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Abstract Graphics processing units (GPU) allow image pro-
cessing at unprecedented speed. We present CLIJ, a Fiji plugin
enabling end-users with entry level experience in programming
to benefit from GPU-accelerated image processing. Freely pro-
grammable workflows can speed up image processing in Fiji
by factor 10 and more using high-end GPU hardware and on
affordable mobile computers with built-in GPUs.

Modern microscopy generates staggering amounts of multi-
dimensional image data that place increasing demands on pro-
cessing flexibility and efficiency. One way to speed up image
processing is to exploit the parallel processing capabilities of
graphics processing units (GPU).

Recently, GPU-acceleration was used in specific image pro-
cessing tasks such as reconstruction1,2, image quality determi-
nation3, image restoration4, segmentation5 and visualisation6.
However, in these tools, GPU code is fulfilling one specific
purpose and is not intended to be reused in other contexts. By
contrast, most common image processing tasks are solved by
building flexible workflows consisting of simple operations in
widely used tools such as ImageJ7 and Fiji8. Most of these op-
erations were however programmed at a time when GPUs were
not commonly used for general purpose processing. Therefore,
typical workflows consisting of core ImageJ operations do not
take advantage of GPUs. To address this issue we developed a
flexible and reusable platform for GPU-acceleration in Fiji.

Our platform, named CLIJ, complements core ImageJ oper-
ations with reprogrammed counterparts that take advantage of
the OpenCL9 framework to execute on GPUs. Within CLIJ,
we implemented a wide range of fundamental image process-
ing functions for morphological filters, spatial transforms, im-
age warping, local and global thresholding, minima/maxima
detection, logical operations on binary images, 3D-to-2D pro-
jections, and methods of descriptive statistics for quantitative
measurements (Suppl. Listing 1).

We then asked how much faster GPU-accelerated versions
of individual operations run compared to their counterparts on

the central processing unit (CPU). GPUs can do certain opera-
tions faster because they have many more processing cores then
regular CPUs (Figure 1a). In addition, memory access can be
multiple times faster on GPUs depending on the GPU hard-
ware. On the other hand, in order to be processed on GPUs, the
data and the compiled program have to be first pushed to GPU
memory, and later data have to be pulled back to CPU mem-
ory. While this introduces an unavoidable overhead to any GPU
operation, once the data are on the GPU, functions we imple-
mented typically run faster on GPU compared to CPU. Further-
more, optimal performance can be achieved by chaining GPU
operations and re-using memory to spare memory transfer and
allocation time. The speed-up also depends on the image size
and for functions that have parameters, the achievable speed
may also depend on the values of the parameters (Figure 1b,
Suppl. Figures 1, 2 and 3). Furthermore, after the first exe-
cution of a CLIJ operation, performance increases because of
reuse of the compiled GPU code. We measured execution time
and speed-up on two test systems: a consumer laptop (Intel i7-
8650U CPU and an Intel UHD 620 GPU), and a professional
workstation (two Intel Xeon Silver 4110 CPUs and an Nvidia
Quadro P6000 GPU). We observed that tested CLIJ operations
(Suppl. Listing 2) were up to about two orders of magnitude
faster compared to their counter parts in ImageJ running on the
CPU (Figure 1c).

To demonstrate the utility of CLIJ in practical biological
image processing, we chose a multi-step example workflow
(Suppl. Figure 4) operating on 3D light sheet microscopy data
consisting of 300 time points of a early Drosophila embryo ex-
pressing histone-RFP to mark the nuclei. The workflow per-
forms Difference-of-Gaussian filtering to reduce background
signal and noise, projects the data from 3D to 2D and detects
spots to count the nuclei. The processed image stack of each
time point consists of 400×1024×121 voxels occupying 189
MB in memory. Since CLIJ operations are new implementa-
tions of existing ImageJ functions based on a different com-
puting architecture, we determined how much the output of the
GPU-based workflow and the corresponding CPU-based work-
flow were different. We observed minor absolute differences
in the spot count result of 0.9±0.6 percent corresponding to
a difference of about 22 in absolute spot count. Furthermore,
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we observed differences of 0.05±0.04 percent in spot count de-
pending on which GPU hardware CLIJ was used (Suppl. Fig-
ure 5). While these differences may in practice be negligible
(Suppl. Figure 6, Suppl. Video 1), we think users should be
aware that they exist.

The whole time lapse was processed on our laptop within
2 hours and 44 minutes using ImageJ and 11 minutes using
CLIJ. On our workstation, processing took 41 minutes using
ImageJ and 5 minutes using CLIJ. Thus, these results show
that using a consumer laptop, CLIJ enables a speed-up by a
factor of 15. Compared to the laptop CPU, execution on the
workstation GPU was 33 times faster. We would like to note
that all measured runtimes depend on the executed workflow,
the image data it is applied on, and the GPU hardware and its
drivers. Hence, the precise speed-up of a given pipeline and
hardware is hard to predict but will likely be similar in mag-
nitude. We encourage users to consult our FAQ section on-
line (Suppl. Listing 3) to learn more about optimal exploitation
of GPU-accelerated image processing and benchmarking. Fur-
thermore, excluding compilation time and file input/output time
from the time measurement suggests that real-time image anal-
ysis becomes feasible: In a smart microscopy software applica-
tion, where image data arrives in memory continuously directly
from the acquiring camera and GPU code recompilation is not
necessary, an estimation of cell count can be made from an im-
age stack in less than 0.5 seconds using the presented CLIJ-
based workflow.

Key feature of CLIJ is that it does not require any GPU pro-
gramming skills, or specialized hardware to be executed. As
it is based on the established OpenCL framework, it is not
limited to CUDA-compatible GPU devices. The user can as-
semble CLIJ operations into GPU-accelerated image process-
ing workflows in all programming languages available in Fiji
(ImageJ Macro, ImageJ-Ops, BeanShell, JavaScript, Jython,
Groovy, and Java). Users can start using CLIJ by simply mod-
ifying example code (Suppl. Code 1). Moreover, CLIJ op-
erations can be recorded using ImageJ’s macro recorder and
further modified in Fiji’s script editor where we added CLIJ-
specific auto-completion functions and online help (Suppl. Fig-
ure 7). CLIJ can be used in the cloud or on computing clus-
ters via ImageJ Jupyter notebooks or command-line interface.
We tested CLIJ successfully on GPU-hardware from major
vendors (Intel, AMD, Nvidia) and operating systems (Win-
dows, MacOS, Linux). Finally, we facilitate providing addi-
tional GPU-accelerated operations to be used within the Im-
ageJ ecosystem and extending CLIJ. Specifically, developers
can deploy custom OpenCL code using the modern ImageJ2
plugin mechanism10 in order to add functionality to CLIJ. For

potential CLIJ developers we provide a plugin template to-
gether with the full open source code of CLIJ and all data
and scripts (Suppl. Listing 4) needed to support our findings
at https://clij.github.io/

In summary, CLIJ makes it possible to speed up image pro-
cessing workflows in Fiji to reduce processing time from hours
to minutes. Furthermore, CLIJ allows general purpose real-
time image processing, e.g. for smart microscopy applica-
tions. In order to facilitate adoption of this enabling technol-
ogy, we have put special emphasis on documentation, code
examples, interoperability, accessibility and user convenience.
Therefore, CLIJ enables a wide range of imaging scientists with
beginner-level programming experience to benefit from GPU-
acceleration.
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Figure 1: (a) GPU-acceleration schematically shows how many GPU cores potentially outperform a CPU with less cores. (b)
Execution time of the Gaussian blur and minimum filter for different image sizes and parameters. Error bands denote the 99.9%
confidence interval. (c) Overview of speed-up measurements when applied to 32 MB (2D) / 64 MB (3D) large 16-bit images
with respect to computation times on a laptop CPU. Time measurements excluded memory transfer and compilation times.
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