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ABSTRACT: CRISPR-Cas9 is a widely employed genome-editing 
tool with functionality reliant on the ability of the Cas9 endonucle-
ase to introduce site-specific breaks in double-stranded DNA. In this 
system, an intriguing allosteric communication has been suggested 
to control its DNA cleavage activity through flexibility of the catalyt-
ic HNH domain. Here, solution NMR experiments and a novel 
Gaussian accelerated Molecular Dynamics (GaMD) simulations 
method – flanked by mixed machine learning and structure-based 
prediction of NMR chemical shifts – are used to capture the struc-
tural and dynamic determinants of allosteric signaling within the 
HNH domain. We reveal the existence of a millisecond timescale 
dynamic pathway that spans HNH from the region interfacing the 
adjacent RuvC nuclease and propagates up to the DNA recognition 
lobe in the full-length CRISPR-Cas9. These findings reveal a potential route of signal transduction within the CRISPR-Cas9 HNH nuclease, 
advancing our understanding of the allosteric pathway of activation. Further, considering the role of allosteric signaling in the specificity of 
CRISPR-Cas9, this work poses the mechanistic basis for novel engineering efforts aimed at improving its genome editing capability. 

The CRISPR-Cas9 enzyme machine has exciting applications in ge-
nome editing and numerous investigations have sought to harness its 
mechanism for therapeutic bioengineering.1-2 Cas9 is an RNA-guided 
DNA endonuclease, which generates double-stranded breaks in DNA 
by first recognizing its protospacer-adjacent motif (PAM) sequence 
and then cleaving the two DNA strands via the HNH and RuvC nucle-
ase domains.3 Structural studies of Cas9 have employed crystallograph-
ic4-6 and cryo-EM7-8 techniques, revealing several well-defined structur-
al subdomains, including the catalytic domains, a recognition (REC) 
lobe and a PAM interacting (PI) region (Figure 1A). In parallel, 
Förster Resonance Energy Transfer (FRET) techniques provided in-
sight into the large-scale conformational changes that occur during nu-
cleic acid processing.9-11 These and other biophysical studies have been 
invaluable to our current understanding of Cas9 function.12-13 Building 
on this experimental information, computational investigations have 
been carried out to describe the conformational and dynamic require-
ments underlying Cas9 mechanistic action. All-atom Molecular Dy-
namics (MD) simulations have described the conformational activa-
tion of the Cas9 protein toward the binding and enzymatic processing 
of nucleic acids.14-16 These investigations also revealed the ability of the 
Cas9 protein to propagate the DNA binding signal across the HNH 
and RuvC nuclease domains for concerted cleavage of the two DNA 

strands.17 Notably, biochemical experiments and MD simulations have 
jointly indicated a dynamically driven allosteric signal throughout 
Cas9, where the intrinsic flexibility of the catalytic HNH domain regu-
lates the conformational activation of both nucleases, therefore con-
trolling the DNA cleavage activity 9, 17 Detailed knowledge of this allo-
steric mechanism and of the conformational control exerted by HNH 
is essential for understanding Cas9 function and for engineering efforts 
aimed at improving the specificity of this system through modulation 
of its allosteric signaling.18 In this respect, an in-depth investigation 
necessitates the use of experimental techniques such as solution nucle-
ar magnetic resonance (NMR) to quantify the motional timescales 
critical to this allosteric crosstalk. NMR can readily detect subtle con-
formational fluctuations at the molecular level, with precise infor-
mation about the local dynamics on picosecond (ps) to nanosecond 
(ns) timescales (i.e. the so-called fast dynamics), as well as those occur-
ing over microseconds (µs) to milliseconds (ms) (i.e. slow dynamics). 
These slow dynamics are of particular interest because several biologi-
cal processes – including allosteric regulation – usually occur in this 
regime.19 The power of solution NMR is magnified when coupled to 
MD simulations,20-21 that capture protein fluctuations and confor-
mations on the same timescales of NMR experiments, offering an in-
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terpretation at the atomic scale while also describing the subtle changes 
that characterize protein allostery.22-24 

Here, we probe the structural and dynamic determinants of allosteric 
signaling in the Cas9 HNH nuclease by means of solution NMR and 
all-atom MD simulations. A novel construct of the HNH nuclease do-
main from S. pyogenes Cas9 has been determined through NMR and 
X-ray crystallography, which maintains the fold of the wild-type (WT, 
i.e. full-length) Cas9 protein and allows the characterization of its mul-
ti-timescale conformational dynamics by solution NMR spectroscopy 
and MD simulations. To comprehensively access the long timescale 
dynamics of the system at the atomic scale, accelerated MD simula-
tions have been performed, employing a Gaussian accelerated MD 
(GaMD) method.25 Accelerated MD is an enhanced sampling meth-
odology that enables us to probe Cas9 dynamics over µs and ms time-
scales, in remarkable agreement with NMR experiments.26-28 Thus, 
GaMD is ideal for the study of Cas9 motions that are relevant to its 
allosteric signaling.19 As a result, we experimentally and theoretically 
identify a dynamic pathway that connects HNH and RuvC through 
contiguous ms timescale motions, while also highlighting its propaga-
tion to the REC lobe to enable the information transfer for concerted 
cleavage of the two DNA strands. Mixed machine learning and struc-
ture-based prediction tools of the NMR chemical shifts further reveal 
the agreement between experiments and computations, indicating that 
the structural/dynamic features derived from GaMD simulations rep-
resent the experimental results well at the molecular level. Overall, the 
integrated approach employed in this study enabled access to the in-
trinsic conformational fluctuations of the Cas9 HNH nuclease, which 
are essential for allosteric signaling in CRISPR-Cas9. Our combined 
NMR and theoretical approach paves the way for the complete map-
ping of its allosteric signaling and determination of its role in the enzy-
matic function and specificity.  

 
Results  

Structural features of the HNH nuclease 

To determine the structural features of the isolated HNH domain, 
we employed solution NMR and X-ray crystallography. First, the struc-
ture of the HNH domain (Figure 1A) was derived from the 1H15N 
HSQC NMR spectrum (Figure 1B). Backbone assignments were up-
loaded to the CS23D server in order to predict the structure based on 
composite NMR chemical shift information.29 Figure 1A shows (as a 
close-up view) the model of the HNH structure determined from 
NMR data using the CS23D server (green) overlaid with that of HNH 
from the full-length Cas9 (gray). The predicted structure reveals a re-
markable overlap with the X-ray structure of the full-length Cas9 (PDB 
code: 4UN3)5 displaying Cα root-mean-squared-deviation RMSD = 
0.688 Å. The NMR model also highlights small helical turns in regions 
of poor electron density in the full-length Cas9 structure, as well as an 
extension of the C-terminal α-helix. The secondary structure of this 
construct determined from Cα and Cβ chemical shift indices is in good 
agreement with that of the HNH domain from the full-length Cas9 
(Figure 1C), indicating that the engineered protein is a good represen-
tation of this fold in solution. Circular dichroism (CD) spectroscopy is 
consistent with a predominantly α-helical protein (Figure S1), in 
agreement with the X-ray structure of the full-length Cas9.5  

The similarity of our construct to that of HNH from the full-length 
Cas9 supports the reliability of the predicted structure. A further con-
firmation is provided by the X-ray structure of the HNH construct 
solved at 1.9 Å resolution (Figure 2). This X-ray structure aligns well to 
that of the full-length Cas9 (PDB code 4UN3)30 and the predicted 
NMR structure, with a Cα RMSD values of 0.549 Å and 0.479 Å, re-
spectively, with the most significant difference due to a crystal contact 
in the experimental lattice pushing the N-terminal helix inward (Figure 
2, inset top). 

 
Figure  1 .  NM R Spectrum of  HNH. (A) Architecture of the 
Cas9 protein (PDB code: 4UN3),5 highlighting its protein domains as 
follows: HNH (green), RuvC (blue), PAM interacting region (PI, 
gold) and recognition lobe (REC, gray). In the close-up view, a model 
of the HNH structure determined from NMR data (green) is overlaid 
with that of HNH from the full-length Cas9 (gray). (B) 1H15N HSQC 
NMR spectrum of the HNH nuclease domain from S. pyogenes Cas9 
(the inset reports two peaks out of range). (C) Consensus chemical 
shift index (CSi), indicating the predicted secondary structure for the 
HNH construct based on the NMR chemical shifts (black bars from 0 
to 1 indicate α-helix, while bars from 0 to -1 indicate β-sheet, see the 
Methods section) compared to that of HNH from the full-length Cas9 
(shown on top of the graph as sequence, with α-helical and β-sheet re-
gions indicated as tubes and arrows). 

 

The overall fold of HNH from full-length Cas9 is therefore well 
maintained in the isolated domain. The residues L791–E802 and 
T858–S872 form two flexible loop regions, as suggested by NMR. An 
α-helix is introduced in residues Q794–E798 and an additional solvent 
exposed loop comprised of residues T858–S872 forms a small α-helix 
at D861–R864 (Figure 2, inset bottom), also observed in the structural 
model from the NMR chemical shifts. Lastly, a small extension of the 
C-terminal α-helix is also confirmed in isolated HNH.  
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F igure  2 .  X-ray  structure  of  HNH. The X-ray structure of the 
isolated HNH domain (PDB code: 6O56, green), solved at 1.90 Å res-
olution, is overlaid with the X-ray structure of the HNH domain from 
the full-length S. pyogenes Cas9 (PDB code: 4UN3, gray).5 

 

Experimental  dynamics  of  the  HNH nuclease  
Here, we analyzed the dynamics of HNH by means of the method of 
Bracken and coworkers.31 The sites of ps–ns and µs–ms flexibility have 
been identified through the analysis of the R1R2 product. With respect 
to the individual longitudinal and transverse relaxation rates, the R1R2 

product attenuates the contribution of motional anisotropy and more 
clearly illuminates sites of chemical exchange. As a result, the R1R2 val-
ues for each residue in HNH (Figure 3A and Table S1) highlight sev-
eral locations of ps–ns and µs–ms flexibility. Twenty residues display 
R1R2 values above 1.5σ of the 10% trimmed mean, due to the signifi-
cant influence of Rex related to µs–ms motion. Measured Rex parame-
ters are consistent with this interpretation (Figures 3A, S3 and Table 
S1). A lower number of residues (i.e., 13) fall below 1.5σ of the mean, 
suggesting potential influence of ps–ns dynamics at these sites, with the 
mean R1R2 value corresponding to an average order parameter (S2) 
value of 0.85, where 𝑆!"! = 𝑅!𝑅! /𝑅!𝑅!!"# . Steady-state 1H-[15N] 
NOE were also measured and the order parameter (S2) was deter-
mined for assigned residues in HNH with RELAX.32 Regions of ps–ns 
flexibility (i.e. high configurational entropy) are observed in residues 
822–843 and 890–904. Consistent with these data, in the X-ray struc-
ture of full-length Cas9 residues 822–843 are exposed toward the sol-
vent, while residues 890–904 comprise flexible loop regions.5 Millisec-
ond timescale dynamics of the HNH nuclease were quantified by 
Carr–Purcell–Meiboom–Gill (CPMG) relaxation dispersion experi-
ments (Figure 3B and Table S2). Residues displaying slow timescale 
(ms) dynamics correspond to K782–E786, I788, K789, L791, Q794–
E798, Y815, L816, N818, V824, E827–D829, I841, S851, D853, K855, 
E873 and L900 in the full-length Cas9. Rates of conformational ex-
change (kex) at these sites range from 800 – 2900 s-1 with an average kex 
= 1761 ± 414. 
 
Al loster ic  s ignal ing pathway 

The slow dynamics identified via CPMG relaxation dispersion exper-
iments are of particular interest for the identification of the signaling 
pathways, since the allosteric regulation is usually transmitted toward 
slow dynamical motions.19 Residues displaying slow timescale (ms) 
dynamics (Table S2) form clusters in three regions of HNH (Figure 
4A), two of which are the interface with the region REC2 of the recog-
nition lobe and with RuvC (i.e., the HNH–REC2 and HNH–RuvC 
interfaces), while the third region is located in the core of HNH. This 
well-defined subset of flexible residues within HNH therefore bridges 
the RuvC and REC2 interfaces, forming a contiguous dynamic pathway 

 
Figure  3 .  HNH Dynamics  M easured by NM R. (A) Plots of 
R1R2, Rex and the order parameter (S2, determined from model-free 
analysis of R1, R2, 1H-[15N]-NOE measurements) for the HNH nucle-
ase. The R1R2 parameters were measured at 600 (black) and 850 (red) 
MHz. On the plot of Rex, the red dashed line denotes 1.5σ from the 
10% trimmed mean of the data. On the right panel, the Rex (top) and S2 

(bottom) values are mapped onto the HNH structure and colored ac-
cording to the adjacent legends. (B) Selected CPMG relaxation dis-
persion curves collected at 600 (solid lines) and 850 (dashed lines) 
MHz. 

 
within the isolated HNH domain. This pathway of flexible residues 
connecting HNH–RuvC and HNH–REC2 agrees well with the availa-
ble experimental evidences that have indicated the existence of an allo-
steric communication within CRISPR-Cas9. Indeed, a tight dynamic 
inter-connection between HNH and RuvC has been originally report-
ed by Sternberg and colleagues9 and supported by MD simulations 
studies.17 Moreover, the REC2 region has been recently suggested to 
be involved in the activation of HNH through an allosteric regulation 
that also implicates the REC3 region.30 The authors have shown that, 
upon binding a complementary RNA:DNA structure prone to undergo 
DNA cleavage, the REC3 region modulates the motions of the neigh-
boring REC2, which in turn contacts HNH and sterically regulates its 
access to the scissile phosphate. MD simulations of the fully activated 
CRISPR-Cas9 complex revealed that highly coupled motions between 
REC2, REC3 and HNH are critical for the activation of the catalytic 
domain toward cleavage, supporting the existence of an allosteric sig-
nal.33 A recent experimental study has further suggested that REC2 is 
critical in regulating the rearrangements of the DNA for double strand 
cleavage via the HNH and RuvC nuclease domains.34 Taken together, 
these findings strongly support the outcomes of the NMR experiments 
reported here, suggesting that the dynamic pathway spanning the iso-
lated HNH domain is responsible for the information transfer between 
RuvC and REC2.  

To gain insights into the allosteric signaling pathway within the full-
length Cas9,5 the latter has been object of extensive analysis by employ-
ing computational methods that are suited for the detection of alloster-
ic effects.35-38  
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F igure  4 .  Al loster ic  s ignal ing across  HNH . (A) Flexible residues in the HNH construct measured by CPMG relaxation dispersion NMR. 
The majority of these sites highlight a contiguous ms dynamic pathway that spans the RuvC (blue) and REC (gray) domains when HNH (green) is 
placed into the full-length complex. (B) Allosteric pathway optimizing the overall correlation between HNH residues 789 and 841 (which are adja-
cent to RuvC and REC2 respectively), computed from correlation analyses and dynamical network models of the full-length Cas9. The theoretical 
pathway identifying the information transmission spanning HNH from the interface with the RuvC domain up to the REC2 region remarkably re-
sembles the experimental pathway, derived in the isolated construct of HNH from CPMG experiments (panel A). 

 
We combined correlation analyses and network models derived from 

graph theory to determine the most relevant pathways across HNH 
communicating RuvC with REC2. The computed pathways are com-
posed by residue–to–residue steps that optimize the overall correlation 
(i.e., the momentum transport) between amino acids 789 and 841 (be-
longing to HNH but adjacent to RuvC and REC2, respectively). This 
yields an estimation of the principal channels of information transmis-
sion between RuvC and REC2. Interestingly, the pathway that maxim-
izes the motion transmission between RuvC and REC2 through HNH 
(Figure 4B) agrees remarkably well with the pathway experimentally 
identified in the HNH construct via CPMG relaxation dispersion (Fig-
ure 4A). Residues belonging to the computational pathway are K789*, 
L791*, K810, L813, Y814, Y815*, K816*, Q817, N818*, G819*, D835, 
Y836, D837, V838, D839*, A840*, I841*, P843, D850*, S852, D853* 
and N854; where the asterisk indicates that they are also characterized 
by slow dynamics in the HNH construct (as experimentally identified 
via CPMG relaxation dispersion and R1R2 (+1.5σ), Tables S1-S2). 
This consensus between the dynamic pathways experimentally ob-
served in the HNH construct and in the full-length Cas9 (as compared 
in Figures 4A and 4B, respectively) indicates that the REC2–HNH–
RuvC communication channel is conserved in the full-length Cas9. 

 
Conformational  dynamics  of  HNH in the  ful l - length Cas9 

In order to compare the conformational dynamics of this novel 
HNH construct with those of the full-length Cas9, and to further inter-
pret the outcomes of solution NMR experiments, we performed MD. 
All-atom MD simulations were conducted on the structure of the 
HNH domain predicted by NMR and of the X-ray structure of the full-
length Cas9.5 To access the long timescale dynamics of the systems, we 
performed accelerated MD simulations, using a Gaussian accelerated 
MD (GaMD) method,25 which has shown to describe well the µs and 
ms dynamics of CRISPR-Cas9.14, 39-40 Indeed, while classical MD can 
detect fast stochastic motions responsible for spin relaxation, more so-
phisticated methods that enhance the sampling of the configurational 
space are required to access the slower motion probed by solution 
NMR. Accelerated MD is a biased-potential method,41 which adds a 
boost potential to the potential energy surface (PES), effectively de-
creasing the energy barriers separating low-energy states, thus acceler-
ating the occurrence of slower dynamic events. As shown by several 
independent reports, the method accurately reproduces the slow dy-
namics captured by solution NMR in biomolecular systems,26-28 there-
fore providing comparison with the experimental results reported here. 
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The simulated trajectories have been analyzed to compare the con-
formational dynamics of HNH in its isolated form and in the full-
length Cas9. By performing Principal Component Analysis (PCA), the 
dynamics of HNH along the first principal mode of motion – usually 
referred as “essential dynamics”42 – reveals remarkable similarities in 
the full-length Cas9 and in the isolated form (Figure S4). Interestingly, 
the residues of HNH that experimentally display ms dynamics (i.e., as 
captured from the CPMG relaxation dispersion and R1R2 (+1.5σ) 
measurements) are characterized by short amplitude motions in both 
the isolated form of HNH and when embedded in the full-length Cas9. 
Analysis of the root mean square fluctuations (RMSF) of individual Cα 
atoms further shows that the residues with slow timescale motions (ex-
perimentally identified via NMR) display low fluctuations in the simu-
lations of both the isolated HNH and in the full-length Cas9 (Figure 
S6). This indicates that short amplitude motions and low fluctuations 
are conserved in the regions that form a continuous ms dynamic path-
way connecting REC2–HNH–RuvC (Figure 4). In this respect, it is 
important to note that short amplitude motions, as well as low fluctua-
tions, do not directly correspond to slow time scale dynamical motions. 
However, the consensus observed in both the HNH construct and 
within the full-length Cas9 indicates similar intrinsic dynamics along 
the pathway connecting REC2–HNH–RuvC, which has been experi-
mentally derived via NMR (Figure 4A). Inspection of the conforma-
tional ensemble accessed during the simulations reveals that the isolat-
ed HNH domain resembles the ensemble of the full-length system 
overall, with a remarkable similarity in terms of short amplitude mo-
tions and low fluctuations for the residues within the REC2–HNH–
RuvC pathway (Figure S7). Overall, the analysis of the conformational 
dynamics shows that the HNH construct maintains the fold observed 
in full-length Cas9, supporting the connection between conformational 
dynamics captured via solution NMR and those of HNH inside full-
length Cas9.  

 
S imulated ensemble  and NM R experiments  

To gain insight into how well the structural and dynamical features 
captured by GaMD simulations represent the NMR experiments at the 
molecular level, the simulated trajectories were used to compute NMR 
chemical shifts through ensemble machine learning and a mixed align-
ment/structure-based method with the SHIFTX2 code.43 As a result, 
we detect qualitative agreement between predicted and experimental 
chemical shifts for the isolated HNH domain (Figure 5A, upper panel). 
Notably, the experimental distributions include side chain atoms, while 
the simulated spectra only consider backbone atoms. This results in a 
slightly broader distribution of the experimental 1H shifts (while both 
experimental and predicted distributions are centered on the same val-
ue of ~8 ppm). Aside from these minor differences, the agreement be-
tween the simulated and the experimental chemical shift distribution 
plots for the isolated HNH domain is remarkable. This is a strong indi-
cation that the GaMD ensemble properly represents the NMR experi-
ments at a molecular level. Another important aspect of these simula-
tions is the similarity of HNH in full-length Cas9 and its isolated form. 
The lower panels of Figure 5A show that these forms of HNH display 
very similar 1H and 15N shift distributions, indicating that HNH pre-
sents similar spectral trends when it is isolated or in full-length Cas9. 
This is therefore a further indication that the structural dynamics of the 
HNH construct predicted by NMR are comparable to those of HNH 
in full-length Cas9, supporting the comparison performed here. Im-
portantly, the observed agreement between the computed and experi-
mental spectra is also observed in the simulation replicas (Figure S8).  

Finally, to provide a comprehensive comparison of the molecular 
motions captured by NMR and sampled during the simulations, we 
analyzed the 15N-1H autorelaxation-derived order parameters S2, which 
reflect the fluctuations of a backbone N-H bond vector due to its inter-
nal motion.   

 
F igure  5 .  Experimental  vs .  s imulated chemical  shifts .  Experi-
mental and simulated 15N and 1H NMR chemical shifts of the HNH domain, 
plotted as normalized histograms. The upper panels compare the experimental 
(black line) and the simulated HNH (light blue) isolated domains. The lower 
panels compare the simulated HNH domain under two conditions: inside the 
Cas9 complex (purple) and in isolation (light blue). All simulated spectra were 
computed as described in Methods utilizing GaMD trajectories. 

 
The orientational fluctuations of internuclear vectors sampled via 

MD can be compared to the experimentally measured S2, through the 
Lipari-Szabo formalism. However, the distribution of the motions de-
scribed by S2 occurs on shorter time scales than the sampled GaMD 
trajectories. On the other hand, sampling of fast motions in different 
sub-states is challenging using classical MD, whose conformational 
range is likely to depend on the initial conformation. Hence, 40 equally 
distributed conformations have been extracted from the GaMD trajec-
tories of the isolated HNH domain and of full-length Cas9 and subject-
ed to independent classical MD simulation runs, enabling us to account 
for the increased statistical sampling of different sub-states explored by 
GaMD while gaining insight into the fast motions occurring within the 
diverse conformational states.26-28 We find reasonable agreement be-
tween experimental and simulated order parameters (Figure S9), that 
highlights modest fast-timescale flexibility in HNH residues 791–796 
and 846–852 as well as the N-/C-termini.  

 
Discussion 

The power of the CRISPR-Cas9 system is its ability to perform tar-
geted genome editing in vivo with high efficiency and increasingly im-
proved specificity.30, 44-46 In this system, an intriguing allosteric com-
munication has been suggested to propagate the DNA binding signal 
across the HNH and RuvC nuclease domains to facilitate their con-
certed cleavage of the two DNA strands.9, 17 In this process, the intrinsic 
flexibility of the catalytic HNH domain would regulate the information 
transfer, exerting conformational control. Here, solution NMR experi-
ments are used to capture the intrinsic motions responsible for the allo-
steric signaling across the HNH domain. We reveal the existence of a 
ms timescale dynamic pathway that spans the HNH domain from the 
region interfacing the RuvC domain and propagates up to the REC 
lobe at the level of the REC2 region (Figure 4A). In-depth analysis of 
the allosteric signaling within the full-length Cas9 has been performed, 
by employing theoretical approaches that are suited for the detection of 
allosteric effects.35-38 As a result, the dynamic pathway experimentally 
observed in the HNH construct is conserved in the full-length Cas9 
(Figure 4B), confirming the existence of a communication channel 
between REC2–HNH–RuvC.  This continuous pathway confirms the 
direct communication between the two catalytic domains, originally 
identified by the experimental work of Sternberg9 and supported by 
MD simulations,17 and also discloses their connection to the REC2 
region. In this respect, single molecule FRET experiments have indi-
cated that REC2 is critical for the activation of HNH through an allo-
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steric mechanism that also involves the REC3 region.30 Accordingly, in 
the fully activated complex, the REC3 region would modulate the mo-
tions of the neighboring REC2, which in turn contacts HNH and regu-
lates its access to the scissile phosphate. By doing so, the REC region 
would act as a “sensor” for the formation of a RNA:DNA structure 
prone to DNA cleavage, transferring the DNA binding information to 
the catalytic HNH domain in an allosteric manner. A tight dynamical 
interplay between REC2–REC3 and HNH has also been detected via 
MD simulations of the fully activated CRISPR-Cas9 complex, revealing 
that highly coupled motions of these regions are at the basis of the acti-
vation of HNH for DNA cleavage.33 A recent important contribution 
further suggested that REC2 regulates the rearrangements of the DNA 
to attain double strand cleavages via the HNH and RuvC nucleases.34 
Altogether, these experimental outcomes strongly support the finding 
of a continuous dynamic pathway spanning HNH from RuvC to 
REC2, and suggest its functional role for the allosteric transmission. To 
further investigate the motions associated with allosteric signaling, the 
conformational dynamics of the HNH domain was investigated by 
means of accelerated MD simulations, which can probe long-timescale 
µs and ms motions in remarkable agreement with NMR experiments.26-

28 Analysis of these conformational dynamics indicates that the HNH 
construct maintains the overall fold observed in full-length Cas9, and 
indicates conserved short amplitude motions and low fluctuations in 
the regions that form a continuous ms dynamic pathway connecting 
REC2–HNH–RuvC. Taken together, these computational outcomes 
suggest that the intrinsic conformational dynamics experimentally 
identified in the HNH construct reasonably resemble the dynamics of 
HNH in the full complex, supporting the connection between the two 
systems. Finally, mixed machine learning and structure-based predic-
tion of the NMR chemical shifts from the simulated trajectories have 
also revealed the agreement between experiments and computations, 
indicating that the structural/dynamic features derived via GaMD sim-
ulations represent the experimental results at the atomic and molecular 
level.  

Overall, by combining solution NMR experiments and MD simula-
tions, we identified the dynamic pathway for information transfer 
across the catalytic HNH domain of the CRISPR-Cas9 system. This 
pathway, which spans HNH from the RuvC nuclease interface up to 
the REC2 region in the full-length Cas9, is suggested to be critical for 
allosteric transmission, propagating the DNA binding signal across the 
recognition lobe and the nuclease domains (HNH and RuvC) for con-
certed cleavage of the two DNA strands. This study also represents the 
first step toward a complete mapping of the allosteric pathway in Cas9 
through solution NMR experiments. In this respect, despite modern 
experimental practices such as perdeuteration,47 transverse relaxation-
optimized spectroscopy (TROSY),48 sparse isotopic labeling,49 and 
15N-detection,50 the complete characterization of the slow dynamical 
motions responsible for the allosteric signaling has remained challeng-
ing, due to the size of the polypeptide chain of the Cas9 protein (~ 160 
kDa). Future investigations – reliant upon ongoing experiments and 
computations in our research groups – will include the investigation of 
the information transfer between HNH and RuvC and the allosteric 
role of their flexible interconnecting loops.9, 17 Further, our joint 
NMR/MD investigations are being employed to understand the role of 
the recognition region within the allosteric activation. This is of key 
importance, since mutations within the REC lobe – at distal sites with 
respect to HNH – can control the activation of HNH and the specifici-
ty of the enzyme toward on-target DNA sequences.30, 44-46 As such, by 
providing fundamental understanding of the intrinsic allosteric signal-
ing within the catalytic HNH domain, the present study poses the basis 
for the complete mapping of the allosteric pathway in Cas9 and its role 
in the on-target specificity, helping engineering efforts aimed at im-
proving the genome editing capability of the Cas9 enzyme. 

M ateria ls  and M ethods  
Protein Expression and Purif icat ion.  The HNH domain of S. pyogenes 
Cas9 (residues 775-908) was engineered into a pET15b vector with an N-
terminal His6-tag and expressed in Rosetta(DE3) cells in M9 minimal medium 
containing MEM vitamins, MgSO4 and CaCl2. Cells were induced with 0.5 mM 
IPTG after reaching an OD600 of 0.8 – 1.0 and grown for 16 – 18 hours at 22 ºC 
post induction. The cells were harvested by centrifugation, resuspended in a 
buffer containing 20 mM HEPES, 500 mM KCl, and 5 mM imidazole at pH 8.0, 
lysed by ultrasonication and purified on a Ni-NTA column. NMR samples were 
dialyzed into a buffer containing 20 mM HEPES, 80 mM KCl, 1 mM DTT and 
7.5% (v/v) D2O at pH 7.4. 

X-ray Crystal lography.  Following TEV cleavage of the His6-tag, HNH was 
subsequently purified by HiPrep 16/60 Sephacryl 100 S-100 HR gel filtration 
chromatography. Crystals were obtained with sitting drop vapor diffusion at 
room temperature with 48 mg/mL HNH 1:1 with the Molecular Dimensions 
Morpheus I Screen condition E4 (0.1 M mixture of [imidazole and MES] pH 
6.5, 25% (v/v) mixture of [2-methyl-2,4-pentanediol, PEG1000, and 
PEG3350], and 0.3 M mixture of [diethylene glycol, triethylene glycol, tetra-
ethylene glycol, and pentaethlyene glycol]). Diffraction data were collected on a 
Rigaku MicroMax-003i sealed tube X-ray generator with a Saturn 944 HG CCD 
detector and processed and scaled using XDS51 and Aimless in the CCP4 pro-
gram suite.52 The HNH domain from full-length S. pyogenes Cas9 was used for 
molecular replacement (PDB: 4UN3)5 with Phaser in the PHENIX software 
package.53 Iterative rounds of manual building in Coot54 and refinement in 
PHENIX yielded the final HNH domain structure.  

NMR Spectroscopy.  NMR spin relaxation experiments were carried out at 
600 and 850 MHz on Bruker Avance NEO and Avance III HD spectrometers, 
respectively.  All NMR spectra were processed with NMRPipe 55 and analyzed 
in SPARKY.56 Backbone chemical shift data was uploaded to the CS23D server 
for secondary structure calculations. Carr-Purcell-Meiboom-Gill (CPMG) 
NMR experiments were adapted from the report of Palmer and coworkers,57 
and performed at 25 ºC with a constant relaxation period of 40 ms, a 2.0 second 
recycle delay, and τcp points of 0.555, 0.625, 0.714, 0.833, 1.0, 1.25, 1.5, 1.667, 
2.5, 5, 10, and 20 ms.  Relaxation dispersion profiles were generated by plotting 
R2 vs. 1/τcp and exchange parameters were obtained from fits of these data car-
ried out with in-house scripts and in RELAX under the R2eff, NoRex, Tollinger 
(TSMFK01), and Carver-Richards (CR72 and CR72-Full) models.32, 58 Two-
field relaxation dispersion data were fit simultaneously and uncertainty values 
were obtained from replicate spectra (see the Supporting Information, SI). 
Longitudinal and transverse relaxation rates were measured with relaxation 
times of 0(x2), 40, 80, 120, 160(x2), 200, 240, 280(x2), 320, 360, and 400 ms 
for R1 and 4.18, 8.36(x2), 12.54, 16.72, 20.9(x2), 25.08(x2), 29.26, 33.44, 37.62, 
and 41.8 ms for R2. Peak intensities were quantified in Sparky and the resulting 
decay profiles were analyzed in Mathematica with errors determined from the 
fitted parameters. Steady-state 1H-[15N] NOE were measured with a 6 second 
relaxation delay followed by a 3 second saturation (delay) for the saturated (un-
saturated) experiments. All relaxation experiments were carried out in a temper-
ature-compensated interleaved manner. Model-free analysis using the Lipari-
Szabo formalism was carried out on dual-field NMR data in RELAX with fully 
automated protocols.32 

Computational  Structural  Models .  Two model systems were built for 
MD simulations, the first of which was based on the X-ray structure of the full-
length wild-type Cas9 protein in complex with RNA and DNA, solved at 2.58 Å 
resolution (PDB code: 4UN3).5 The second model system was based on the 
NMR structure of the HNH domain obtained in this work. The RMSD between 
the HNH domain in the X-ray structure of the WT Cas9 complex5 and the 
HNH domain structure determined here is 0.688 Å. Both model systems were 
embedded in explicit water, adding Na+ counter-ions to neutralize the total 
charge, reaching a total of ~220,000 atoms and a box size of ~145 x 110 x 147 Å3 
for the CRISPR-Cas9 complex and ~25,000 atoms and a box size of ~72 x 62 x 
60 Å3 for the HNH domain.  

Molecular  Dynamics  (MD) Simulations .  The above-mentioned model 
systems were equilibrated through conventional MD. We employed the Amber 
ff12SB force field, which includes the ff99bsc0 corrections for DNA59 and the 
ff99bsc0+χOL3 corrections for RNA.60-61 Hydrogen atoms were added assum-
ing standard bond lengths and constrained to their equilibrium position with 
the SHAKE algorithm. Temperature control (300 K) was performed via Lange-
vin dynamics,62 with a collision frequency γ = 1. Pressure control was accom-
plished by coupling the system to a Berendsen barostat,63 at a reference pressure 
of 1 atm and a relaxation time of 2 ps. All simulations have been carried out 
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through a well-established protocol described in the SI. MD simulations were 
carried out in the NVT ensemble, collecting ~100 ns for each system (for a total 
of ~400 ns of production runs). These well-equilibrated systems have been used 
as the starting point for Gaussian accelerated MD (GaMD, details below). Clas-
sical MD simulations have also been performed on 40 equally distributed con-
formations extracted from the GaMD trajectories of the isolated HNH domain 
and of the full-length Cas9. Specifically, ~10 ns of MD have been collected for 
each of the 40 configurations of the isolated HNH domain (for a total of ~400 
ns), while ~30 ns of MD have been carried out for each of the 40 configurations 
of the full-length Cas9 (for a total of ~1,2 µs), in agreement with the decay time 
detected experimentally. All simulations were performed with the GPU version 
of AMBER 16.64  

Gaussian Accelerated MD Simulations (GaMD).  Accelerated MD 
(aMD) is an enhanced sampling method that adds a boost potential to the Po-
tential Energy Surface (PES), effectively decreasing the energy barriers and ac-
celerating transitions between low-energy states.41 The method extends the 
capability of MD simulations over long timescales, capturing slow µs and ms 
motions in excellent comparability with solution NMR experiments.26-28 Here, 
we applied a novel and robust aMD method, namely a Gaussian aMD 
(GaMD),25 which uses harmonic functions to construct a boost potential that is 
adaptively added to the PES, enabling unconstrained enhanced sampling and 
simultaneous reweighting of the canonical ensemble.  

Considering a system with N atoms at positions 𝑟 =  𝑟!,… 𝑟! , when the 
system potential 𝑉 𝑟  is lower than a threshold energy E, the energy surface is 
modified by a boost potential as: 

 
𝑉∗ 𝑟 = 𝑉 𝑟 + Δ𝑉 𝑟 ,          𝑉 𝑟  < 𝐸,                                    [1] 

∆𝑉 𝑟 = !

!
𝑘 𝐸 − 𝑉 𝑟 !,                                                  [2] 

where k is the harmonic force constant. The two adjustable parameters E and 
k are automatically determined by applying the following three criteria. First, for 
any two arbitrary potential values 𝑉! 𝑟  and 𝑉! 𝑟  found on the original energy 
surface, if 𝑉! 𝑟 <  𝑉! 𝑟 , ∆𝑉 should be a monotonic function that does not 
change the relative order of the biased potential values, i.e. 𝑉!∗ 𝑟 <  𝑉!∗ 𝑟 . 
Second, if 𝑉! 𝑟 <  𝑉! 𝑟 , the potential difference observed on the smoothed 
energy surface should be smaller than that of the original, i.e. 𝑉!∗ 𝑟 −  𝑉!∗ 𝑟  < 
𝑉! 𝑟 −  𝑉! 𝑟 . By combining the first two criteria with Eqn [1] and [2]: 

𝑉!"# ≤ 𝐸 ≤ 𝑉!"# +   1 𝑘,                                                  [3] 

where 𝑉!"#  and 𝑉!"#  are the system minimum and maximum potential ener-
gies. To ensure that Eqn. [4] is valid, 𝑘 must satisfy 𝑘 ≤ 1 𝑉!"# − 𝑉!"# . By 
defining 𝑘 ≡  𝑘! 1 𝑉!"# − 𝑉!"#, then 0 < 𝑘 ≤ 1. Lastly, the standard devi-
ation of ∆𝑉 must be narrow enough to ensure accurate reweighting using cumu-
lant expansion to the second order: 𝜎∆! = 𝑘 𝐸 −  𝑉!"# 𝜎!  ≤ 𝜎!, where 𝑉!"#  
and 𝜎!  are the average and standard deviation of the system potential 
gies, 𝜎∆!  is the standard deviation of ∆𝑉 and 𝜎!  as a user-specified upper limit 
(e.g., 10 𝑘BT) for accurate reweighting. When E is set to the lower bound, 𝐸 =
𝑉!"# , according to Eqn. [4], 𝑘!  can be calculated as: 

𝑘! = min 1.0, 𝑘!! = min 1.0, !!
!!
∙  !!"#!!!"#

!!"#!!!"#
.                [4]                              

 

Alternatively, when the threshold energy E is set to its upper bound 𝐸 =
𝑉!"# +  1 𝑘, 𝑘!  is: 

𝑘! =  𝑘!" ≡ 1 −
𝜎!
𝜎!

∙  
𝑉!"# − 𝑉!"#
𝑉!"# − 𝑉!"#

,       

                                             [5] 

if 𝑘!"  is calculated between 0 and 1. Otherwise, 𝑘!  is calculated using Eqn. [4], 
instead of being set to 1 directly as described in the original paper.25 GaMD 
yields a canonical average of an ensemble by reweighting each point in the con-
figuration space on the modified potential by the strength of the Boltzmann 
factor of the bias energy, 𝑒𝑥𝑝 [𝛽Δ𝑉(𝑟!(!))] at that particular point.  

Based on extensive tests on the CRISPR-Cas9 system,14, 39-40 the system 
threshold energy is 𝐸 = 𝑉!"#  for all GaMD simulations. The boost potential 
was applied in a dual-boost scheme, in which two acceleration potentials are 
applied simultaneously to the system: (i) the torsional terms only and (ii) 

across the entire potential. A timestep of 2 fs was used. The maximum, mini-
mum, average, and standard deviation values of the system potential (𝑉!"# , 
𝑉!"# , 𝑉!"#  and 𝜎!) were obtained from an initial ~12 ns NPT simulation with 
no boost potential. GaMD simulations were applied to the CRISPR-Cas9 com-
plex and our HNH domain construct. Each GaMD simulation proceeded with a 
~50 ns run, in which the boost potential was updated every 1.6 ns, thus reaching 
equilibrium. Finally, ~400 ns of GaMD simulations were carried in the NVT 
ensemble out for each system in two replicas, for a total of ~1.6 μs of GaMD. 
This simulation length (i.e., ~400 ns per replica) has shown to exhaustively ex-
plore the conformational space of the CRISPR-Cas9 system.14, 39  

Determination of  the Allosteric  Pathways across  the HNH do-
main . The allosteric pathway for information transfer has been investigated by 
employing correlation analysis and graph theory.35-38 First, the generalized cor-
relations (GCij), which capture non-collinear correlations between pairs of resi-
dues i and j, are computed.65 In this correlation analysis, two variables (xi,xj) can 
be considered correlated when their joint probability distribution, 𝑝 𝑥! ,  𝑥! , is 
smaller than the product of their marginal distributions, 𝑝 𝑥! ∙ 𝑝 𝑥! . The 
mutual information (𝑀𝐼) is a measure of the degree of correlation between 
𝑥!  and 𝑥!  defined as function of 𝑝 𝑥! ,  𝑥!  and 𝑝 𝑥! ∙ 𝑝 𝑥!  according to:  

𝑀𝐼 𝑥! ,  𝑥! =  𝑝 𝑥! ,  𝑥! 𝑙𝑛
𝑝 𝑥! ,  𝑥!

𝑝 𝑥! ∙ 𝑝 𝑥!
𝑑𝑥!𝑑𝑥!  

         [6] 

Notably, MI is related to the definition of the Shannon entropy, 𝐻[𝑥], i.e., the 
expectation value of a random variable 𝑥, having a probability distribution 𝑝 𝑥!  

𝐻 𝑥 =  𝑝 𝑥 𝑙𝑛 𝑝 𝑥 𝑑𝑥 
                            [7] 

and it can be thus computed as: 

𝑀𝐼 𝑥! ,  𝑥! =  𝐻 𝑥! +  𝐻 𝑥! −  𝐻 𝑥! , 𝑥!  
                 [8] 

where 𝐻 𝑥!  and 𝐻 𝑥!  are the marginal Shannon entropies, and 
𝐻 𝑥! , 𝑥!  is the joint entropy. Since 𝑀𝐼 varies from 0 to + ∞, normalized gen-
eralized correlation coefficients (GCij), ranging from 0 (independent variables) 
to 1 (fully correlated variables), are defined as: 

𝐺𝐶!"  𝑥! ,  𝑥! =  1 −  𝑒!!!" !!, !! /!
!!/! 

 
                          [9] 

where d=3 is the dimensionality of xi and xj. GCij have been computed using 
have been computed using a code developed within our group, utilizing the 𝑀𝐼 
defined by Lange.65 In a second phase, the GCij are used as a metric to build a 
dynamical network model of the protein.37 In this model, the protein amino 
acids residues constitute the nodes of the dynamical network graph, connected 
by edges (residue pair connection). Edge lengths, i.e., the inter-node distances 
in the graph, are defined using the GCij coefficients according to:  

𝑤!" =  − log𝐺𝐶!"        [10] 

In the present work, two nodes have been considered connected if any heavy 
atom of the two residues is within 5 A ̊ of each other (i.e., distance cutoff) for at 
least the 70 % of the simulation time (i.e., frame cutoff). This leads to the defini-
tion of a set of elements 𝑤!"  of the graph. In the third phase of the protocol, the 
optimal pathways for the information transfer between two nodes (i.e., two 
amino acids) are defined using the Dijkstra algorithm, which finds the roads, 
composed by inter-node connections, that minimize the total distance (and 
therefore maximize the correlation) between amino acids. In the present study, 
this protocol was applied on the trajectories of the full-length Cas9 simulated for 
~400 ns of GaMD simulations and averaged over two replicas. The Dijkstra 
algorithm was applied between the amino acids 789 and 841, which belong to 
HNH and are located at the interface with RuvC and REC2, respectively. As a 
result, the routes that maximize the correlation between amino acids 789 and 
841 are identified, providing residue–to–residue pathways that optimize the 
correlations (i.e., the momentum transport). With the optimal motion transmis-
sion pathway the following 50 sub-optimal information channels where com-
puted and accumulated and plotted on the 3D structure (Figure 4B), to account 
for the contribution of the most likely sub-optimal pathways. 
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through a well-established protocol described in the SI. MD simulations were 
carried out in the NVT ensemble, collecting ~100 ns for each system (for a total 
of ~400 ns of production runs). These well-equilibrated systems have been used 
as the starting point for Gaussian accelerated MD (GaMD, details below). Clas-
sical MD simulations have also been performed on 40 equally distributed con-
formations extracted from the GaMD trajectories of the isolated HNH domain 
and of the full-length Cas9. Specifically, ~10 ns of MD have been collected for 
each of the 40 configurations of the isolated HNH domain (for a total of ~400 
ns), while ~30 ns of MD have been carried out for each of the 40 configurations 
of the full-length Cas9 (for a total of ~1,2 µs), in agreement with the decay time 
detected experimentally. All simulations were performed with the GPU version 
of AMBER 16.64  

Gaussian Accelerated MD Simulations (GaMD).  Accelerated MD 
(aMD) is an enhanced sampling method that adds a boost potential to the Po-
tential Energy Surface (PES), effectively decreasing the energy barriers and ac-
celerating transitions between low-energy states.41 The method extends the 
capability of MD simulations over long timescales, capturing slow µs and ms 
motions in excellent comparability with solution NMR experiments.26-28 Here, 
we applied a novel and robust aMD method, namely a Gaussian aMD 
(GaMD),25 which uses harmonic functions to construct a boost potential that is 
adaptively added to the PES, enabling unconstrained enhanced sampling and 
simultaneous reweighting of the canonical ensemble.  

Considering a system with N atoms at positions 𝑟 =  𝑟!,… 𝑟! , when the 
system potential 𝑉 𝑟  is lower than a threshold energy E, the energy surface is 
modified by a boost potential as: 

 
𝑉∗ 𝑟 = 𝑉 𝑟 + Δ𝑉 𝑟 ,          𝑉 𝑟  < 𝐸,                                    [1] 

∆𝑉 𝑟 = !

!
𝑘 𝐸 − 𝑉 𝑟 !,                                                  [2] 

where k is the harmonic force constant. The two adjustable parameters E and 
k are automatically determined by applying the following three criteria. First, for 
any two arbitrary potential values 𝑉! 𝑟  and 𝑉! 𝑟  found on the original energy 
surface, if 𝑉! 𝑟 <  𝑉! 𝑟 , ∆𝑉 should be a monotonic function that does not 
change the relative order of the biased potential values, i.e. 𝑉!∗ 𝑟 <  𝑉!∗ 𝑟 . 
Second, if 𝑉! 𝑟 <  𝑉! 𝑟 , the potential difference observed on the smoothed 
energy surface should be smaller than that of the original, i.e. 𝑉!∗ 𝑟 −  𝑉!∗ 𝑟  < 
𝑉! 𝑟 −  𝑉! 𝑟 . By combining the first two criteria with Eqn [1] and [2]: 

𝑉!"# ≤ 𝐸 ≤ 𝑉!"# +   1 𝑘,                                                  [3] 

where 𝑉!"#  and 𝑉!"#  are the system minimum and maximum potential ener-
gies. To ensure that Eqn. [4] is valid, 𝑘 must satisfy 𝑘 ≤ 1 𝑉!"# − 𝑉!"# . By 
defining 𝑘 ≡  𝑘! 1 𝑉!"# − 𝑉!"# , then 0 < 𝑘 ≤ 1. Lastly, the standard devi-
ation of ∆𝑉 must be narrow enough to ensure accurate reweighting using cumu-
lant expansion to the second order: 𝜎∆! = 𝑘 𝐸 −  𝑉!"# 𝜎!  ≤ 𝜎!, where 𝑉!"#  
and 𝜎!  are the average and standard deviation of the system potential 
gies, 𝜎∆!  is the standard deviation of ∆𝑉 and 𝜎!  as a user-specified upper limit 
(e.g., 10 𝑘BT) for accurate reweighting. When E is set to the lower bound, 𝐸 =
𝑉!"# , according to Eqn. [4], 𝑘!  can be calculated as: 

𝑘! = min 1.0, 𝑘!! = min 1.0, !!
!!
∙  !!"#!!!"#

!!"#!!!"#
.                [4]                              

 

Alternatively, when the threshold energy E is set to its upper bound 𝐸 =
𝑉!"# +  1 𝑘, 𝑘!  is: 

𝑘! =  𝑘!" ≡ 1 −
𝜎!
𝜎!

∙  
𝑉!"# − 𝑉!"#
𝑉!"# − 𝑉!"#

,       

                                             [5] 

if 𝑘!"  is calculated between 0 and 1. Otherwise, 𝑘!  is calculated using Eqn. 
[4], instead of being set to 1 directly as described in the original paper.25 GaMD 
yields a canonical average of an ensemble by reweighting each point in the con-
figuration space on the modified potential by the strength of the Boltzmann 
factor of the bias energy, 𝑒𝑥𝑝 [𝛽Δ𝑉(𝑟!(!))] at that particular point.  

Based on extensive tests on the CRISPR-Cas9 system,14, 39-40 the system 
threshold energy is 𝐸 = 𝑉!"#  for all GaMD simulations. The boost potential 
was applied in a dual-boost scheme, in which two acceleration potentials are 
applied simultaneously to the system: (i) the torsional terms only and (ii) 
across the entire potential. A timestep of 2 fs was used. The maximum, mini-
mum, average, and standard deviation values of the system potential (𝑉!"# , 

𝑉!"# , 𝑉!"#  and 𝜎!) were obtained from an initial ~12 ns NPT simulation with 
no boost potential. GaMD simulations were applied to the CRISPR-Cas9 com-
plex and our HNH domain construct. Each GaMD simulation proceeded with a 
~50 ns run, in which the boost potential was updated every 1.6 ns, thus reaching 
equilibrium. Finally, ~400 ns of GaMD simulations were carried in the NVT 
ensemble out for each system in two replicas, for a total of ~1.6 μs of GaMD. 
This simulation length (i.e., ~400 ns per replica) has shown to exhaustively 
explore the conformational space of the CRISPR-Cas9 system.14, 39  

Determination of  the Allosteric  Pathways . The allosteric pathway for 
information transfer has been investigated by employing correlation analysis 
and graph theory.35-38 First, the generalized correlations (GCij), which capture 
non-collinear correlations between pairs of residues i and j, are computed.65 In 
this correlation analysis, two variables (xi,xj) can be considered correlated when 
their joint probability distribution, 𝑝 𝑥! ,  𝑥! , is smaller than the product of 
their marginal distributions, 𝑝 𝑥! ∙ 𝑝 𝑥! . The mutual information (𝑀𝐼) is a 
measure of the degree of correlation between 𝑥!  and 𝑥!  defined as function of 
𝑝 𝑥! ,  𝑥!  and 𝑝 𝑥! ∙ 𝑝 𝑥!  according to:  

𝑀𝐼 𝑥! ,  𝑥! =  𝑝 𝑥! ,  𝑥! 𝑙𝑛
𝑝 𝑥! ,  𝑥!

𝑝 𝑥! ∙ 𝑝 𝑥!
𝑑𝑥!𝑑𝑥!  

         [6] 

Notably, MI is related to the definition of the Shannon entropy, 𝐻[𝑥], i.e., the 
expectation value of a random variable 𝑥, having a probability distribution 
𝑝 𝑥!  

𝐻 𝑥 =  𝑝 𝑥 𝑙𝑛 𝑝 𝑥 𝑑𝑥 
                            [7] 

and it can be thus computed as: 

𝑀𝐼 𝑥! ,  𝑥! =  𝐻 𝑥! +  𝐻 𝑥! −  𝐻 𝑥! , 𝑥!  
                 [8] 

where 𝐻 𝑥!  and 𝐻 𝑥!  are the marginal Shannon entropies, and 
𝐻 𝑥! , 𝑥!  is the joint entropy. Since 𝑀𝐼 varies from 0 to + ∞, normalized gen-
eralized correlation coefficients (GCij), ranging from 0 (independent variables) 
to 1 (fully correlated variables), are defined as: 

𝐺𝐶!"  𝑥! ,  𝑥! =  1 −  𝑒!!!" !!, !! /!
!!/! 

 
                          [9] 

where d=3 is the dimensionality of xi and xj. GCij have been computed using 
have been computed using a code developed within our group, utilizing the 𝑀𝐼 
defined by Lange.65 In a second phase, the GCij are used as a metric to build a 
dynamical network model of the protein.37 In this model, the protein amino 
acids residues constitute the nodes of the dynamical network graph, connected 
by edges (residue pair connection). Edge lengths, i.e., the inter-node distances 
in the graph, are defined using the GCij coefficients according to:  

𝑤!" =  − log𝐺𝐶!"        [10] 

In the present work, two nodes have been considered connected if any heavy 
atom of the two residues is within 5 A ̊ of each other (i.e., distance cutoff) for at 
least the 70 % of the simulation time (i.e., frame cutoff). This leads to the defini-
tion of a set of elements 𝑤!"  of the graph. In the third phase of the protocol, the 
optimal pathways for the information transfer between two nodes (i.e., two 
amino acids) are defined using the Dijkstra algorithm, which finds the roads, 
composed by inter-node connections, that minimize the total distance (and 
therefore maximize the correlation) between amino acids. In the present study, 
this protocol was applied on the trajectories of the full-length Cas9 simulated for 
~400 ns of GaMD simulations and averaged over two replicas. The Dijkstra 
algorithm was applied between the amino acids 789 and 841, which belong to 
HNH and are located at the interface with RuvC and REC2, respectively. As a 
result, the routes that maximize the correlation between amino acids 789 and 
841 are identified, providing residue–to–residue pathways that optimize the 
correlations (i.e., the momentum transport). With the optimal motion trans-
mission pathway, the following 50 sub-optimal information channels where 
computed and accumulated and plotted on the 3D structure (Figure 4B), to 
account for the contribution of the most likely sub-optimal pathways. 
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