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Abstract4

Spatial dynamics can promote the evolution of cooperation. While disper-5

sal processes have been studied in simple evolutionary games, real-world social6

dilemmas are much more complicated. The public good, in many cases, does7

not increase linearly as per the investment in it. When the investment is low, for8

example, every additional unit of the investment may help a lot to increase the9

public good, but the effect vanishes as the number of investments increase. Such10

non-linear behaviour is the norm rather than an exception in a variety of social as11

well as biological systems. We take into account the non-linearity in the payoffs12

of the public goods game as well as the natural demographic effects of population13

densities. Population density has also been shown to impact the evolution of co-14

operation. Coupling these non-linear games and population size effect together15

with an explicitly defined spatial structure brings us one step closer to the com-16

plexity of real eco-evolutionary spatial systems. We show how the non-linearity in17

payoffs, resulting in synergy or discounting of public goods can alter the effective18

rate of return on the cooperative investment. Synergy or discounting in public19

goods accumulation affects the resulting spatial structure, not just quantitatively20

but in some cases, drastically changing the outcomes. In cases where a linear21

payoff structure would lead to extinction, synergy can support the coexistence of22

cooperators and defectors. The combined eco-evolutionary trajectory can thus23

be qualitatively different in cases on non-linear social dilemmas.24

Keywords: non-linear interactions, spatial dynamics, pattern formation, social dilemma,25

synergy and discounting effect26
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1 Introduction27

The most significant impact of evolutionary game theory has been in the field of social28

evolution since a simple two player game [Axelrod, 1984] and its multiplayer version,29

the public goods game [Hardin, 1968] can represent the so-called social dilemma.30

The social dilemma arises when the behaviour (or choice) of an individual result in31

the conflict between the benefits of the individual and the group it belongs to. From32

decision making to biological behavioural strategies, the prisoner’s dilemma and pub-33

lic goods games have invited interdisciplinary studies from behavioural economists,34

cognitive scientists, psychologists, and biologists providing a fertile field for experi-35

mental as well as theoretical developments. While cooperative behaviour raises the36

group benefit, cooperators get less benefit than the others who do not cooperate aris-37

ing a social dilemma. When interactions take place in a social setting where more38

than two individuals are involved, social dilemmas can arise in different categories.39

The different possible dilemmas have been categorically defined on a continuum of40

the so-called non-linear public goods games [Hauert et al., 2006b] as explored before41

by [Eshel and Motro, 1988] in the context of helping behaviour. We call the situation42

where the group benefit is linear in the number of cooperators linear social dilemma,43

and non-linear social dilemma is named after their non-linearity. Depending on the44

appropriate social context, it is possible that a variation of the social dilemma is more45

or less appropriate [Skyrms, 2003]. Archetti and Scheuring [2012] present an excel-46

lent review of the use and importance of non-linear public goods game. Interestingly,47

situations impossible in two player games can occur in multiplayer games which can48

drastically change the evolutionary outcome [Bach et al., 2006, Pacheco et al., 2009,49

Souza et al., 2009, Gokhale and Traulsen, 2010, Venkateswaran and Gokhale, 2018].50

Of the many postulated solutions to the problem of evolution of cooperation, one51

of them is spatial structure. Spatial structure can be represented in different forms52

such as grouping, explicit space, deme structures and other ways of limiting inter-53

actions [Wright, 1930, Ohtsuki et al., 2007, Tarnita et al., 2009, 2011, Hauert and54

Imhof, 2012]. Especially in the repeated version of the public goods game, includ-55

ing an assortment mechanism promotes cooperation [van Veelen et al., 2010, 2012].56

In an explicitly defined space, diffusion dynamics of cooperators and defectors sup-57

port the existence of cooperators by forming spatial patterns. Comparable to the58

activator-inhibitor systems from the classical studies on morphogenesis by Turing59

[Turing, 1952], we can see various patterns with cooperators in the simplified system60

taking into account the linear social dilemma and constant diffusion [Wakano et al.,61
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2009]. Previously we have combined a linear social dilemma with density-dependent62

diffusion coefficients [Park and Gokhale, 2019] which comes closer to analysing real63

movements seen across species from bacteria to humans [Okubo and Levin, 1980,64

Shigesada et al., 1979, Kawasaki et al., 1997, Lou and Martı́nez, 2009, Loe et al.,65

2009, Ohgiwari et al., 1992, Grauwin et al., 2009]. However, as introduced, non-linear66

social dilemmas have not been previously discussed in this context. Furthermore,67

public goods games are typically analysed in an evolutionary framework but devoid68

of the ecological context. Studying social dilemmas have been taken in an ecological69

context where along with the evolutionary change, the population dynamics are also70

tracked [Hauert et al., 2006a, Gokhale and Hauert, 2016, Park and Gokhale, 2019].71

In this study, we aim to take the ecological context into account in non-linear social72

dilemmas.73

In this paper, keeping the diffusion coefficient constant, we study ecological non-74

linear public goods games in a spatial dimension. We begin by introducing non-75

linearity in the payoff function of the social dilemma, including population dynamics.76

Then we include simple diffusion dynamics and analyse the resulting spatial patterns.77

For the parameter set comprising of the diffusion coefficients and the multiplication78

factor, we can observe the extinction, as well as heterogeneous, or homogenous79

patterns. Under certain simplifying assumptions, characterisation of the stability of80

the fixed point is possible. We discuss the dynamics of the Hopf bifurcation transi-81

tion and the phase boundary between heterogeneous and homogenous patterned82

phases. Overall, our results suggest that synergy and discounting affects the relative83

size of the extinction and surviving phases. In particular, for synergy, the extinction84

region is reduced as the effective benefit increases resulting in an increased possi-85

bility of cooperator persistence. For discounting, the extinction region expands. The86

development will help contrast the results with the work of [Wakano et al., 2009] and87

relates our work to realistic public goods scenarios where the contributions often have88

a non-linear impact [Dawes et al., 1986].89

2 Model & Results90

2.1 Non-linear public goods game91

Complexity of evolutionary games increases as we move from two-player games to92

multiplayer games [Gokhale and Traulsen, 2010]. A similar trend ensues as we move93

from linear public goods games to non-linear payoff structures [Archetti and Scheur-94
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ing, 2012]. A handy method for moving from linear to non-linear multiplayer games is95

given in Hauert et al. [2006b]. To introduce this method in our notational form, we will96

first derive the payoffs in a linear setting.97

In the classical version of the public goods game (PGG), the cooperators invest
c to the common pool while the defectors contribute nothing. The value of the pool
increases by a certain multiplication factor r, 1 < r < N , where N is the group size.
The amplified returns are equally distributed to all the N players in the game. For
such a setting the payoffs for cooperators and defectors are given by,

PD(m) =
rcm

N
,

PC(m) =
rcm

N
− c, (1)

where m is the number of cooperators in the group. As in Hauert et al. [2006a]
we are interested in not just the evolutionary dynamics (change in the frequency of
cooperators over time) but the ecological dynamics as well (change in the population
density over time). This system, analysed by Hauert et al. [2006a, 2008], is briefly
re-introduced in our notation for later extension. We characterise the densities of
cooperators and defectors in the population as u and v. Thus the population density
ranges as 0 ≤ u + v ≤ 1 and the vacant space remaining in the niche is w = 1 −
u − v. Low population density means that it is hard to encounter other individuals
and accordingly hard to interact with them. Hence the group size N , the maximum
group size in this case, is not always reachable. Instead, S individuals forming an
interacting group. With fixed N the interacting group size S is bounded, S ≤ N , and
the probability p(S;N) of interacting with S − 1 individuals is depending on the total
population density u+v = 1−w. When we consider the focal individual, the probability
p(S;N) of interacting with S − 1 individuals among a maximum group of size N − 1

individuals (excluding the focal individual) is,

p(S;N) =

(
N − 1

S − 1

)
(1− w)S−1wN−S. (2)

Then, the average payoffs for defectors and cooperators, fD and fC , are given as,

fD =
N∑

S=2

p(S;N)PD(S),

fC =
N∑

S=2

p(S;N)PC(S), (3)

4

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 4, 2019. ; https://doi.org/10.1101/660266doi: bioRxiv preprint 

https://doi.org/10.1101/660266
http://creativecommons.org/licenses/by-nc/4.0/


where PD(S) and PC(S) are the expected payoffs for defectors and cooperators at a98

given S. The sum for the group sizes S starts at two as for a social dilemma there99

need to be at least two interacting individuals.100

To derive the expected payoffs, we first need to assess the probability of having a
certain number of cooperators m in a group of size S − 1 which is given by pc(m;S),

pc(m;S) =

(
S − 1

m

)(
u

1− w

)m(
v

1− w

)S−1−m

. (4)

Thus the payoffs in Eq. (1) are weighted with the probability of having m cooperators,
giving us the expected payoffs,

PD(S) =
S−1∑
m=0

pc(m;S)PD(m) =
r

S

S−1∑
m=0

mpc(m;S),

PC(S) =
S−1∑
m=0

pc(m;S)PC(m+ 1)

=
r

S

S−1∑
m=0

(m+ 1)pc(m;S)− 1, (5)

where the investment cost c has been set to unity without loss of generality ( c = 1).
The average payoffs fD and fC are thus given by,

fD =
ru

1− w

[
1− (1− wN)

N(1− w)

]
,

fC = fD − 1− (r − 1)wN−1 +
r

N

1− wN

1− w
. (6)

As in Hauert et al. [2006b] the parameter Ω can introduce the desired non-linearity
in the payoffs as,

PD(m) =
rc

N
(1 + Ω + Ω2 + . . .+ Ωm−1) =

rc

N

1− Ωm

1− Ω
,

PC(m) = PD(m)− c =
rc

N
Ω(1 + Ω + . . .+ Ωm−2) +

rc

N
− c. (7)

If Ω > 1, every additional cooperator contributes more than the previous, thus pro-
viding a synergistic effect. If Ω < 1, then every additional cooperator contributes less
than the previous, thus saturating the benefits, thus providing a discounting effect.
Following the derivation, as earlier [Gokhale and Hauert, 2016], the average payoffs
are given as,

fD =
r

N

1

1−w−u(1−Ω)

[
(u(Ω− 1) + 1)N−1

Ω− 1
− u(1− wN)

1− w

]
,

fC = fD − 1− (r − 1)wN−1 +
r

N

(1− u(1− Ω))N − wN

1− w − u(1− Ω)
. (8)
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The linear version of the PGG can be recovered by setting Ω = 1.101

2.2 Spatial non-linear public goods games102

For tracing the population dynamics, we are interested in the change in the densities
of cooperators and defectors over time. Both cooperators and defectors are assumed
to have a baseline birth rate of b and death rate d. Growth is possible only when the
population is not at carrying capacity i.e. w > 0. We track the densities of cooperators
and defectors by an extension of the replicator dynamics [Taylor and Jonker, 1978,
Hofbauer and Sigmund, 1998, Hauert et al., 2006a],

u̇ = u[w(fC + b)− d],

v̇ = v[w(fD + b)− d]. (9)

To include spatial dynamics in the above system we assume that a population of
cooperators and defectors resides in a given patch. Game interactions only occur
within patches, and the individuals can move adjacent patches. The patches are on
a two-dimensional space and are connected in the form of a regular lattice. Taking a
continuum limit, we get the differential equations with constant diffusion coefficients
for cooperators Dc and defectors Dd,

u̇ = Dc∇2u+ u[w(fC + b)− d],

v̇ = Dd∇2v + v[w(fD + b)− d]. (10)

At the boundaries, there is no in- and out-flux. As in classical activator-inhibitor sys-103

tems, the different ratios of the diffusion coefficient D = Dd/Dc can generate various104

patterns from coexistence, extinction as well as chaos [Wakano et al., 2009].105

Non-linearity in the PGG is implemented by Ω 6= 1. Previous work shows that106

the introduction of Ω is enriching the dynamics [Hauert et al., 2006b, Gokhale and107

Hauert, 2016]. Synergy (Ω > 1) enhances cooperation while discounting (Ω < 1)108

suppresses it. Accordingly, synergy and discounting change the effective r values:109

With Ω larger than unity increasing r, and vice versa. As shown in Fig. 1, for synergy110

effect (Ω = 1.1), we can find a chaotic coexistence of cooperators and defectors. The111

same parameter for a linear case (Ω = 1.0) resulted in total extinction of the population112

[Wakano et al., 2009]. In the linear case, chaotic patterns were observed for r values113

larger than that of extinction patterns. Thus our observation implies the mechanism114

of how synergy works, by effectively increasing r value.115
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t = 0 t = 950 t = 1900

t = 2850 t = 3800 t = 4750

Figure 1: Pattern formation on the two-dimensional square lattice. We ob-
serve the chaotic pattern for Ω = 1.1 (synergy effect) where extinction comes out with
Ω = 1 [Wakano et al., 2009]. Mint green and Fuchsia pink colours are used for the
cooperators and defectors densities, respectively. For a full explanation of the color
scheme we refer to the Appendix A. Black indicates no individual on the site whereas
blue appears when the ratio of cooperators and defectors is the same. Initially, a disk
with radius L/10 at the centre where L is the system size is occupied by coopera-
tor and defector densities 0.1, respectively. We use multiplication factor r = 2.2 and
diffusion coefficient ratio D = 2. Throughout the paper, for simulations, we used the
system size L = 283, dt = 0.1 and dx = 1.4 with the Crank-Nicolson algorithm.
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⌦ = 0.9 ⌦ = 1.0 ⌦ = 1.1

Homogeneous 
coexistence

Diffusion induced 
instability

Diffusion induced 
coexistence

D = 8 r = 2.44

Figure 2: Synergy and discounting effects on pattern formation. We get the dif-
ferent patterns under discounting and synergy effects distinct from the linear PGG
game at a given the same parameter set. While diffusion induced instability is ob-
served in the linear PGG, the discounting effect makes diffusion induced coexistence
pattern implying that the discounting effect makes the Hopf bifurcation point shift to
the larger value. Under the synergy effect, on the contrary, we obtain the opposite
trend observing the homogenous coexistence pattern. In the linear PGG, the ho-
mogenous patterns are observed in higher multiplication factor r implying the shift of
r
hopf

to the smaller value under the synergy effect. The frame colors are matched with
corresponding phases explained in Fig. 3.
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The change in the resulting patterns due to synergy or discounting is not limited to116

extinction of chaos but is a general feature of the non-linearity in payoffs. To illustrate117

this change we show how a stable pattern under linear PGG (Ω = 1) can change118

the shape under discounting or synergy in Fig. 2. Such changes in the final structure119

happen all over the parameter space. To confirm this tendency, we examine the120

spatial patterns for various parameters and find five phases, same as in the the linear121

PGG case [Wakano et al., 2009] but now with shifted phase boundaries (see Fig. 3).122

The effective r increases with an increasing Ω, and thus the location of the Hopf123

bifurcation also shifts. As a result of shifting r
hopf

, extinction region is reduced in124

the parameter space with synergy effect. We thus focus our attention on the Hopf125

bifurcation point r
hopf

.126

2.2.1 Hopf-bifuraction in non-linear PGG127

We find the Hopf bifurcation point r
hopf

for various Ω values using Eq. (8). Effective128

r increases as Ω increases, and thus r
hopf

is monotonically decreasing with Ω as in129

Fig 4(a). The tangential line at Ω = 1 is drawn for comparing the effects of synergy and130

discounting. If we focus on the differences between the tangent and r
hopf

line, synergy131

changes r
hopf

more dramatically than discounting. Synergy and discounting effects132

originate from 1 + (1±∆Ω) + (1±∆Ω)2 + · · ·+ (1±∆Ω)m−1 in Eq. (7), where ∆Ω > 0133

and plus and minus signs for synergy and discounting, respectively. Straightforwardly,134

the difference between 1 and (1 + ∆Ω)k is larger than that of (1 − ∆Ω)k for k > 2.135

Hence, the non-linear PGG itself gives different ∆r
hopf

for the same ∆Ω.136

2.2.2 Criterion for diffusion induced instability137

Since Ω changes effective r value, the phase boundary also moves. By using the lin-
ear stability analysis, we find phase boundaries between diffusion induced instability
and homogeneous coexistence phases in r-D space shown in Fig. 4(b). To do that,
we introduce new notations, and two reaction-diffusion equations in Eq. (10) can be
written as

∂tu = D∇2u + R(u), (11)

with density vector u = (u, v)T and matrix D =

(
Dc 0

0 Dd

)
. Elements of the vector138

R(u) =

(
g(u, v)

h(u, v)

)
indicate reaction terms for each density which are the second139

terms in Eq. (10). Without diffusion, the differential equations have homogeneous140
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Figure 3: (a) Spatial patterns and (b) corresponding phase diagram for Ω =

1.1. There are five phases (framed using different colors): extinction (black), chaos
(blue), diffusion induced coexistence (red), diffusion induced instability (green), and
homogeneous coexistence (orange). The Hopf-bifurcation point r

hopf
' 2.2208 and

the boundary between diffusion induced instability and homogeneous coexistence
are analytically calculated, while the other boundaries are from the simulation results.
All boundaries and r

hopf
shift to the left indicating effective r increases as compared

to a linear public goods game (see Fig. 4).
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Figure 4: Hopf bifurcation points in Ω and shift of the phase boundary. (a)
The Hopf bifurcation point r

hopf
for various Ω (solid line with points). Synergy (Ω > 1)

decreases r
hopf

while discounting (Ω < 1) increases r
hopf

. By decreasing r
hopf

, the
surviving region is extended in the parameter space. The solid line without points
is a tangential line at Ω = 1. (b) The phase boundaries between diffusion induced
instability and homogeneous coexistence phases are also examined for various Ω.
Since r

hopf
increases as decrease with Ω, the boundaries also move to the right.

solution u0 = (u0, v0)
T where g(u0, v0) = h(u0, v0) = 0. We assume that the solution is141

a fixed point, and examine its stability under diffusion.142

If we consider small perturbation ũ from the homogeneous solution, u ∼= u0 + ũ,
we get the relation,

∂tũ = D∇2ũ + Jũ, (12)

where J = (∂R/∂u)u0 ≡

(
gu gv

hu hv

)∣∣∣∣∣
u0

. Subscripts of the g and h mean partial deriva-143

tive of that variable, e.g., gu means ∂g/∂u. Decomposing ũ =
∑

k ake
ikr based on144

propagation wave number k gives us relation ȧk = Bak where B ≡ J − k2D. There-145

fore, the stability of the homogeneous solution can be examined by the matrix B.146

Note that Tr(B) < 0 is guaranteed because Tr(J) < 0. Hence, if the determinant of B147

is smaller than zero [det(B) < 0], one of the eigenvalues of the matrix B is positive.148

Then, the homogeneous solution becomes unstable and Turing patterns appear.149

The condition for det(B) < 0 is given by(
gu
Du

+
hv
Dv

)2

>
4 det(J)

DuDv

. (13)
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Figure 5: Schematic figure for expected shift of phase boundaries. According to
the change of r

hopf
, over all phase boundaries may shift together at the same direc-

tion. As we have seen in Fig. 4(b), the phase boundary with r
hopf

move to the right
with discounting effect and move to the left with synergy effect, respectively. Accord-
ingly, the surviving region in the parameter space expands with synergy effect while
it shrinks with discounting effect.

It can be rewritten as following form

Dv

Du

>
guhv − 2gvhu + 2

√
−gvhu det(J)

g2u
. (14)

If the above criterion is satisfied, the stable fixed point predicted without diffusion150

becomes unstable due to diffusion. From this criterion, we get the analytic phase151

boundary for r
hopf

< r as shown in Fig. 4(b).152

3 Discussion153

Linear public goods game is a useful approximation of the real non-linearities in appli-154

cations of social dilemmas from the micro to the macro scale [Turner and Chao, 1999,155

Gore et al., 2009, Packer and Ruttan, 1988] with application such as in cancer [Aktipis,156

2016] as well as antibiotic resistance [Lee et al., 2010]. However, when non-linearities157

are taken into account, the resulting outcomes might often be different from what is158

naively expected [Gokhale and Hauert, 2016]. In this manuscript, we have extended159
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the analysis of spatial public goods games beyond the traditional linear public goods160

games. The benefits in our case are accrued in a non-linear fashion in the number161

of cooperators in the group. Each cooperator can provide more benefit than the last162

one as the number of cooperators increases (resulting in synergy) or each cooperator163

provides a smaller benefit than the previous one (thus leading to discounting) [Hauert164

et al., 2006b]. Such an extension to public goods games was proposed very early on165

by Eshel and Motro [1988]. Termed as superadditivity in benefits, extending from the166

paper one can visualise non-linearities cropping up in the costs as well, a concept not167

yet dealt with.168

Again, such economies of scale [Dawes et al., 1986] can be justified in both bac-169

terial as well as human interaction as proxies for quorum quenching or accruing of170

wealth (or austerity) [Archetti, 2009, Archetti and Scheuring, 2010, Peña et al., 2015].171

Non-linearities in interactions have a profound effect when it comes to fecundity and172

avoiding predation be being in a group [Zöttl et al., 2013, Wrona and Jamieson Dixon,173

1991]. We show that including such non-linearities in the benefit function affects the174

effective rate of return from the public goods game, irrespective of the types of dif-175

fusion dynamics. Just as in a non-spatial case, synergy can improve the level of176

cooperation in a population, in the spatial case, synergy increases the effective rate177

of return on the investment and expands the surviving region in the parameter space.178

This itself may make cooperation a favourable strategy. It would be interesting to179

see if the stability of the patterns is maintained as Ω switches between synergy and180

discounting over time [Gokhale and Hauert, 2016]. Such seasonal variations in the181

rate of return fundamentally change the selection pressures on cooperation and de-182

fection and can lead to not just richer evolutionary dynamics [McNamara, 2013] but183

eco-evolutionary spatial dynamics.184
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A Colour coding291

Similar to the colour coding used in Park and Gokhale [2019] we use mint green
(color code: #A7FF70) and Fuchsia pink (color code: #FF8AF3) colors for denoting
the cooperator and defector densities respectively for each type. The colour spectrum
and saturation is determined by the ratio of cooperators to defectors which results in
the Maya blue color for equal densities of cooperators and defectors. For conve-
nience, we use HSB color space which is a cylindrical coordinate system (r, θ, h) =

(saturation, hue, brightness). The radius of circle r indicates saturation or the color
whereas θ helps us transform the RGB space to HSB. The total density of the popula-
tion ρ = u+ v is represented by the brightness h of the color. For better visualization,
we formulate the brightness h as

log aρ+ 1

log a+ 1
, (A.1)

where a control parameter a (> −1 and 6= 0) (see Fig A.1). The complete color292

scheme so developed passes the standard tests for colourblindness.293
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Figure A.1: The exact color scheme developed for coloring the patterns. Each patch
in a pattern is colored using this palette by choosing the corresponding f and ρ values.
For brightness we used Eq. (A.1) with a = 15.
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