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Abstract 59 

INTRODUCTION: Impaired long-term memory is a defining feature of Mild Cognitive Impairment 60 

(MCI). We tested whether this impairment is item-specific, limited to some memoranda 61 

whereas some remain consistently memorable. 62 

METHODS: We conducted item-based analyses of long-term visual recognition memory. 394 63 

participants (healthy controls (HC), Subjective Cognitive Decline (SCD), and MCI) in the 64 

multicentric DZNE-Longitudinal Cognitive Impairment and Dementia Study (DELCODE) were 65 

tested with images from a pool of 835 photographs. 66 

RESULTS: We observed consistent memorability for images in HCs, SCDs, and MCI, predictable 67 

by a neural network trained on another healthy sample. Looking at memorability differences 68 

between groups, we identified images that could successfully categorize group membership 69 

with higher success and a substantial image reduction than the original image set.  70 

DISCUSSION: Individuals with SCD and MCI show consistent memorability for specific items, 71 

while other items show significant diagnosticity. Certain stimulus features could optimize 72 

diagnostic assessment, while others could support memory. 73 

 74 

Keywords: Alzheimer’s disease (AD), subjective cognitive decline (SCD), mild cognitive 75 

impairment (MCI), memorability, diagnostic assessment, image analysis 76 

 77 
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1. Background 79 

Recent work in healthy individuals has found that certain images are intrinsically 80 

memorable or forgettable across observers [1,2]; there are images of faces or scenes that most 81 

people remember or forget, regardless of their different individual experiences. This 82 

memorability of an image can be quantified and predicts 50% of the variance in people’s 83 

performance on a memory test [2]. Viewing memorable images automatically elicits specific 84 

neural signatures [3,4], and the memorability score of an image can be predicted by 85 

computational models [5,6]. However, image attributes such as aesthetics, emotionality, 86 

typicality, or what people believe will be memorable do not fully predict memorability [2,7], 87 

and memorability is an automatically processed image property that is resilient to the effects of 88 

attention [8]. This means that researchers can predict in advance what images a person is likely 89 

to remember or forget, and use such information to create memorable educational materials, 90 

or design well-balanced memory tests.  91 

While memorability has so far been characterized based on healthy participants’ 92 

memory behavior, it is unclear if memorability is also consistent in populations with memory 93 

impairments at increased risk for Alzheimer’s Disease (AD), such as Mild Cognitive Impairment 94 

(MCI) or Subjective Cognitive Decline (SCD) [9]. Consistent memorability in SCD and MCI would 95 

enable better prediction of what images are likely to be remembered or forgotten. 96 

Furthermore, changes in memorability patterns across disease stages could improve cognitive 97 

staging and design of cognitive progression markers. By avoiding highly memorable images, 98 

cognitive tests could be made more time efficient and more sensitive. Understanding which 99 

stimulus features improve or impair memorability could provide insights into the cognitive 100 
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processes that are impaired. Furthermore, knowledge about memorability could aid in the 101 

design of memorable environments, or allow clinicians to focus on aiding memory for 102 

forgettable items.  103 

In the current study, we analyzed the results of a visual recognition memory test in 104 

which each participant had to memorize a randomly selected subset of 88 photographs from a 105 

pool of 835. This randomization afforded us the possibility to assess memorability 106 

unconfounded by systematic effects of stimulus-selection or stimulus-order effects. Using data 107 

from 394 individuals, including those with SCD, MCI, and healthy controls (HC), we identified 108 

two meaningful sets of images: 1) images that can consistently predict performance of 109 

participant groups, and 2) images that reliably differentiate groups. 110 

 111 

2. Methods 112 

2.1 Study design 113 

 Visual memory tests were analyzed from the DZNE-Longitudinal Cognitive Impairment 114 

and Dementia Study (DELCODE), an observational, longitudinal memory clinic-based study 115 

across 10 sites in Germany. Specific details about this study, the visual memory task, and data 116 

handling and quality control are reported in Jessen et al. [10] and Düzel et al. [11]. The data 117 

analyzed in this study were from the second data release from the DELCODE study comprising 118 

of 700 individuals of which 394 participants with complete datasets were analyzed, including 119 

136 participants with SCD, 65 with MCI, and 193 HC. Individuals with SCD and MCI were 120 
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recruited through referrals and self-referrals, while HC were recruited through public 121 

advertisements. 122 

 The study protocol was approved by all involved centers’ institutional review boards and 123 

ethical committees, and all participants gave written informed consent. DELCODE is 124 

retrospectively registered at the German Clinical Trials Register (DRKS00007966), (04/05/2015). 125 

 126 

2.2 Visual memory test 127 

 Participants performed an fMRI scene image encoding and retrieval task [12]. First, 128 

while in the fMRI scanner, participants studied 88 novel scene target images (44 indoor and 44 129 

outdoor scenes) and 44 repetitions of two pre-familiarized images (one indoor and one outdoor, 130 

22 times each). All images were 8-bit gray scale, presented on an MR-compatible LCD screen 131 

(Medres Optostim), scaled to 1250 x 750 pixel resolution and matched for luminance, with a 132 

viewing horizontal half-angle of 10.05° across scanners. Each image was presented for 2500ms 133 

(with an optimized jitter for statistical efficiency), and participants categorized them as “indoor” 134 

or “outdoor” with a button press. Outside of the scanner after a 70-minute delay, participants 135 

completed a recognition memory task with these 88 images and 44 novel foil images (22 indoor 136 

and 22 outdoor). Participants indicated their recognition memory with a 5-point scale: 1) I am 137 

sure that this picture is new, 2) I think that this picture is new, 3) I cannot decide if this picture is 138 

new or old, 4) I think I saw this picture before, or 5) I am sure that I did see this picture before. 139 

Results from the fMRI study are reported in [12]. 140 
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While each participant was tested on 88 target images and 44 foil images, these images 141 

were randomly sampled from a larger set of 835 scene images, allowing us to conduct image-142 

based analyses on a large set of images (see Figure 1 for example images). This randomization 143 

allowed us to avoid confounding effects of image selection and image order on memory 144 

performance. On average, each image served as a target image for 20.3 HC, 14.3 SCD, and 6.8 145 

MCI individuals. 146 

 147 

2.3 Analyzing similarity of MCI, SCD, and healthy individuals: Predicting performance 148 

 We first asked whether there are consistencies in memory performance for MCI and 149 

SCD just as there are for healthy individuals [1]; i.e., whether there are certain images that 150 

patients tend to remember or forget, and, if such consistencies exist, to what degree they align 151 

with the images that tend to be remembered and forgotten by HCs. 152 

 To address this question, Spearman’s rank correlations of hit rate (HR) performance on 153 

images in the visual memory task were calculated between the different patient groups and 154 

controls. To assess memorability consistency within patient groups, we conducted a consistency 155 

analysis as described in Isola et al. [1], where participants are split into random halves (across 156 

1000 iterations) and their hit rates for all images are calculated, and Spearman’s rank 157 

correlated between the two halves. We also examined whether a convolutional neural network 158 

(CNN) that is significantly able to predict memory performance in healthy individuals [6] could 159 

also predict memorability for SCD and MCI groups. MemNet is a CNN with the architecture and 160 

pretraining set of Hybrid-CNN [13], a CNN able to classify thousands of object and scene images, 161 
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then trained to predict the memorability score of an image (i.e., the likelihood for that image to 162 

be remembered by any given person). We obtained MemNet scores for each of the 835 163 

stimulus images and used Spearman’s rank correlations to test the degree to which MemNet-164 

predicted memory scores were correlated with patient group memory scores. 165 

 166 

2.4 Analyzing dissimilarity of MCI, SCD and healthy individuals: Differentiating patient groups 167 

 An equally important question is whether there is a set of images in which consistencies 168 

in memory performance reliably differ between patient populations and healthy individuals. If 169 

such images exist, then they could form an optimized test to distinguish patients from healthy 170 

controls with high efficiency. 171 

 To explore this question, we conducted an analysis we call the Iterative Image Subset 172 

(IIS) Analysis to compare HC with MCI, and HC with SCD. First, the HC participant pool was 173 

randomly downsampled so that the same number of HC were used in the analysis as MCI or 174 

SCD individuals. The entire pool of participants was then split into two random halves (Group A 175 

and Group B). HR on the memory task was calculated for each image for the HC (HRGroupA,Healthy) 176 

and for the patients (HRGroupA,Patient) in Group A. Using this performance metric, we formed three 177 

subsets of images. The number of images used in each subset was selected iteratively for all 178 

possible subset sizes, ranging from 0% to 100% of images (835 images) in 1% increments, to 179 

determine the optimal image subset size. The three resulting subsets were: 180 

1) “H>P”, the top set of images where HC outperformed patients (i.e., maximizing 181 

HRGroupA,Healthy - HRGroupA,Patient) 182 
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2) “H<P”, the top set of images where patients outperformed HC (i.e., maximizing 183 

HRGroupA,Patient - HRGroupA,Healthy) 184 

3) “H=P”, the top set of images where HC performed most similarly to patients (i.e., 185 

minimizing | HRGroupA,Healthy - HRGroupA,Patient |) 186 

We then assessed the performance of classifying subjects in Group B using each of the three 187 

subsets of images. Specifically, using just the images in a single subset (e.g., H>P), we 188 

determined the HR for each of the individuals in Group B (HRGroupB). We then performed a 189 

Receiver Operating characteristic (ROC) analysis to determine the diagnostic ability of this 190 

subset of images, applying a range of HR cutoffs from 0 to 1 to classify an individual from Group 191 

B as either HC or patient, using HRGroupB. We calculated the accuracy of this test based on group 192 

membership, and contrasted successful patient diagnosis (true positives) with misclassification 193 

of HC (false positives). We assessed classification performance by Area Under the Curve (AUC), 194 

where a score of 1 indicates perfect performance, while 0.5 indicates chance performance. This 195 

complete analysis was conducted across 100 random participant splits into Group A and B. 196 

 197 

2.5 Finding image attributes that distinguish these image sets 198 

 To see what aspects of the images may determine their membership into different 199 

image sets, we conducted an experiment using the online crowd-sourcing platform Amazon 200 

Mechanical Turk (AMT). For each of the 835 images, 12 online participants rated the scene in 201 

the image on five relevant properties identified in previous scene perception and memorability 202 

research [7,14] using a 5-point Likert scale: size (of the portrayed scene), clutter, aesthetics, 203 
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interest, and whether they think they would remember the image (subjective memorability). 204 

They also indicated whether the image showed a natural or manmade scene and if there was a 205 

person present. 450 people anonymously participated in the study and provided consent, and 206 

this study was approved by the National Institutes of Health (NIH) Office of Human Subjects 207 

Research Protections. Two main comparisons were tested for each attribute, using paired 208 

samples t-tests: 1) forgettable versus memorable images with similar performance between HC 209 

and patients, 2) diagnostic versus non-diagnostic images, where HC and patients differed in 210 

their performance. Forgettable and memorable images were identified as the top set of images 211 

where both HC and patients had average performance below or above (respectively) median 212 

performance, and the difference between groups was minimized (i.e., H=P). Diagnostic and 213 

non-diagnostic images were selected from the sets resulting from the IIS analysis (Section 2.4), 214 

e.g., H>P and H<P image sets, respectively. The number of images in each set was taken as the 215 

optimal number of images identified from the IIS analysis. 216 

 217 

  218 
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3. Results 219 

 220 

Figure 1: Example images and group performance. The scatterplot shows the distribution of memory performance 221 

(hit rate) for all 835 images for healthy controls (HC) versus individuals with Mild Cognitive Impairment (MCI). The 222 

diagonal line indicates the points at which performance is equal between both groups. Based on performance, 223 

images can be conceptually sorted into four quadrants: 1) images that are memorable to both HC and MCI 224 

individuals (green), 2) images that are memorable to HC but forgettable to MCI (blue), 3) images that are 225 

forgettable to both groups (yellow), and images that are memorable to MCI but forgettable to HC (red). Example 226 

images and performances at the extreme ends for each quadrant are arranged around the scatterplot. In the work 227 

that follows, we analyze these four groups of images and determine if they can be used meaningfully to predict 228 

memory performance. 229 

 230 

  231 
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3.1 Consistencies in the memories of patient groups 232 

 233 

Figure 2: Consistencies across groups and neural networks. The scatterplots show a comparison of hit rates for 234 

each of the 835 images between all pairings of the experimental groups (Healthy Controls, HC; Subjective Cognitive 235 

Decline, SCD; Mild Cognitive Impairment, MCI), as well as predicted hit rate from a convolutional neural network 236 

(CNN) trained to predict memorability scores. Asterisks (*) indicate significant Spearman’s rank correlations. 237 

Scatterplot points are colored by quadrant (as in Figure 1), and the diagonal line indicates points where both 238 

groups show equal performance.  239 

 240 

As expected, patient groups of increasing memory impairment showed decreases in 241 

average memory performance (HC: M=0.68, SD=0.17; SCD: M=0.62, SD=0.18; MCI: M=0.53, 242 
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SD=0.26). However, there were also impressive correlations across groups in the images they 243 

remembered best or worst (Figure 2). HC and SCD had a significant Spearman’s rank correlation 244 

of ρ=0.50 (p=1.03 × 10
-54

), while HC and MCI had a significant correlation of ρ=0.28 (p=1.34 × 245 

10
-16

), and SCD and MCI had a significant correlation of ρ=0.31 (p=2.12 × 10
-19

). HC performance 246 

was significantly more similar to SCD performance than MCI performance (Z=6.13, p ~ 0), and 247 

SCD performance was significantly more similar to HC performance than MCI performance 248 

(Z=5.42, p ~ 0). These results indicate that patient groups and healthy elderly individuals tended 249 

to remember the same images as each other. All groups were also internally consistent (HC: 250 

ρ=0.42; SCD: ρ=0.32; MCI: ρ=0.22; all p < 0.0001), meaning a patient will tend to remember 251 

similar images to someone else with the same diagnosis. 252 

The MemNet CNN trained to predict image memorability showed significant 253 

correlations with HC (ρ=0.24, p=3.29 × 10
-12

) and SCD behavior (ρ=0.23, p=1.84 × 10
-11

), while 254 

MCI behavior correlations did not pass significance thresholds (ρ=0.06, p=0.080).   255 

 256 

  257 
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3.2 Differentiating patient groups from healthy controls 258 

 259 

Figure 3: Finding the optimal number of images to diagnose MCI. A) This scatterplot of image performance shows 260 

an example of the three possible subsets the images can be divided into: H<P (red), H=P (yellow), and H>P (blue). 261 

B) Area Under the Curve (AUC) by image set and number of images in the set. Testing each of these subset types at 262 

different set sizes, we find that the H>P set (blue line) consistently outperforms the other image subsets at all set 263 

sizes. Importantly, the H>P set also outperforms the all-image set (gray dotted line) at a surprisingly small number 264 

of images, first overtaking the all-image set at only 192 images versus the 835 images used in the all-image set. 265 

From this set of 192 images, each participant saw on average only 18.3 images. C & D) Receiver Operating 266 

Characteristic (ROC) curves for two peaks – the first peak where H>P overtakes the all-image set, and the max peak 267 

where H>P has the largest difference from the all-image set. E & F) Participant classification performance, 268 

averaged across 100 iterations of participant split-halves, at a sample cutoff (determined as the point where the 269 

true positive rate + (1 – false positive rate) is at its maximum), broken down by participant type for the different 270 

image sets. Error bars indicate standard error of the mean across the 100 iterations. Note that the optimized H>P 271 

image subset particularly shows a boost in patient diagnosis sensitivity overall other image sets. 272 
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 273 

 As a first test, we examined the ability to differentiate HC and MCI individuals. The IIS 274 

analysis shows that the H>P image subset consistently outperforms the H=P and H<P image 275 

subsets at all subset sizes, in diagnosing individuals as MCI versus HC (Figure 2). This means that 276 

images that are highly memorable to healthy controls but highly forgettable to patients are 277 

best able to distinguish these two groups. Surprisingly, H>P image subsets as small as 23% of 278 

the original image set were able to surpass the original image set in diagnostic ability. With only 279 

192 total images (or 18.3 images seen per participant), the diagnosis AUC was 0.77, while using 280 

the full set of 835 images resulted in an AUC of 0.76. At this 192-image subset size, the 281 

difference between subsets is also clear: the H=P set only reaches an AUC of 0.70, while the 282 

H<P set performs worse with an AUC of 0.65.  283 

Differentiating HC from SCD individuals shows similar results, even though the two 284 

groups have more similar memory performance. The AUC of the H>P set is higher than those of 285 

H=P and H<P at all image subset sizes, and the H>P subset first overtakes performance of the 286 

full image set at only 92 images in the subset. The AUC for the full image set is 0.59, while with 287 

the 92-image subset, the AUC of H>P is also 0.59. In regard to the other image subsets, the AUC 288 

for H=P is 0.57, and for H<P it is 0.55. H>P reaches a maximum of performance at a subset size 289 

of 367 images, with an AUC of 0.61. 290 

We also determined if the image subsets generalized across groups. We performed the 291 

IIS analysis by training on MCI data to determine the image subsets, but then testing those 292 

images with SCD data. We find these subsets generalize to each other: the H>P image subset 293 
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shows higher performance than the other image subsets (H=P, H<P), and first overtakes 294 

performance of all images (AUC=0.60) at a subset size of only 100 images (H>P: AUC=0.60; H=P: 295 

AUC=0.50; H<P: AUC=0.55). The H>P image subset reaches its peak in performance at 417 296 

images, at an AUC of 0.63.  297 

  These results show that using a small, honed subset of images results in higher 298 

diagnostic performance than a large, exhaustive set of images, for both SCD and MCI 299 

populations. Additionally, using a poor set of images (e.g., H<P) could result in a high diagnosis 300 

failure rate. We also find that diagnostic images can successfully transfer across groups; using 301 

images that identify MCI can also successfully identify SCD. Since all of the above tests use 302 

separate halves of the participants to determine the diagnostic images and to predict group 303 

membership, this image diagnosticity is likely to translate to other participant samples as well 304 

as other experimental contexts. 305 

 306 

  307 
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3.3 Image attributes that distinguish these image sets  308 

 309 

 310 

Figure 4: Average attribute ratings based on image set. (Left) Comparison of average attribute ratings between 311 

images that are forgettable versus memorable to both HC and individuals with MCI or SCD. (Right) Comparison of 312 

average attribute ratings between images from the poorly diagnostic image set (H<P) versus highly diagnostic set 313 

(H>P). (Both) All attributes are rated on a Likert scale of 1 (low) to 5 (high). “Remember” is a rating of how likely 314 

participants believed they’d be able to remember the image. Asterisks indicate significant differences in a paired 315 

samples t-test (p < 0.05). Error bars indicate standard error of the mean. 316 

 317 

Finally, we investigated image attributes related to why an image is memorable to both 318 

groups, or why it is diagnostic (Figure 4). Focusing on images that have highly correlated 319 

performance between patients and healthy controls, memorable scene images tended to 320 

contain more clutter (t(191)=2.84, p=0.005), appeared more interesting (t(191)=3.30, p=0.001), 321 

and were subjectively more memorable to healthy controls (t(191)=3.59, p=4.17 × 10
-4

). 322 

However, they were not different in scene spatial size (p=0.567) nor aesthetics (p=0.752). In 323 

terms of content, memorable versus forgettable images tended to be manmade rather than 324 

natural (forgettable: 76.6% manmade, memorable: 87.0%; Z(191)=2.64, p=0.008), but were 325 

H < P (Poor) Set

H > P (Diagnostic) Set

Image Attributes by Memorability Image Attributes by Diagnosticity

Forgettable Images

Memorable Images

* * * ****
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equally likely to be indoors (forgettable: 52.1% indoors; memorable: 50.5%; p=0.76) and 326 

contain people (forgettable: 7.8% contained people; memorable: 13.0%; p=0.09).  327 

Focusing on images that show large differences between healthy controls and patients, 328 

successfully diagnostic images versus non-diagnostic images tended to be of smaller spaces 329 

(t(191)=3.05, p=0.003), were less interesting (t(191)=2.81, p=0.005), less aesthetic (t(191)=4.04, 330 

p=7.70 × 10
-5

), and were judged to seem more forgettable by healthy controls (t(191)=3.79, 331 

p=2.05 × 10
-4

), but showed no difference in clutter (p=0.153). In terms of content, diagnostic 332 

images tended to be manmade (non-diagnostic: 72.4%; diagnostic: 83.9%; Z(191)=2.72, 333 

p=0.007), indoors (non-diagnostic: 37.5%; diagnostic: 55.7%; Z(191)=3.58, p=3.40 × 10
-4

), and 334 

contained people (non-diagnostic: 5.2%; diagnostic: 17.7%; Z(191)=3.85, p=1.20 × 10
-4

). 335 

Memorable images were significantly more interesting (t(191)=2.80, p=0.006) and seemed 336 

subjectively more memorable (t(191)=3.55, p=4.86 × 10
-4

) than diagnostic images. This shows 337 

that diagnostic images that patients forget but healthy controls remember tend to be those 338 

that are generally less aesthetic or interesting, yet are manmade, indoor scenes containing 339 

people.  340 

 341 

4. Discussion 342 

While individuals with SCD and MCI have decreased memory performance in 343 

comparison to HC, there is a considerable overlap in the images that they remember and forget. 344 

Thus, there are images that are highly memorable and forgettable to everyone regardless of 345 

diagnosis. These consistencies in memorability exist not only between patient groups and 346 
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healthy controls, where consistencies in memorability are already well-established for controls 347 

[1,2], but also within patient groups themselves. Our questionnaire-based assessment of image 348 

attributes revealed that this common memorability is not related to aesthetics or spaciousness, 349 

but to being manmade scenes that contain more objects, and are subjectively more memorable 350 

and interesting. While previous work has reported that ratings of interestingness, subjective 351 

memorability, and aesthetics are ultimately not predictive of scene memorability at a fine-352 

grained scale for healthy populations [7], such attributes may be important for guiding the 353 

selection of images that are broadly memorable across population types.  354 

Additionally, we show that a publicly available convolutional neural network (MemNet 355 

[6]) trained to predict image memorability also aligns with performance of HC as well as those 356 

with SCD and marginally with MCI. This raises the possibility that computational methods may 357 

guide the selection of images for diagnostic or therapeutic tools on the basis of memorability. 358 

Such tools may assist in creating or adapting environments to ease memory burdens on 359 

patients by avoiding low memorability items, or focusing strategies on rehearsing particularly 360 

forgettable information.  361 

 While memorability is generally consistent across HC, SCD, and MCI groups, we have 362 

also identified a specific set of images that significantly differ between groups. Namely, we find 363 

that there are images that are highly memorable to HC, yet highly forgettable to patients, and a 364 

certain subset of these images can be used to best determine if an individual is likely to be 365 

healthy or have MCI or SCD. The images generalize across impairments; images that 366 

differentiate MCI also successfully differentiate SCD, indicating that SCD may show similar 367 

cognitive impairments to those developed in MCI.  This image set results in as much as a 10% 368 
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improvement in diagnostic performance in comparison to a poorly chosen set of images (e.g., 369 

images memorable to patients but forgettable to healthy controls). Further, this optimized 370 

image set reaches peak diagnostic performance with as few as 18.3 images seen per participant, 371 

classifying as well as the original set with 88 images per participant. This means that individuals 372 

with MCI or SCD can be identified with higher certainty, and in a quicker, easier test. In terms of 373 

content, these diagnostic images tended to be manmade, indoor scenes that contained people. 374 

However, in contrast to memorable images, they tended to be less aesthetic, less interesting, 375 

and seem subjectively less memorable. Scenes containing people tend to be the most 376 

memorable [7], however it is perhaps the combination of memorable image content (e.g., 377 

people, manmade objects) yet lack of memorable qualities (e.g., interestingness, aesthetics) 378 

that causes these images to be remembered by healthy controls but forgotten by patients.  379 

Functional neuroimaging work with healthy individuals has found that viewing 380 

memorable images results in automatic, stereotyped activity patterns in the visual cortex and 381 

medial temporal lobe [3,4]. In future work, investigating the neural fate of memorable and 382 

forgettable images in older individuals and those with SCD or MCI may aid in understanding 383 

how patients may differentially process images at different processing stages of perception and 384 

memory encoding. In the DELCODE study, we have indeed obtained fMRI data alongside the 385 

behavioral data reported here [11] and will be able to address this question in the future. A 386 

related question is how Alzheimer’s pathology is related to memorability. For instance, we have 387 

previously shown that increasing levels of CSF total-tau are related to decreasing novelty 388 

responses in the amygdala and the hippocampus [11]. These functional consequences of tau-389 

pathology could influence memorability patterns in MCI or SCD. Indeed, activity in medial 390 
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temporal lobe regions shows early and automatic sensitivity to the memorability of an image in 391 

healthy individuals [3]. Image diagnosticity as calculated in this study could also be related to 392 

the biomarker status of individuals, a possibility that we will be able to address in the future 393 

with larger sample sizes. It will also be important to better understand the features of an image 394 

that drive it to be forgettable, memorable, or diagnostic. While the current work uses a CNN 395 

trained on healthy participant memory data, as larger-scale patient data is collected, a CNN 396 

could learn to identify images that would be particularly effective in diagnosing patients. 397 

In sum, we show the importance of images themselves in predicting what patients are 398 

likely to remember and differentiating patients from healthy individuals. Such insights will have 399 

a meaningful impact in how we design cognitive assessment tools and tests for early diagnosis 400 

of memory impairments, and in understanding how and why we process and remember certain 401 

images over others in our complex, visual world. 402 
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