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Abstract—Characterizing consciousness, the inner subjective
feeling that is present in every experience, is a hard problem in
neuroscience, but has important clinical implications. A leading
neuro-scientific approach to understanding consciousness is to
measure the complex causal neural interactions in the brain.
Elucidating the complex causal interplay between cortical neural
interactions and the subsequent network computations is very
challenging. In this study, we propose a novel quantitative
measure of consciousness - Network Causal Activity - using a
recently proposed Compression-Complexity Causality measure to
analyze electrocorticographic signals from the lateral cortex of
four monkeys during two states of consciousness (awake and
anaesthesia). Our results suggest that Network Causal Activity
is consistently higher in the awake state as compared with
anaesthesia state for all the monkeys.

Index Terms—Network causal activity, causal density,
Compression-Complexity Causality, consciousness, neuroscien-
tific measures of consciousness

I. INTRODUCTION

Understanding Consciousness – the inner subjective feeling
that is present in every experience (eg., in “seeing” a red rose,
in the “feeling” of pain, in the “tasting” of tea etc.), is the
final frontier of biomedical research. Defining, modeling and
measuring consciousness is considered a hard problem [1].
Consciousness largely bounds two facets, namely, the “level”
of consciousness and the “content” of consciousness. Ex-
periences such as coma, different stages of anaesthesia and
certain stages of sleep seem to indicate a loss of conscious-
ness [2]. Quantitatively, consciousness can be featured as
the distributed cortical activity in the sub-cortical regions of
the brain relating to the conscious content at any instant.
Qualitatively, consciousness is the most essential aspect of our
daily experience as it plays a big role in decision making and
adaptive planning [3].

Measuring consciousness is a great aid to clinical assess-
ments as it helps in building computational and psychological
models; and philosophical aspects to understand the princi-
ples connecting brain activity to consciousness experience of
wakeful individuals and individuals with physiological, phar-
macological and pathological loss of consciousness. Recently,
a number of scientific measures of consciousness have been
proposed, each having their own theoretical and mathematical
framework. We shall briefly describe a few of them here.

Tononi’s Integrated Information Theory of Consciousness
(IIT) is a leading scientific theory [4], [5] that conceptual-
izes the criteria for assessing the consciousness level of any
system, quantitatively, as well as, qualitatively. According to
IIT, if a system intrinsically possesses both integrated and
differentiated states of information, then it is bound to possess
some level of consciousness (indicated by the symbol Φ in
the theory). Non-zero values of Φ conforms the system is in a
conscious state. Neurobiologically, the number of connections
of neurons in brain networks as well as their complex dy-
namical interactions contributes to the quantification of Φ, not
necessarily only the number of neurons. Perturbational Com-
plexity Index (PCI) [6] is a theory-driven index formulated
to evaluate the level of consciousness in a clinical scenario.
In order to calculate PCI, the cortex of brain is perturbed
with trans-cranial magnetic stimulation to invoke distributed
activity in the thalamocortical brain networks. These spatio-
temporal responses are then compressed to measure their
algorithmic complexity which is normalized and calibrated
to yield an index of consciousness level known as PCI. A
high value of PCI indicates a high and significant amount
of complex interactions of neural activity in cortical areas.
Another measure of consciousness, Neural Complexity [7],
aims to quantify the interplay between statistically indepen-
dent (functionally segregated) and statistically interdependent
(functionally integrated) neuronal groups in the brain. For any
dynamical system, it is an information theoretic measure that
captures the mutual information present between the different
active subsets of the whole system [8]. Yet another measure
of consciousness, known as Causal Density [9], [10], defines
consciousness as the fraction of significant causal interactions
in brain networks using Granger Causality measure [11]. In
[12], [13], there is a review of other scientific measures
of consciousness which are similar to the ones described
here. The aforementioned measures are categorized under
Complexity Theories of Consciousness (please see [14]).

In [15], a simple model of spectral Granger bivariate
causality is applied to visualize the information flow between
different parts of cortex for different states – conscious and
unconsciousness induced by different means, in monkeys. This
enabled the investigation of large-scale information flow and
causal interactions specific to different frequency-modes in the
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brain. A switch in the frequency-mode of neural communica-
tion was found to characterize the difference between different
levels of consciousness in monkeys.

In this study, we propose a novel, time domain, Net-
work Causal Activity approach to discriminate different levels
of consciousness. A recently proposed causality measure,
Compression-Complexity Causality [16], which has been rig-
orously tested on simulated data for realistic scenarios as well
as real-world data is used to formulate the measure. Instead of
frequency domain analysis used in [15], we use this Network
Causal Activity measure to differentiate between conscious
and unconscious states in monkeys. The organization of the
paper is as follows. In section II, we give a description of our
proposed methodology, the data sets used, and define Network
Causal Activity measure based on Compression-Complexity
Causality which is then applied on the data. This is followed by
a detailed analysis and discussion in section III. We conclude
in section IV with future research possibilities.

II. MATERIALS AND METHODS

A. Subjects and Data Acquisition

For our work, we have used a subset of the dataset from
the study conducted by Yanagawa et al. [15] which is made
available in the public server neurotycho.org (http:// neuroty-
cho.org/) [17]. In their study, electrocorticographic (ECoG)
signals sampled at 1 kHz were recorded by a Cerebus data ac-
quisition system (Blackrock, UT, USA) from the lateral cortex
of four monkeys (George, Chibi, Su, Kin2) using 128 channels
electrodes during different stages of sleep, wakefulness and
anaesthesia on different days. A complete description about
the experiment can be found in [15]. We have focused on only
the awake (eyes-opened) and ketamine-medetomidine induced
anaesthetized conditions.

B. Dataset Description

From the recorded neural data collected from the exper-
iments of the study in [15], 3 non-overlapping windows of
5s each (corresponding to 5000 time points) were extracted
from 126 channels to construct a sustained network of neural
interactions for all the four monkeys in two states – awake
(eyes open, conscious state) and anaesthetized (drugged using
Ketamine and Medetomidine, loss of consciousness state)
condition. We excluded data from two channels (nos. 73 and
123) since these were found to be unsuitable for computation
of causality values. The data was used in the acquired form
without any re-referencing or pre-processing.

C. Network Causal Activity

Network Causal Activity (NCA) is proposed as a quantita-
tive measure of consciousness to capture average (significant)
causal influence activity between all the elements or subsys-
tems of a given system. We use a recently proposed measure
– Compression-Complexity Causality (CCC) [16] to estimate
causal influences. CCC Toolbox made available as a part of
Supplemental Material for [16] was used.

CCC is a time-domain, model-free measure that has been
demonstrated to outperform the well-known Granger Causal-
ity [11] and Transfer Entropy [18] for several systems
(stochastic and chaotic) under wide variety of scenarios, such
as, presence of noise, uniform and non-uniform sampling and
linear filtering. We shall first briefly describe CCC and then
propose NCA using CCC.

For two given time series A and B, CCC is formulated as
follows:
CC(∆A|Apast) = ETC(Apast + ∆A)− ETC(Apast),
CC(∆A|Apast, Bpast) = ETC(Apast + ∆A,Bpast + ∆A)−
ETC(Apast, Bpast),
CCCBpast−→∆A

= CC(∆A|Apast)− CC(∆A|Apast, Bpast),
CCCB−→A = CCCBpast−→∆A

= CC(∆A|Apast) −
CC(∆A|Apast, Bpast),
where CC(∆A|Apast) is the compression complexity of time
series ∆A (the current window with w values from time
series A) given time series Apast (the window of L values
from the immediate past of ∆A). This is estimated by first
creating the time series Apast + ∆A (here ‘+’ indicates
the operation of appending at the end of the time-series)
and then computing the difference between the Effort-To-
Compress the appended time series Apast + ∆A and the
Effort-To-Compress the time series of immediate past values
Apast. ETC(x) is a complexity measure that captures the
effort required by a lossless compression algorithm (known
as Non-Sequential Recursive Pair Substitution Algorithm)
to convert x to a constant sequence [19]. ETC values are
high for random sequences and low for periodic sequences.
Similarly, CC(∆A|Apast, Bpast) refers to the compression
complexity of time series ∆A given both the time series
Apast and Bpast (the immediate past values of ∆A taken
from time series A and B). This is computed by taking
the difference between ETC(Apast + ∆A,Bpast + ∆A) and
ETC(Apast, Bpast) where ETC(a, b) is the joint effort-to-
compress complexity of time series a and b. CCCBpast−→∆A

,
which is computed as a difference of two compression com-
plexities (CC(∆A|Apast)−CC(∆A|Apast, Bpast)), is a mea-
sure of causality from the immediate past of B to the current
window of A. To compute the overall causality from time
series B to A we take the average over all the temporal
windows yielding CCCB−→A.

A statistically significant non-zero value of CCCB−→A

implies a causation from B to A. A similar estimation of CCC
from A to B can be computed (CCCA−→B).

Having defined CCC for two time series, Network Causal
Activity for multi-variate time series data M (with m vari-
ables1) is defined as the total average significant pairwise CCC
values across all possible pairs. Mathematically,

NCA
(
M
)

=
1

n

j,k=m∑
j,k=1,j 6=k

CCC∗j→k , (1)

1If each of these series has N time samples, then M is a m×N matrix.
There would be m2 − m pairwise CCC values out of which the highest
n = 10% are taken as significant.
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Figure 1: Histogram of pairwise CCC values across 126 ECoG signal channels for each monkey for window w1 (awake) and
w′1 (anaesthesia): (a) George, (b) Chibi, (c) Su, (d) Kin2. Solid line (-) is for the Awake state and dotted line (- -) is for the
Anaesthesia state. ECoG dataset obtained from [15].
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Figure 2: 95% confidence intervals for mean CCC values of pooled data of all windows (each of 5 second interval) of George
accounting for 47, 250 samples, for awake as well as anaesthesia state showing a clear separation between the two.

where there are n number of significant CCC values among
all possible pairwise combinations of the m variables. CCC
value from the j-th time series to the k-th time series is said to
be significant (CCC∗j→k) if it is greater than some pre-defined
threshold value T . Alternatively, we define significance as the
highest 10% (in magnitude) of all pairwise CCC values for the
given multi-variate time series. These two ways of defining
significance will yield different values of NCA. We have used
the latter in our study.

We estimated the pairwise CCC values for three non-

overlapping windows of ECoG signals of 4 monkeys in
Awake (conscious) and Anaesthesia (loss of consciousness)
states. The settings that were chosen for estimating CCC are:
L = 150, w = 30, δ = 200 (the step-size for the moving
window), B = 2 (number of bins2). These calculated CCC
values are then used to estimate NCA using Eq.1 (N = 5000,
m = 126, n = 1575).

2CCC is computed on a quantized version of the input real time series. The
quantization is performed using uniform sized bins [16].
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Table I: Mean and standard deviation of pairwise CCC values across 126 ECoG signal channels of different monkeys during
awake state for 3 different windows, each of 5 seconds duration. ECoG dataset obtained from [15].

Monkeys

Awake

CCC: Mean (µ) ± Standard Deviation (σ)

w1 w2 w3

George 0.0165± 0.0176 0.0139± 0.0130 0.0158± 0.0153

Chibi 0.0138± 0.0139 0.0159± 0.0156 0.0162± 0.0142

Su 0.0183± 0.0164 0.0192± 0.0168 0.0107± 0.0110

Kin2 0.0220± 0.0241 0.0246± 0.0222 0.0186± 0.0196

Table II: Mean and standard deviation of pairwise CCC values across 126 ECoG signal channels of different monkeys during
anaesthesia state for 3 different windows, each of 5 seconds duration. ECoG dataset obtained from [15].

Monkeys

Anaesthesia

CCC: Mean (µ) ± Standard Deviation (σ)

w′
1 w′

2 w′
3

George 0.0168± 0.0111 0.0143± 0.0107 0.0140± 0.0106

Chibi 0.0073± 0.0074 0.0080± 0.0084 0.0088± 0.0090

Su 0.0137± 0.0104 0.0106± 0.0098 0.0140± 0.0116

Kin2 0.0099± 0.0094 0.0114± 0.0099 0.0096± 0.0096

Table III: Network Causal Activity (NCA) estimates for all the monkeys for 3 different windows for both awake and anaesthesia
states. The top 10% significant CCC values were used in computation of NCA. Mean NCA for awake state is higher than that
of anaesthesia.

Monkeys

Awake Anaesthesia

Network Causal Activity Network Causal Activity

w1 w2 w3 Mean w′
1 w′

2 w′
3 Mean

George 0.0564 0.0427 0.0482 0.0491 0.0378 0.0354 0.0355 0.0362

Chibi 0.0460 0.0512 0.0477 0.0483 0.0214 0.0248 0.0263 0.0242

Su 0.0555 0.0570 0.0356 0.0494 0.0344 0.0308 0.0391 0.0347

Kin2 0.0765 0.0727 0.0632 0.0708 0.0292 0.0307 0.0284 0.0294

III. ANALYSIS AND DISCUSSION

Mean and standard deviation of pairwise CCC values across
126 ECoG signal channels of 4 different monkeys for 3
different windows, each of 5 seconds duration, are given in
Table I and Table II for the awake and anaesthesia states
respectively. In Figure 1, histograms of pairwise CCC values
for each monkey for window w1 (awake) and w′1 (anaesthesia)

are shown. In Table III, the Network Causal Activity (NCA)
estimates are given for all the monkeys for 3 different windows
for both the states. The top 10% significant CCC values were
used in computation of NCA. From these tables, we can infer
the following:

1) It is found that the standard deviations of CCC values
in the awake state are consistently higher than that of
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the anaesthesia state in all the windows for all the
monkeys (except for one window in case of monkey
Su). This finding implies that there are a higher number
of differentiated causal neural interactions in the awake
state as compared to anaesthesia state.

2) Mean NCA is consistently higher in awake state as
compared to anaesthesia state across all the windows
for all the monkeys. This is intuitive, since in the awake
state we expect the average significant causal neural
interactions to be of a higher magnitude.

3) The mean CCC values for awake state is significantly
higher than the mean CCC value for the anaesthesia
state. In order to substantiate this result statistically,
a formal hypothesis ‘2 sample student’s t-test’ was
performed for all the monkeys on data pooled over all
the three windows of awake (w1, w2, and w3) as well
as anaesthesia (w′1, w′2, and w′3). The t-test results are
summarized as follows:
• For George, the mean of awake state (0.0154 ±

0.0155) is significantly greater (t94498 = −4.5272,
p = 0) than that of anaesthesia state (0.0150 ±
0.0109).

• For Chibi, the mean of awake state (0.0153 ±
0.0146) is significantly greater (t94498 = −93.7679,
p = 0) than that of anaesthesia state (0.0081 ±
0.0083).

• For Su, the mean of awake state (0.0161 ± 0.0155)
is significantly greater (t94498 = −38.0216, p = 0)
than that of anaesthesia state (0.0128 ± 0.0107).

• For Kin2, the mean of awake state (0.0217
± 0.0222) is significantly greater (t94498 =
−103.0372, p = 0) than that of anaesthesia state
(0.0103 ± 0.0097).

A graphical analysis of this hypothesis test for ‘George’
is depicted in Figure 2.

IV. CONCLUSION

Measuring Network Causal Activity, i.e., the average sig-
nificant causal interactions in the brain, is a promising
approach towards understanding consciousness. Our work
demonstrates that Network Causal Activity, measured by es-
timating compression-complexity causality values of ECoG
signals in monkeys can differentiate states of consciousness
(awake vs. anaesthesia). Both, mean CCC and mean NCA
measures are statistically significantly higher for awake state
when compared with anaesthesia state. Going forward, it is
worthwhile to estimate NCA for different stages of sleep and
other states of consciousness (such as coma, vegetative state).
Potentially, NCA could be further developed to provide robust
measures of consciousness in clinical applications.
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