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Abstract1

Machine learning algorithms trained to predict the regulatory activity of nucleic acid sequences have revealed2

principles of gene regulation and guided genetic variation analysis. While the human genome has been3

extensively annotated and studied, model organisms have been less explored. Model organism genomes offer4

both additional training sequences and unique annotations describing tissue and cell states unavailable in5

humans. Here, we develop a strategy to train deep convolutional neural networks simultaneously on multiple6

genomes and apply it to learn sequence predictors for large compendia of human and mouse data. Training on7

both genomes improves gene expression prediction accuracy on held out sequences. We further demonstrate8

a novel and powerful transfer learning approach to use mouse regulatory models to analyze human genetic9

variants associated with molecular phenotypes and disease. Together these techniques unleash thousands of10

non-human epigenetic and transcriptional profiles toward more effective investigation of how gene regulation11

affects human disease.12

Introduction13

Predicting the behavior of any nucleic acid sequence in any environment is a primary objective of gene14

regulation research. In recent years, machine learning approaches to directly tackle this problem have15

achieved significant accuracy gains predicting transcription factor (TF) binding, chromatin features, and16

gene expression from input DNA sequence (1–6). These models have then been fruitfully applied to study17

genetic variation in populations and generate mechanistic hypotheses for how noncoding variants associated18

with human disease exert their influence (3, 4, 7). Estimates for how mutations influence regulatory activity19

have also revealed insights into regulatory evolution and the robustness of genes to such mutations (6).20

The human genome’s ˜3 billion nucleotides provide ample training data for highly expressive deep convo-21

lutional neural networks, which have achieved state of the art performance for many regulatory sequence22

activity prediction tasks (1, 3–6). The complexity of mammalian gene regulation and these models impres-23

sive but imperfect predictions suggest room for improvement remains. In particular, distal regulation by24

enhancers is incompletely captured by existing models. Obtaining more training data is a reliable strategy25

to improve model accuracy. The research field continues to generate new functional genomics profiles, but26

these merely deliver additional labels for the existing sequence data; fitting more expressive and accurate27

models would benefit more from entirely new training sequences. Individual human genomes differ only28

slightly from each other, so acquiring functional profiles for more humans is unlikely to provide this boost.29

Artificially designed sequences can offer more data for specific tasks, but only short sequences can be ef-30

fectively manipulated and their profiling is limited to cell lines that cannot represent the full complexity of31

human tissues (8–12).32
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Figure 1: Predicting regulatory sequence activity for human and mouse genomes. We predict
the regulatory activity of DNA sequences for multiple genomes in several stages (Methods). The model takes
in 131,072 bp DNA sequences, encoded as a binary matrix of four rows representing the four nucleotides. We
transform this representation with seven iterated blocks of convolution and max pooling adjacent positions
to summarize the sequence information in 128 bp windows. To share information across the long sequence,
we apply eleven dilated residual blocks, consisting of a dilated convolution with exponentially increasing
dilation rate followed by addition back into the input representation. Finally, we apply a linear transform to
predict thousands of regulatory activity signal tracks for either human or mouse. All parameters are shared
across species except for the final layer.

Non-human species offer a potential source of this desired additional training data. Regulatory sequence33

evolves rapidly, but TF binding preferences are highly conserved due to the drastic effect that modifying34

affinity for many thousands of binding sites would confer on the organism (13–15). Thus, we hypothesized35

that regulatory programs across related species have enough in common to benefit machine learning sequence36

activity. To demonstrate the concept, we chose the mouse as a distant mammal with substantial functional37

genomics data available (16). In addition to serving as a source of more genomic sequence, mouse experiments38

can explore biological states that are challenging or unethical to acquire in humans, e.g. profiling mouse39

development, disease, and genome modifications. If context-specific regulatory programs are sufficiently40

conserved across species, then models learned to predict these data in the mouse may be applicable to41

impute human genome profiles to study human regulatory sequences and genetic variation.42

In this work, we trained a deep convolutional neural network to jointly learn the complex regulatory pro-43

grams that determine TF binding, DNA accessibility, and transcription using the ENCODE and FANTOM44

compendia of thousands of functional genomics profiles from hundreds of human and mouse cell types. We45

introduce a novel model architecture that better captures long range interactions by applying residual con-46

nections between layers. We benchmarked single versus joint training and found that jointly training on47

human and mouse data leads to more accurate models for both species, particularly for predicting CAGE48

RNA abundance. We demonstrated that mouse regulatory programs can be transferred across species to49

human where they continue to make accurate tissue-specific predictions. Applying this procedure to predict50

human genetic variant effects revealed significant correspondence with eQTL statistics and proved insightful51

for studying human disease.52

Results53

Multi-genome training improves gene expression prediction accuracy54

55

We applied the Basenji software and framework to predict functional genomics signal tracks from only DNA56

sequence (4). The neural network takes as input a 131,072(= 217) bp sequence, transforms its representation57

with iterated convolution layers, and makes predictions in 128 bp windows across the sequence for the58

normalized signal derived from many datasets (Figure 1, Methods). We introduced a novel architecture59

that uses residual connections to alleviate the strain of vanishing gradients in deep network optimization60

to improve generalization accuracy (Supplementary Figure 1) (17). Training on multiple genomes required61

several further developments (Methods). Most importantly, we modified the train/valid/test split of the62

genomic sequences to ensure that homologous regions from different genomes did not cross splits (Methods);63

without this extra care, we might overestimate generalization accuracy.64
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We assembled training data consisting of 6,956 human and mouse quantitative sequencing assay signal tracks65

from the ENCODE and FANTOM consortiums (Methods). These data describe regulatory activity across66

tissues and isolated cell types using several techniques—DNase and ATAC-seq to measure DNA accessibility,67

which typically mark TF-bound sites, and ChIP-seq to map TF binding sites and histone modification68

presence (18, 19). The FANTOM data consists of RNA abundance profiling with CAGE, where the 5 end of69

the transcript is sequenced (20). These 5’ RNA profiles are independent of splicing and allow us to provide70

DNA sequence without gene annotations, which would not be the case for RNA-seq (4). In addition, we71

added several mouse datasets describing cell states that are unavailable for humans: (1) a single cell ATAC-72

seq atlas from 13 tissues clustered to 78 distinct profiles (21) and (2) several TF and chromatin profiles73

obtained over 24 hour time courses in the liver to study circadian rhythms (Supplementary Table 1).74

To measure the influence of multi-genome training on generalization accuracy, we trained three separate75

models on these data: one jointly fit to both human and mouse, one to human data alone, and one to76

mouse data alone. For each scenario, we fit the same model architecture and hyperparameters. We allowed77

each model to train until 30 epochs had passed without improvement on the validation set, which provides78

considerable slack to ensure that each model has reached its full potential.79

The joint training procedure improved test set accuracy for 94% of human CAGE and 98% of mouse CAGE80

datasets (binomial test p-values 1e-16 and 1e-16), increasing the average Pearson correlation by .013 and81

.026 for human and mouse respectively (Figure 2a,c). For DNase, ATAC, and ChIP, joint training improved82

predictions by a lesser margin relative to single genome training; average test set correlation increased for83

55% of human and and 96% of mouse datasets (binomial test p-values 3e-11 and 1e-16) (Figure 2b,d).84

Datasets where single genome accuracy exceeded joint did not show any interesting pattern and are likely85

just attributable to noise from the stochastic training procedure. CAGE has several properties that may86

explain the observed extra benefit of having more training data from multiple genomes. CAGE signal87

has a larger dynamic range than the other data, spanning orders of magnitude, fewer relevant sites in the88

genome, and more sophisticated transcriptional regulatory mechanisms that often involve distant sequences.89

Altogether, these results demonstrate that regulatory programs are sufficiently similar across the 90 million90

years of independent evolution separating human and mouse so that their annotated genomic sequences91

provide informative multi-task training data for building predictive models for both species.92

Regulatory sequence activity models transfer across species93

94

Regulatory program conservation across related species has been observed in genome-wide functional profiles95

of TF binding and histone modifications (13–15). In matched tissue samples, similar TFs are typically present96

and those TFs have highly conserved motif preferences (15, 22). These findings suggest that a regulatory97

sequence activity model trained to predict for one species will also make usefully accurate predictions for98

matched samples from the other. To quantify this proposition, we selected several diverse and representative99

tissues and cell types for which we could unambiguously match across species—cerebellum, liver, and CD4+100

T cells. We extracted CAGE gene expression measurements from the transcription start sites (TSS) for101

all human genes outside the training set and computed predictions for human and mouse versions of these102

tissues and cell types (Figure 3a). For this exercise, and those to follow, we used the jointly trained multi-task103

model and sliced out predictions of interest.104

Across human gene TSSs, we observed high cross-species prediction accuracy of 0.73 Pearson correlation for105

mouse predictions to human observed signal averaged across these samples, relative to 0.75 correlation for106

human predictions to human observed signal. To assess whether the model further captures and transfers107

tissue specificity, we normalized each TSSs data or predictions by its mean across all CAGE datasets. Mean108

normalization removes correlation driven by accurate prediction of global cross-tissue activity. Pearson109

correlation for normalized signal remained high for mouse predictions to human data for the matched samples110

(mean 0.40, Figure 3b,c). In contrast, normalized predictions compared to data from distinct tissues/cell111

types resulted in negative correlations (Figure 3c). Thus, the models have learned tissue and cell type112

specificity beyond a baseline level and are able to transfer that knowledge across species.113
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Figure 2: Training on human and mouse data improves generalization accuracy. We trained
three separate models with the same architecture on human data alone, mouse data alone, and both human
and mouse data jointly. For each model, we computed the Pearson correlation of test set predictions and
observed experimental data for thousands of datasets from various experiment types. Points in the scatter
plots represent individual datasets, with single genome training accuracy on the x-axis and joint training
accuracy on the y-axis. For CAGE, training on multiple genomes increases test set accuracy on nearly all
datasets for both human and mouse. For DNase/ATAC/ChIP-seq, test set accuracy improves by a smaller
average margin.
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Figure 3: Regulatory programs are largely conserved across species. (a) Tissue-specific regulatory
programs can be learned and transferred across species, exemplified here by CAGE and DNase data and
predictions for cerebellum and liver. The ”human predicted” tracks describe predictions for the human
datasets displayed as ”human observed”; ”mouse predicted” tracks describe predictions for the matched
mouse dataset. We scaled coverage tracks by their genome-wide means separately within all CAGE and
all DNase/ATAC data. (b) Mouse predictions for cerebellum CAGE and (d) DNase correlate strongly with
human data. For CAGE, points represent the top 50% most variable TSSs, where data or predictions were
quantile normalized to align sample distributions, log transformed, and mean-normalized across samples.
For DNase, points represent the top 10% most variable genomic sites (less than CAGE because we consider
the whole genome rather than TSSs), where data or predictions were similarly were quantile normalized
to align sample distributions and mean-normalized across samples. The statistical trends were robust to
most variable threshold choice. Scatter plot lines represent ordinary least squares regressions. (c,e) These
correlations are specific to brain regions and not shared by other tissues, such as CD4+ T cells or liver.

We repeated these analyses with DNase accessibility profiles for the same tissues and cell types to assess how114

general this transferability is for different data. Because most sites lack activity, we selected the top 10%115

most variable. We observed the same statistical trends for accessibility—high correlation between mouse116

predictions and human data for matched samples (mean 0.84) and specificity for scaled comparisons (Figure117

3d,e).118

Mouse-trained models elucidate human genetic variant effects119

120

A driving goal of regulatory sequence modeling is to predict the effect of human genetic variants on gene121

expression and downstream phenotypes. For any biallelic variant, we can predict signal across the surround-122

ing genomic sequence for each allele and derive a summary score for the variant effect (Figure 4a). Here, we123

sum the signal across the sequence and take the difference between alleles. We can compute this score for124

every dataset using two forward passes of the convolutional neural network.125

Models trained on mouse data allow one to predict the difference between how two human alleles would126

behave if they were present in the regulatory environment of mouse cells. Given the evidence that analogous127

human and mouse cells largely share regulatory programs, we hypothesized that models trained on mouse128

data would be insightful towards understanding human regulatory variants function. To test this hypothesis,129

we studied the Gene-Tissue Expression (GTEx) release v7a data of genotypes and gene expression profiles130

for hundreds of humans across dozens of tissues (23). In previous work, we showed that variant scores derived131
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Figure 4: Mouse cell type accessibility predictions show a strong and specific statistical re-
lationship with human eQTLs. (a) We predicted the effect of human genetic variants on imputed
regulatory signal trained on mouse single cell ATAC-seq (scATAC) cluster profiles. We scored variants by
subtracting the signal from the minor allele from that of the major and summing across the sequence. (b)
We used signed linkage disequilibrium profile (SLDP) regression to compare the cell type-specific variant
effect predictions to tissue-specific eQTL summary statistics from GTEx. Cell type profiles correspond best
with the expected tissues. (c) GTEx tissues correspond best with the expected cell types. (d) Clustering
scATAC cell types by their z-scores across GTEx tissues reveals the expected structure.

from Basenji predictions corresponded significantly with GTEx summary statistics (4). Here, we conducted132

a similar analysis using signed linkage disequilibrium profile (SLDP) regression to measure the statistical133

concordance between signed variant effect predictions and GTEx summary statistics (Methods) (7). SLDP134

distributes a signed annotation (i.e. our scores) according to a given population’s LD structure and compares135

it to a set of summary statistics. Using a permutation scheme, the method produces a signed Z-score that136

specifies the direction and magnitude of the relationship and a p-value describing its significance.137

We focused on a dataset unique to the mouse—a single cell ATAC-seq atlas from 13 adult mouse tissues,138

from which 85 distinct cell type patterns were identified (21). We sliced predictions for these datasets from139

the model trained jointly on all human and mouse data. We first asked whether coverage tracks derived from140

clustering single cell assays are amenable to Basenji modeling. Predictions for held out sequences achieved141

Pearson correlation ranging from 0.43-0.84 in 128 bp windows for these 85 profiles, which is in line with142

predictions for bulk DNase/ATAC-seq.143

Human variant predictions for these models generally exhibited a strong, positive effect on GTEx summary144

statistics, in line with prior observations that increased accessibility typically increases gene expression. Fur-145

thermore, cell type predictions aligned well with anatomical expectations. For example, variant predictions146

for cardiomyocytes have the strongest correlation with GTEx measurements in the heart and skeletal muscle147

(Figure 4b). From the opposite direction, GTEx measurements for the liver have the strongest correlation148

6

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 5, 2019. ; https://doi.org/10.1101/660563doi: bioRxiv preprint 

https://doi.org/10.1101/660563
http://creativecommons.org/licenses/by/4.0/


with variant predictions for hepatocytes (Figure 4c). These results further support the claim that human149

and mouse cells share relevant regulatory factors and that our procedure can project these factors across150

species from mouse experiments to human variants.151

For each pair of mouse ATAC cell types, we computed the correlation between their SLDP Z-scores across152

GTEx tissues (Figure 4d). The correlations revealed expected structure, with clusters representing the153

blood, endothelial cells, neurons, among others. The original authors abstained from annotating 9 of the 85154

clusters. Through this procedure, we can suggest high-level annotations for several of the unknown clusters.155

For example, 5.6 appears similar to various neuron subtypes due to the strong statistical relationship between156

variant predictions and the GTEx brain tissue summary statistics (Figure 4b,d).157

Mouse-trained models highlight mutations relevant to human neurodevelopmen-158

tal disease159

160

Having established the relevance and specificity of mouse dataset predictions for expression phenotypes, we161

asked whether these data could provide insight into the genetic basis of human disease. Mouse data has162

proven valuable for studying human genetic variants in previous work (16, 21), but these analyses were163

limited to studying variants in homologous sequences in their mouse genome context. Given the substantial164

regulatory sequence turnover between these genomes, this limitation is severe. The predictive framework165

here avoids this limitation by mapping the learned mouse regulatory program to the human genome setting166

for all variants.167

To explore the utility of this procedure for studying human disease, we retrieved a recent dataset of 1902168

quartet families from the Simons Simplex Collection (24) with whole genome sequencing of a mother, father,169

child affected by autism, and unaffected sibling. In these data, the offspring have an average of 67 de novo170

mutations, which have a slight enrichment in promoters (25). Recent work demonstrated that variant effect171

predictions further differentiate autism cases from their unaffected sibling controls (26). We hypothesized172

that predictions using models trained on mouse data would also distinguish the disease and perhaps provide173

additional insight via novel developmental profiles.174

We applied the model to predict how each de novo mutation would influence signal in 357 mouse CAGE175

profiles of tissues and cell types throughout the body. Mann-Whitney U (MWU) tests revealed significantly176

more negative predictions in the case versus control variant sets for 246 CAGE profiles at FDR ¡0.1 (Figure177

5a). Appreciating the correlations in these data, we also transformed the variants by predictions matrix with178

PCA to represent each variant by its first principal component score (which explained 51% of the variance).179

In principal component space, the MWU test comparing case and control variants was significant with p-180

value 0.002. Most leading datasets described brain regions and cell types; the 76 brain dataset p-values were181

less than non-brain data with p-value 1× 10−10 by MWU test.182

Highly negative predictions indicate mutations that disturb active regulatory elements. For example, a case183

variant upstream of ZNF644 modifies a critical nucleotide in a consensus motif for the transcription factor184

YY1, which the model identifies as active and relevant (Figure 5b). ZNF644 has considerable evidence for185

intolerance to loss of function mutations in the Genome Aggregation Database v2.1.1 (gnomAD) with prob-186

ably 0.999 of intolerance (27). YY1 has been implicated in processes that determine the three-dimensional187

positioning of promoters and enhancers (28). Thus, we hypothesize that the variant modifies the enhancer188

regulation of this critical protein.189

Perhaps unexpectedly, 15 datasets describing the developing heart also emerged from this analysis (Figure190

5a). This result is supported by whole genome sequencing of congenital heart disease probands, which has191

revealed affected gene sets that overlap significantly with those observed in neurodevelopmental sequencing192

efforts like this one (29, 30). In addition to the brain and heart, whole body profiles from the embryo and193

neonate stages also have p-values among the lowest.194

This significant enrichment indicates that variant effect predictions may help classify disease at the individual195
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Figure 5: Human de novo variant predictions for mouse data enrich for autism cases versus
controls. (a) We predicted the influence of 234k de novo variants split between cases and controls on 357
CAGE datasets in mouse. For each dataset, we computed a Mann-Whitney U (MWU) test between case
and control sets and corrected for multiple hypotheses using the Benjamini-Hochberg procedure. Predictions
for many datasets were enriched for more negative values in the cases, driven largely by brain, heart, and
whole body developmental profiles. Each datasets x-axis position is the mean inverse hyperbolic sine over
case variants minus the equivalent over control variants. The mean inverse hyperbolic sine transformation is
similar to logarithm, but gracefully performs the symmetric transformation for negative values. (b) A case
variant at chr1:91021795 modifies a critical T in a YY1 motif to an A in the promoter region of ZNF644. (c)
At the individual level, a simple score summing all negative predictions for the leading dataset describing
neonate cerebellum significantly separates cases from their matched controls. The x-axis position represents
the log ratio between case and control sums.

level. For each individual, we computed a simple risk score by summing the negative predictions in the196

neonate cerebellum dataset. This score suggests more deleterious de novo variants for 54.9% of the cases197

versus their controls (binomial test p-value 9× 10−6) (Figure 5c). Thus, this approach is a strong candidate198

for inclusion with complementary feature sources from coding mutations and structural variation to continue199

to characterize this incompletely understood disorder.200
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Discussion201

In this work, we developed a novel convolutional neural network architecture and multiple species training202

procedure to enable one model to train on 6956 functional genomics signal tracks annotating the human203

or mouse genomes. We observed that training jointly on both species produced models that make more204

accurate predictions on unseen test sequences relative to models trained on a single species. Regulatory205

sequence activity predictions for human sequences in mouse tissues correlate well with datasets describing206

the corresponding human tissues. Model predictions for altered regulatory activity of human genetic vari-207

ants made with respect to mouse datasets have a strong statistical concordance with tissue-specific human208

eQTL measurements. Mouse machine learning models can be used to study human disease, exemplified by209

enrichment of deleterious predictions among de novo autism variants relative to control sets.210

We focused here on human and mouse because both species have been comprehensively studied with genome-211

wide functional genomics. Our observation that joint training on these two genomes improves prediction212

accuracy opens the possibility of more complex schemes for training on larger numbers of genomes. Given213

the substantial evolutionary distance between human and mouse, regulatory annotations for all mammalian214

genomes are likely to provide similarly useful training data. Primate genomes will be particularly interesting215

to explore; their tissues and cell types will more closely match those of human, but their sequences are far216

more similar. Prediction accuracy improved more for CAGE gene expression measurements than accessibility217

or ChIP-seq, which suggests that the number of events and their regulatory complexity are relevant features218

for determining whether multiple genome training will be worthwhile. Efforts to predict spatial contacts219

between chromosomes as mapped by Hi-C and its relatives likely fit this criteria, and we hypothesize that220

training sequence-based models on human and mouse data together will be fruitful.221

Much prior work has revealed the similarity of regulatory programs across species, but transferring knowledge222

gleaned from an accessible model organism (such as mouse) to another of interest (such as human) has223

remained challenging. Existing approaches rely on whole genome alignments to transfer annotations from224

one genome to the other (21, 31). These approaches are constrained by the quality of the alignment, which225

is a notoriously challenging bioinformatics problem (32), and the limited proportion of each genome that226

aligns (40% for human and 45% for mouse). Here, we demonstrated an alternative approach where a machine227

learning model trained on the model organism data compresses the relevant knowledge into its parameters,228

which can then be applied to make predictions for sequences from the genome of interest. Substantial229

research in transfer learning with neural networks for natural language processing motivates and supports230

the viability of this procedure (e.g. (33)). The strong tissue-specific statistical relationship between human231

genetic variant predictions from model parameters trained to predict mouse annotations and GTEx tissue-232

specific eQTLs highlights the successful nucleotide resolution of our mouse to human transfer learning. The233

Gene Expression Omnibus (GEO) contains tens of thousands of mouse functional genomics profiles, many234

describing experiments impossible in humans. For example, we included dozens of datasets describing mouse235

liver profiles over 24 hour time courses to study the circadian rhythms of gene expression and chromatin.236

Models trained to predict all datasets, as well as open source software to compute these predictions and237

train new models on users own data, are available in the Basenji software package (34).238

Methods239

Functional genomics data240

241

In this work, we studied quantitative sequencing assays performed on human and mouse samples. Specifically,242

we focused on DNase and ATAC-seq profiling DNA accessibility, ChIP-seq profiling TF binding or histone243

modifications, and CAGE profiling RNA abundance derived from 5 transcription start sites. Preprocessing244

these data effectively is critical to successful machine learning. Our primary preprocessing objective is to245

denoise these data to the relevant signal at nucleotide-resolution.246
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We largely followed the preprocessing pipeline described in prior research introducing the Basenji framework247

(4). The standard pipeline through which experimental data flowed follows:248

1. Trim raw sequencing reads using fastp, which can automatically detect and remove unwanted adapter249

nucleotides (35).250

2. Align reads using BWA to hg38 or mm10 and requesting 16 multi-mapping read positions (36).251

3. Estimate nucleotide-resolution signal using an open source script from the Basenji software that dis-252

tributes multi-mapping reads, normalizes for GC bias, and smooths across positions using a Gaussian253

filter (4).254

However, we varied from this standard pipeline for all data available from the ENCODE consortium website,255

which is 4506 human and 1019 mouse experiments. These data have been thoughtfully processed using open256

source pipelines and are available for download at several stages, including log fold change signal tracks in257

BigWig format (37). Rather than reprocess these data without full knowledge of how replicate and control258

experiments match, we chose to use these signal tracks directly. The Seattle Organismal Molecular Atlas259

(SOMA) server provides a single cell mouse ATAC-seq atlas (21). These data are also available in log fold260

change BigWig format, and we similarly chose to use these rather than reprocess the single cell data. We261

clipped negative values in all such BigWig tracks to zero.262

We applied several transformations to these tracks to protect the training procedure from large incorrect263

values. First, we collected blacklist regions from ENCODE and added all RepeatMasker satellite and sim-264

ple repeats (38), which we found to frequently collect large false positive signal (39). We further defined265

unmappable regions of >32 bp where 24-mers align to >10 genomic sites using Umap mappability tracks266

(40). We set signal values overlapping these regions to the 25th percentile value of that dataset. Finally, we267

soft clipped high values with the function f(x) = min(x, tc + sqrt(max(0, x − tc))). Above the threshold268

tc (chosen separately for each experiment and source), this function includes only the square root of the269

residual x− tc rather than the full difference.270

When replicate experiments profiling the same or related samples were available, we averaged the signal271

tracks. Altogether, the training data includes 638 CAGE, 684 DNase/ATAC, and 3991 ChIP datasets in272

human and 357 CAGE, 228 DNase/ATAC, and 1058 ChIP datasets in mouse. Supplementary Table 1273

describes all data with preprocessing parameters.274

Model architecture275

276

We modeled genomic regulatory sequence activity signal as a function of solely DNA sequence using a convo-277

lutional neural network. Such deep learning architectures have excelled for many similar tasks (1, 3–5). We278

follow our prior work in analyzing large 131 kbp sequences in order to consider long range interactions.279

The first stage of the architecture aims to extract the relevant sequence motifs from the DNA sequence using280

the following block of operations:281

1. Convolution width 5 (or 15 in first layer)282

2. Batch normalization283

3. Gaussian Error Linear Unit (GELU) activation284

4. Max pool width 2285

We applied this block seven times so that each sequence position represents 128 bp, increasing the number286

of filters from an initial 288 by 1.1776x each block to 768 filters by the end. The GELU activation slightly287

outperformed the more common ReLU in our benchmarks (41).288

The second stage of the architecture aims to spread information across the sequence to model long range289

interactions. In prior work, we applied densely connected dilated convolutions for this task (4). Here, we290
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applied a related but more effective variation, which we refer to as a dilated residual block. Recent deep291

learning research has revealed that skip connections between layers where one layers representation is directly292

added to a subsequent layers representation relieve vanishing gradients and improve gradient descent training293

(17). Thus, we applied the following series of operations:294

1. GELU activation295

2. Dilated convolution width 3, dilation rate d, 384 filters296

3. Batch normalization297

4. GELU activation298

5. Convolution width 1, back to 768 filters299

6. Batch normalization300

7. Dropout probability 0.3301

8. Addition with the block input representation before step 1.302

We applied this block eleven times, increasing the dilation rate d by 1.5x each time.303

In the final stage, we first transformed this 1024x768 (length x filters) representation of 128 bp windows with304

an additional width 1 convolution block using 1536 filters and dropout probability 0.05. To make predictions305

for either 5313 human or 1643 mouse datasets, we applied a final width one convolution followed by a306

softplus activation to make all predictions positive. We attached a genome indicator bit to each sequence to307

determine which final layer to apply.308

We trained to minimize a Poisson log likelihood in the center 896 windows, ignoring the far sides where309

context beyond the sequence is missing. The Poisson model is not technically appropriate for the log fold310

change tracks. However, by clipping negative values to zero, the distribution of values resembles that from311

our standard processing. On a subset of data, we observed that using the log fold change track did not312

decrease accuracy or the utility of the model for genetic variant analysis.313

We minimized with stochastic gradient descent (SGD) on batches of 4 sequences. We implemented the314

network in TensorFlow and used automatic differentiation to compute gradients via back propagation (42).315

We performed several grid searches to choose model and optimization hyper parameters for the following316

sets: (1) SGD learning rate and momentum; (2) initial convolution filters and convolution filter multiplication317

rate; (3) dilated convolution filters and dropout rate; (4) final convolution filters and dropout rate.318

Data augmentation describes a suite of techniques to expand the implicit size of the training dataset from the319

perspective of model training by applying transformations that preserve annotations to data examples. We320

tiled the 131,072 bp sequences across the chromosomes by 65,599 bp, representing a 50% overlap minus 63321

bp in order to also shift the 128 window boundaries and max pooling boundaries. During training, we cycled322

over combinations of two transformations that maintain the relationship between sequence and regulatory323

signal while changing the model input: (1) reverse complementing the sequence and reversing the signal; (2)324

shifting the sequence 1-3 bp left or right. Both transformations improved test accuracy and reduce overfitting325

in our benchmarks.326

Multi-genome training327

328

Training on multiple genomes containing orthologous sequence complicates construction of holdout sets.329

Independently splitting each genomes sequences would allow training on a human promoter and testing on330

its mouse orthologue. If the model memorized conserved elements of the sequence, rather than learning a331

general function, we might overestimate generalization accuracy.332

We used the following procedure to minimize occurrence of this potential issue:333
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1. Divide each genome into 1 mbp regions.334

2. Construct a bipartite graph where vertexes represent these regions. Place edges between two regions335

if they have >100 kbp of aligning sequence in a whole genome alignment.336

3. Find connected components in the bipartite graph.337

4. Partition the connected components into training, validation, and test sets.338

We used the hg38-mm10 syntenic net format alignment downloaded from the UCSC Genome Browser site339

(43). Using this procedure, we set aside approximately 12% of each genome into validation and test sets340

respectively. Stricter parameter settings created a single large connected component that did not allow for341

setting aside enough validation and test sequences.342

Another complication of training on multiple genomes arises from imbalance between each genome’s se-343

quences and datasets. We extracted 38.2k human and 33.5k mouse sequences for analysis. We assembled344

batches of sequences from one genome or the other, chosen randomly proportional to the number of sequences345

from each genome. The overall loss function comprises a term for every target dataset summed, which leads346

to larger step magnitudes for batches of human sequences that are annotated with >3 times more datasets.347

Explicit weighting could be applied to preference training towards a particular species, but we found this to348

be unnecessary in our experiments for good mouse performance.349

Jointly training on both human and mouse data constrains the model slightly more than is ideal. We found350

that training several epochs on only one genome or the other after the full joint procedure improved validation351

and test set accuracy.352

GTEx SLDP353

354

We predicted the effect of a genetic variant on various annotations by computing a forward pass through the355

convolutional network using the reference and alternative alleles, subtracting their difference, and summing356

across the sequence to obtain a single signed score for each annotation. We averaged scores computed using357

the forward and reverse complement sequence and small sequence shifts to the left and right. We computed358

scores for all 1000 Genomes SNPs, which we provide for download from [available upon publication].359

Signed linkage disequilibrium profile (SLDP) regression is a technique for measuring the statistical concor-360

dance between a signed variant annotation v and a genome-wide association study’s marginal correlations361

between variants and a phenotype α̂ (7). The functional correlation between v and the true variant effects362

on the phenotype describes how relevant the annotation is for the phenotype’s heritability. Our model363

produces these signed variant annotations, and SLDP offers a validated approach to assessing their rele-364

vance to human phenotypes. Briefly, the method estimates this functional correlation using a generalized365

least-squares regression, accounting for the population LD structure. SLDP performs a statistical test for366

significance by randomly flipping the the signs of entries in v in large consecutive blocks to obtain a null367

distribution. We follow previous work in conditioning on minor allele frequency and binary annotations for368

variant overlap with coding sequence (and 500 bp extension), 5’ UTR (and 500 bp extension), 3’ UTR (and369

500 bp extension), and introns.370

We downloaded GTEx v7a summary statistics for 48 tissues (23). We summarized each SNP’s effect on all371

cis-genes using the following transformation suggested for SLDP analysis372

α̂m =
1√
|Gm|

∑
k∈Gm

α̂(k)
m

where Gm is the set of all genes for which a cis-eQTL test was performed for variant m and α̂
(k)
m is the373

marginal correlation of SNP m and gene k expression (7). We passed α̂m to SLDP for analysis of variant374

predictions.375
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Simons Simplex Collection376

377

We downloaded 255,106 de novo variants derived from whole-genome sequencing of 1902 quartet families378

with an autistic child from the Simons Simplex Collection from the supplement of An et al. (25). We filtered379

these variants for SNPs and computed predictions as described above.380
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