
CLIJ: GPU-accelerated image processing for everyone
Robert Haase1,2*, Loic A. Royer3*, Peter Steinbach1,2,4, Deborah Schmidt1,2, Alexandr Dibrov1,2, Uwe Schmidt1,2, Mar-
tin Weigert1,2, Nicola Maghelli1,2, Pavel Tomancak1,2, Florian Jug1,2, Eugene W. Myers1,2

Abstract Graphics processing units (GPU) allow image pro-
cessing at unprecedented speed. We present CLIJ, a Fiji plugin
enabling end-users with entry level experience in programming
to benefit from GPU-accelerated image processing. Freely pro-
grammable workflows can speed up image processing in Fiji
by factor 10 and more using high-end GPU hardware and on
affordable mobile computers with built-in GPUs.

Modern microscopy generates staggering amounts of multi-
dimensional image data that place increasing demands on pro-
cessing flexibility and efficiency. One way to speed up image
processing is to exploit the parallel processing capabilities of
graphics processing units (GPU).

Recently, GPU-acceleration was used in specific image pro-
cessing tasks such as reconstruction1,2, image quality determi-
nation3, image restoration4, segmentation5 and visualisation6.
However, in these tools, GPU code is fulfilling one specific
purpose and is not intended to be reused in other contexts. By
contrast, most common image processing tasks are solved by
building flexible workflows consisting of simple operations in
widely used tools such as ImageJ7 and Fiji8. Most of these op-
erations were however programmed at a time when GPUs were
not commonly used for general purpose processing. Therefore,
typical workflows consisting of core ImageJ operations do not
take advantage of GPUs. To address this issue we developed a
flexible and reusable platform for GPU-acceleration in Fiji.

Our platform, named CLIJ, complements core ImageJ oper-
ations with reprogrammed counterparts that take advantage of
the OpenCL9 framework to execute on GPUs. Within CLIJ,
we implemented a wide range of fundamental image process-
ing functions for morphological filters, spatial transforms, im-
age warping, local and global thresholding, minima/maxima
detection, logical operations on binary images, 3D-to-2D pro-
jections, and methods of descriptive statistics for quantitative
measurements (Suppl. Listing 1).

We then asked how much faster GPU-accelerated versions
of individual operations run compared to their counterparts on

the central processing unit (CPU). GPUs can do certain opera-
tions faster because they have many more processing cores then
regular CPUs (Figure 1a). In addition, memory access can be
multiple times faster on GPUs depending on the GPU hard-
ware. On the other hand, in order to be processed on GPUs, the
data and the compiled program have to be first pushed to GPU
memory, and later data have to be pulled back to CPU mem-
ory. While this introduces an unavoidable overhead to any GPU
operation, once the data are on the GPU, functions we imple-
mented typically run faster on GPU compared to CPU. Further-
more, optimal performance can be achieved by chaining GPU
operations and re-using memory to spare memory transfer and
allocation time. The speed-up also depends on the image size
and for functions that have parameters, the achievable speed
may also depend on the values of the parameters (Figure 1b,
Suppl. Figures 1, 2 and 3). Furthermore, after the first exe-
cution of a CLIJ operation, performance increases because of
reuse of the compiled GPU code. We measured execution time
and speed-up on two test systems: a consumer laptop (Intel i7-
8650U CPU and an Intel UHD 620 GPU), and a professional
workstation (two Intel Xeon Silver 4110 CPUs and an Nvidia
Quadro P6000 GPU). We observed that tested CLIJ operations
(Suppl. Listing 2) were up to about two orders of magnitude
faster compared to their counter parts in ImageJ running on the
CPU (Figure 1c).

To demonstrate the utility of CLIJ in practical biological
image processing, we chose a multi-step example workflow
(Suppl. Figure 4) operating on 3D light sheet microscopy data
consisting of 300 time points of a early Drosophila embryo ex-
pressing histone-RFP to mark the nuclei. The workflow per-
forms Difference-of-Gaussian filtering to reduce background
signal and noise, projects the data from 3D to 2D and detects
spots to count the nuclei. The processed image stack of each
time point consists of 400×1024×121 voxels occupying 189
MB in memory. Since CLIJ operations are new implementa-
tions of existing ImageJ functions based on a different com-
puting architecture, we determined how much the output of the
GPU-based workflow and the corresponding CPU-based work-
flow were different. We observed minor absolute differences
in the spot count result of 0.9±0.6 percent corresponding to
a difference of about 22 in absolute spot count. Furthermore,

Correspondence: rhaase@mpi-cbg.de & loic.royer@czbiohub.org
* both authors contributed equally
1Max Planck Institute for Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307 Dresden, Germany
2Center for Systems Biology Dresden, Pfotenhauerstr. 108, 01307 Dresden, Germany
3Chan Zuckerberg Biohub, 499 Illinois St, San Francisco, CA 94158, USA
4Now with: Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany

1

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 22, 2019. ; https://doi.org/10.1101/660704doi: bioRxiv preprint 

https://doi.org/10.1101/660704
http://creativecommons.org/licenses/by/4.0/


we observed differences of 0.05±0.04 percent in spot count de-
pending on which GPU hardware CLIJ was used (Suppl. Fig-
ure 5). While these differences may in practice be negligible
(Suppl. Figure 6, Suppl. Video 1), we think users should be
aware that they exist.

The whole time lapse was processed on our laptop within
2 hours and 44 minutes using ImageJ and 11 minutes using
CLIJ. On our workstation, processing took 41 minutes using
ImageJ and 5 minutes using CLIJ. Thus, these results show
that using a consumer laptop, CLIJ enables a speed-up by a
factor of 15. Compared to the laptop CPU, execution on the
workstation GPU was 33 times faster. We would like to note
that all measured runtimes depend on the executed workflow,
the image data it is applied on, and the GPU hardware and its
drivers. Hence, the precise speed-up of a given pipeline and
hardware is hard to predict but will likely be similar in mag-
nitude. We encourage users to consult our FAQ section on-
line (Suppl. Listing 3) to learn more about optimal exploitation
of GPU-accelerated image processing and benchmarking. Fur-
thermore, excluding compilation time and file input/output time
from the time measurement suggests that real-time image anal-
ysis becomes feasible: In a smart microscopy software applica-
tion, where image data arrives in memory continuously directly
from the acquiring camera and GPU code recompilation is not
necessary, an estimation of cell count can be made from an im-
age stack in less than 0.5 seconds using the presented CLIJ-
based workflow.

Key feature of CLIJ is that it does not require any GPU pro-
gramming skills, or specialized hardware to be executed. As
it is based on the established OpenCL framework, it is not
limited to CUDA-compatible GPU devices. The user can as-
semble CLIJ operations into GPU-accelerated image process-
ing workflows in all programming languages available in Fiji
(ImageJ Macro, ImageJ-Ops, BeanShell, JavaScript, Jython,
Groovy, and Java). Users can start using CLIJ by simply mod-
ifying example code (Suppl. Code 1). Moreover, CLIJ op-
erations can be recorded using ImageJ’s macro recorder and
further modified in Fiji’s script editor where we added CLIJ-
specific auto-completion functions and online help (Suppl. Fig-
ure 7). CLIJ can be used in the cloud or on computing clus-
ters via ImageJ Jupyter notebooks or command-line interface.
We tested CLIJ successfully on GPU-hardware from major
vendors (Intel, AMD, Nvidia) and operating systems (Win-
dows, MacOS, Linux). Finally, we facilitate providing addi-
tional GPU-accelerated operations to be used within the Im-
ageJ ecosystem and extending CLIJ. Specifically, developers
can deploy custom OpenCL code using the modern ImageJ2
plugin mechanism10 in order to add functionality to CLIJ. For

potential CLIJ developers we provide a plugin template to-
gether with the full open source code of CLIJ and all data
and scripts (Suppl. Listing 4) needed to support our findings
at https://clij.github.io/

In summary, CLIJ makes it possible to speed up image pro-
cessing workflows in Fiji to reduce processing time from hours
to minutes. Furthermore, CLIJ allows general purpose real-
time image processing, e.g. for smart microscopy applica-
tions. In order to facilitate adoption of this enabling technol-
ogy, we have put special emphasis on documentation, code
examples, interoperability, accessibility and user convenience.
Therefore, CLIJ enables a wide range of imaging scientists with
beginner-level programming experience to benefit from GPU-
acceleration.

References

1. Preibisch, S. et al. Efficient bayesian-based multiview de-
convolution. Nature Methods 11 (2014).

2. Laine, R. F. et al. NanoJ: a high-performance open-source
super-resolution microscopy toolbox. Journal of Physics
D: Applied Physics 52, 163001 (2019).

3. Culley, S. et al. Quantitative mapping and minimiza-
tion of super-resolution optical imaging artifacts. Nature
Methods 15, 263 EP (2018).

4. Weigert, M. et al. Content-aware image restoration: push-
ing the limits of fluorescence microscopy. Nature Meth-
ods 15, 1090–1097 (2018).

5. Falk, T. et al. U-Net: deep learning for cell counting,
detection, and morphometry. Nature Methods 16, 67–70
(2019).

6. Schmid, B. et al. 3Dscript: animating 3D/4D microscopy
data using a natural-language-based syntax. Nature Meth-
ods 16, 278–280 (2019).

7. Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH
Image to ImageJ: 25 years of image analysis. Nature
Methods 9, 671 (2012).

8. Schindelin, J. et al. Fiji: an open-source platform for
biological-image analysis. Nature Methods 9 (2012).

9. The Khronos Group. The open standard for
parallel programming of heterogeneous systems.
https://www.khronos.org/opencl/. Accessed 2018-12-09.

10. Rueden, C. T. et al. ImageJ2: ImageJ for the next genera-
tion of scientific image data. BMC Bioinformatics 18, 529
(2017).

Acknowledgements We would like to thank everybody who helped developing and testing CLIJ. In particular thanks goes to Bruno C.
Vellutini (MPI-CBG), Curtis Rueden (UW-Madison LOCI), Damir Krunic (DKFZ), Daniel J. White (GE), Gaby G. Martins (IGC), Siân Culley
(LMCB MRC), Giovanni Cardone (MPI Biochem), Jan Brocher (Biovoxxel), Johannes Girstmair (MPI-CBG), Juergen Gluch (Fraunhofer
IKTS), Kota Miura, Laurent Thomas (Acquifer), Nico Stuurman (UCSF), Peter Haub, Pradeep Rajasekhar (Monash University), Tobias Pietzsch
(MPI-CBG), Wilsom Adams (VU Biophotonics). This work was supported by the German Federal Ministry of Research and Education (BMBF)

2

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 22, 2019. ; https://doi.org/10.1101/660704doi: bioRxiv preprint 

https://clij.github.io/
https://doi.org/10.1101/660704
http://creativecommons.org/licenses/by/4.0/


AddImagesWeighted2D
AddImagesWeighted3D

AddScalar2D
AddScalar3D

AutoThreshold2D
AutoThreshold3D

BinaryAnd2D
BinaryAnd3D

Erode2D
Erode3D

FixedThreshold2D
FixedThreshold3D

Flip2D
Flip3D

GaussianBlur2D
GaussianBlur3D

MaximumZProjection
Mean2D
Mean3D

Median2D
Median3D

Minimum2D
Minimum3D

MultiplyScalar2D
MultiplyScalar3D

RadialReslice
Rotate2D
Rotate3D

3 0.8 8
4 0.7 28
6 0.5 10
3 0.8 18
2 0.7 2
3 0.8 6
2 0.7 4
4 1.0 29
11 0.7 19
2 0.5 12
2 0.7 5
4 0.9 32
17 0.5 37
16 0.6 110
3 0.8 9
3 0.3 33

0.1 0.8 38
0.06 0.6 11

7 4 172
0.5 2 36
2 4 42
7 1.0 19
25 4 196
11 0.9 22
6 1.0 38
17 0.9 48
3 0.5 22

1.0 0.5 15

ca

b

many
specialised
graphics
processing
units

Core
few

general
purpose

processing
units

CP
U
 m

em
or

y

G
PU

 m
em

or
y

Core

Core

Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

5 10 15 20 25 30
sigma

0

1

2

3

4

Pr
o
ce

ss
in

g
 t

im
e
 /
 s

2.5 5.0 7.5 10.0 12.5 15.0
radius

0

200

400

600

800

1000

1200

Pr
o
ce

ss
in

g
 t

im
e
 /
 s

M
in

im
u
m

3
D

0 25 50 75 100 125
Size / MB

0

2

4

6

8

Pr
o
ce

ss
in

g
 t

im
e
 /
 s

0 25 50 75 100 125
Size / MB

0

1

2

3

4

5

Pr
o
ce

ss
in

g
 t

im
e
 /
 s

G
a
u
ss

ia
n
B
lu

r3
D

Laptop Workstation
GPU GPUCPU

Relative speedup
compared to Laptop CPU

GPUCPU

Figure 1: (a) GPU-acceleration schematically shows how many GPU cores potentially outperform a CPU with less cores. (b)
Execution time of the Gaussian blur and minimum filter for different image sizes and parameters. Error bands denote the 99.9%
confidence interval. (c) Overview of speed-up measurements when applied to 32 MB (2D) / 64 MB (3D) large 16-bit images
with respect to computation times on a laptop CPU. Time measurements excluded memory transfer and compilation times.

under the code 031L0044 (Sysbio II) and the German Research Foundation (DFG) under the code JU3110/1-1.

Authors contributions RH and LAR initiated the research. RH, LAR, PS, DS, AD, US and MW wrote the source code of CLIJ. RH and NM
performed the image acquisition of the example data. EWM supervised the project. RH, LAR, US, MW, PT and FJ wrote the manuscript with
input from all co-authors.

Competing Interests The authors declare that they have no competing financial interests.

3

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 22, 2019. ; https://doi.org/10.1101/660704doi: bioRxiv preprint 

https://doi.org/10.1101/660704
http://creativecommons.org/licenses/by/4.0/

