying display options. The other tabs are as follows: The Stochastic Simulation tab shows the time course data from
the selected simulations. Fluorescence correlation spectroscopy tab displays simulate single-molecule translation
dynamics, the autocorrelation function, and biophysical parameters, such as the elongation constant or ribosomal
density. All functionality in the GUI is also available in a command linemodule for Python includedwith RSNAPSIM.
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