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ABSTRACT 
The rapid global loss of biodiversity calls for improved predictions of how populations will 
evolve and respond demographically to ongoing environmental change. The heritability (h2) of 
selected traits has long been known to affect evolutionary and demographic responses to 
environmental change. However, effects of the genetic architecture underlying the h2 of a 
selected trait on population responses to selection are less well understood. We use deterministic 
models and stochastic simulations to show that the genetic architecture underlying h2 can 
dramatically affect population viability during environmental change. Polygenic trait 
architectures (many loci, each with a small phenotypic effect) conferred higher population 
viability than genetic architectures with the same initial h2 and large-effect loci under a wide 
range of scenarios. Population viability also depended strongly on the initial frequency of large-
effect beneficial alleles, with moderately low initial allele frequencies conferring higher viability 
than rare or already-frequent large-effect alleles. Greater population viability associated with 
polygenic architectures appears to be due to higher short term evolutionary potential compared to 
architectures with large-effect loci. These results suggest that integrating information on the trait 
genetic architecture into quantitiative genetic analysis will substantially improve our 
understanding and prediction of evolutionary and demographic responses to environmental 
change. 
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INTRODUCTION 
One of the most urgent undertakings for science is to understand how biodiversity will respond 
to human-driven environmental change (Mills et al. 2018; Nadeau and Urban 2019; Stockwell et 
al. 2003; Urban et al. 2016; Wilson 2016). Populations can persist through environmental change 
either by shifting their geographic distributions to track suitable habitats, or by adapting to 
changing local conditions (Pease et al. 1989). Predicting how populations will evolve and 
respond demographically to selection imposed by environmental change (e.g., global warming) 
is a difficult task, but crucial to understanding and mitigating the ongoing extinction crisis 
(Alberto et al. 2013; Chevin and Lande 2010; Funk et al. 2018; Shaw 2019; Stockwell et al. 
2003; Urban et al. 2016). 
 
This need has motivated several theoretical and simulation-based analyses of evolutionary and 
demographic responses to selection induced by environmental change (Bay et al. 2017; 
Gomulkiewicz et al. 2010; Lynch et al. 1991; Nunney 2015; Pease et al. 1989). These studies 
generally combined models of the genetic basis of a selected phenotype, fitness as a function of 
phenotype, and density-dependent fitness to link adaptation to population dynamics under 
environmental change. Such models can be used to identify at-risk populations, and to identify 
the factors that most strongly affect population responses to environmental change and potential 
resource management strategies to mitigate extinction risk.  
 
Realistic genetic models of variation in selected phenotypes are crucial for inferring evolutionary 
and demographic responses to selection. The expected phenotypic response per generation has 
long been known to be proportional to the selected trait’s heritability (h2, the proportion of 
phenotypic variance due to additive genetic effects). h2 is therefore a key genetic parameter for 
modelling evolutionary and demographic responses to environmental change (Chevin and Lande 
2010; Falconer and Mackay 1996; Gomulkiewicz and Holt 1995; Lynch and Lande 1993; 
Nadeau and Urban 2019; Urban et al. 2016). Population genetics theory shows that the genetic 
architecture of a trait (i.e., the number, distribution of effect sizes, and allele frequencies of the 
loci underlying h2) can strongly affect the temporal dynamics of h2 and set the limits of adaptive 
phenotype evolution (Chevalet 1994; Walsh and Lynch 2018).  
 
Polygenic traits (affected by many loci, each with a small effect) are expected to have higher 
evolutionary potential than traits with large-effect loci and the same initial h2. This is because h2 
and the rate of adaptation are expected to decline more rapidly during adaptation for traits with 
large-effect loci than when a selected trait is polygenic (Barton and Keightley 2002; Chevalet 
1994; Walsh and Lynch 2018). This makes the scope for potential adaptive phenotypic evolution 
generally larger for polygenic traits than for traits with the same initial h2 and large-effect loci. 
Populations with polygenic selected phenotypes may therefore be substantially more likely to 
adapt to new conditions, and to remain viable through environmentally-induced selection than 
when large-effect loci are responsible for much of the h2. Knowing the initial h2 of the selected 
trait, and using realistic models of the genetic basis of phenotypic variation may therefore be 
crucial to inferring biological responses to environmental change. However, most previous 
analyses of the response to environmental change either didn’t explicitly account for h2, or 
assumed that h2 was constant through bouts of selection (Bay et al. 2017; Bürger and Lynch 
1995; Chevin 2019; Gomulkiewicz and Holt 1995; Gomulkiewicz et al. 2010; Lande 1983; 
Lynch and Lande 1993; Nunney 2015; Pease et al. 1989). For example, Nunney (2015) and Bay 
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et al. (2017) did not account for h2 in their population genetic analyses of the effects of trait 
genetic architecture on popultion dynamics. Lande (1983), Gomulkiewicz et al. (2010), and 
Chevin (2019) assumed that the genetic variance contributed by loci with small effects remained 
constant through time. However, the selection response is expected to alter the genetic variance 
when locus effect sizes are greater than zero, and the resulting temporal variation in h2 can 
substantially affect the evolutionary response (Walsh and Lynch 2018).  
 
Omitting h2 or the effects of genetic architecture on temporal variation in h2 may result in 
unreliable inferences of evolutionary and demographic responses to environmental change. 
Recent studies show that many fitness-related traits are highly polygenic (Boyle et al. 2017). 
Assuming that h2 is constant through time despite adaptive evolution – consistent with the 
infinitesimal model of inheritance in a large population – may be reasonable in such cases. Many 
other traits, including some that are likely important for adaptation to climate change (Thompson 
et al. 2019), are governed by loci with very large phenotypic effects and a broad range of allele 
frequencies (Barson et al. 2015; Epstein et al. 2016; Jones et al. 2018; Kardos et al. 2015; 
Lamichhaney et al. 2016; Pearse et al. 2019; Thompson et al. 2019). This emerging picture of a 
large diversity in the genetic architecture of fitness traits, and the importance of genetic 
architecture to adaptive potential, suggest that including information on both the initial h2 and the 
underlying genetic architecture of the selected phenotype(s) might substantially improve our 
understanding and prediction of evolutionary and demographic responses to environmental 
change. 
 
The objective of this paper is to determine when the genetic architecture of a selected phenotype 
affects the viability of populations subjected to a shifting phenotypic optimum caused by 
environmental change. To address this, we developed deterministic evolutionary-demographic 
models, and stochastic, individual-based simulations that account for the initial h2 and the effects 
of the genetic architecture on temporal change of h2. 
 
METHODS 
A deterministic model of population responses to environmental change 
We first develop a deterministic, evolutionary-demographic model that builds upon previous 
approaches used to investigate evolutionary rescue (Chevin and Lande 2010; Gomulkiewicz and 
Holt 1995; Gomulkiewicz et al. 2010; Lande 1983; Lynch and Lande 1993). We use this model 
to determine expectations for phenotypic evolution and population growth under a range of 
simple genetic architectures with purely additive phenotypic effects, multiple unlinked loci with 
equal phenotypic effects, and no linkage disequilibrium, epistasis or plasticity. Further down we 
evaluate the effects of linkage disequilibrium, and varying phenotypic effects among loci in the 
analysis of this model.  
 
We model sexually reproducing, non-selfing, diploid populations that have discrete generations 
and follow a discrete logistic model of density-dependent population growth (May 1974). 
Individual fitness is a Gaussian function of a quantitative trait, with the fitness of an individual 
with phenotype value z being  
 

𝑊(𝑧) = 	𝑊!"#𝑒
$("#$)

&

&'& 	,                                (1) 
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where Wmax is the fitness (expected lifetime reproductive success) of an individual with optimum 
phenotype value 𝜃 when the population size N is very close to zero, and c2 defines the width of 
the fitness function. The population has an initial mean phenotype of 𝑧!0 equal to the initial 
phenotypic optimum 𝜃0. The selected phenotype is assumed to be normally distributed with 
additive genetic (VG) and random environmental (VE) variance components summing to the total 
phenotypic variance Vz (h2 = VG/Vz). The phenotype’s probability density function is 
 

𝑃(𝑧) = &
'"√)*

𝑒$
("#"()&

&)" ,                                   (2) 
 
where 𝑧! is the mean phenotype, and 𝜎𝑧 the phenotype standard deviation. 𝑧! is calculated as  
 
 
𝑧! =	𝜃0 +𝑛∑ 𝑓𝑖

′𝑔𝑖
3
𝑖=1 −𝐺!0,                            (3) 

 
where 𝑓𝑖

′  is the frequency of the ith of the three possible diploid genotypes, 𝑔𝑖 is the genetic value 
of the ith of the three possible genotypes, n is the number of diallelic loci affecting the trait, and 
𝐺!0 is the value of the second term (i.e., the mean additive genetic value among individuals in the 
population) in the first generation. 𝑔1 is calculated as 
 
𝑔1 = 𝑎𝜑,                                                       (4) 
 
where a is half the phenotypic difference between the two alternative homozygous genotypes, 
and 𝜑 is the number of copies of the allele that confers a larger phenotype (the A1 allele) in the 
ith of the three possible genotypes. The third term in (3) ensures that 𝑧!0 is exactly equal to 𝜃0, 
and is necessary because the focal allele at each locus increases the size of the phenotype (i.e., a 
in (4) is always positive). A sudden environmental change permanently shifts 𝜃 from its initial 
value 𝜃0 in the first generation to 𝜃1, thus imposing directional selection on the phenotype and an 
environmental challenge to population persistence.  
 
We assume that the A1 allele has the same initial frequency p0 at each locus. Further, the 
frequency of the A1 allele(s) is assumed to evolve identically at each of the n loci, such that p in 
generation t + 1 at each locus is 
 
𝑝𝑡+1 =

𝑝𝑡2𝑤, 11+𝑝𝑡(1−𝑝𝑡)𝑤,12
𝑤, 𝑡

,                               (5) 
 
where 𝑤! 11 and 𝑤! 12 represent the mean relative fitness of homozygous A1A1 genotypes, and 
heterozygous A1A2 genotypes, respectively, and 𝑤! 𝑡 is the mean individual fitness in generation 
t. Mean absolute individual fitness in the population is calculated by integrating over the product 
of the fitness and phenotype density functions: 
 
𝑊####= ∫𝑊(𝑧)𝑃(𝑧)	𝑑𝑧.                                     (6) 
 
The mean genotype-specific relative fitness (i.e., 𝑤! 11 or 𝑤! 12) is calculated as in (5) except with 
the variance (Vz) and mean (𝑧!) of the phenotype probability density function in (2) being 
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conditional on holding the genotype constant at a locus. The Vz conditional on holding the 
genotype constant at a locus is  
 
𝑉𝑧,𝐶 =	∑ 2𝑝(1− 𝑝)𝑎2 +𝑉𝐸𝑛−1

𝑖=1 .                   (7) 
 
The mean phenotype conditional on holding the genotype constant at a locus is 
 
𝑧!𝑔 =	𝜃0 +𝑔′+ (𝑛− 1) ∑ 𝑓𝑖

′𝑔𝑖
3
𝑖=1 −𝐺!0,       (8) 

 
where 𝑔′ is the genetic value of the single-locus genotype being held constant (i.e., 𝑔′ = 0 for 
genotype A2A2, 𝑔′ = a for A1A2, and 𝑔′ = 2a for A1A1).  
 
We calculate h2 each generation as   
 
ℎ2 = ∑ 2𝑝𝑖01−𝑝𝑖1𝑎2

𝑛
𝑖=1

𝑉𝑧
.                                      (9) 

 
Population size (N) in generation t + 1 is calculated following the discrete logistic model as  
 
𝑁𝑡+1 = 𝑁𝑡𝑒

5ln0𝑊((((𝑡161−
𝑁𝑡
𝐾 9:,                              (10) 

 
where K is the carrying capacity. We numerically iterated this model for 80 generations to 
evaluate the effects of the number of loci underlying h2 on the evolutionary and demographic 
responses to a sudden shift in the optimum phenotype due to an environmental change.  
 
We chose combinations of parameter values to test effects of the genetic architecture of a 
relatively highy heritable trait on population persistence under strong environmentally-induced 
selection (i.e., 	𝜃&	in the far right tail of the initial phenotype distribution, Figure 1). We first 
considered simple case where either 1 or 2 large-effect loci (large-effect architectures), or 100 
loci with small effects (polygenic architecture) contributed to VG. We set parameters values as 
maximum fitness Wmax = 1.5, initial heritability ℎ0

2 = 0.6, initial phenotype variance to VP = 10, 
initial mean phenotype 𝑧!0 = 100, initial optimum phenotype 𝜃0 = 100 (in arbitrary units), new 
optimum phenotype	𝜃1 = 110 (3.2 standard deviations from 𝜃0), width of the fitness function c = 
6, the initial population size 𝑁0 = 500, carrying capacity K = 1,000. Each of the n loci 
contributed equally to VG. The fitness function and the initial phenotype probability density 
distribution are shown in Figure 1. This combination of parameters yields an initial mean 
absolute fitness of  𝑊####= 	0.44 and threfore a rapid initial decline in population size. We 
considered a population extinct when N was < 2. Note that this model, and the models below, 
control for the initial evolvability (mean-scaled additive genetic variance) (Hansen et al. 2011) in 
addition to ℎ0

2. 
 
The strong effect of the initial frequency of large-effect alleles on the temporal dynamics of h2 

means it is crucial for the  p0 values to be biologically meaningful. Large-effect alleles occur 
across a wide range of frequencies in natural populations (Barson et al. 2015; Johnston et al. 
2013; Küpper et al. 2015; Thompson et al. 2019). For example, the GREB1L locus strongly 
affects seasonal timing of migration from the ocean to freshwater (ranging from Spring to Fall) 
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in Chinook salmon and steelhead (Thompson et al. 2019). The allele associated with earlier entry 
into fresh water occurred at frequencies ranging from 0.002 to 0.488 across three populations 
(Thompson et al. 2019). Several mechanisms, including balancing selection (e.g., net 
heterozygous advantage or spatial variation in phenotypic optima), gene flow among populations 
with different phenotypic optima, and directional selection associated with historical 
environmental change can lead to large-effect polymorphisms occurring across a wide range of 
allele frequencies (Barson et al. 2015; Johnston et al. 2013). We therefore consider a broad range 
of initial frequencies of the beneficial alleles in our analysis of this model (p0 = 0.1, 0.25, 0.5, 
0.75, or 0.9) at each of n loci that affect the selected trait. Evolutionary potential is determined 
by p0 in this scenario when ℎ0

2 is held constant (Walsh and Lynch 2018). Varying p0 while 
holding ℎ0

2 constant therefore allows us to evaluate the influence of evolutionary potential on 
population dynamics in this simplistic model. Note, however, that this analysis does not address 
historical factors that determine p0. Below we model initial allele frequencies as determined by 
historical mutation and selection in individual-based simulations.   
 
While this model is useful for understanding population responses to selection, it makes some 
assumptions that are unlikely to hold in natural populations (e.g., no selection-induced linkage 
disequilibrium [LD]). LD among loci affecting a selected phenotype could be substantial, and 
may affect the pace of adaptation when multiple loci are involved and locus-specific selection is 
strong (Barton and Turelli 1991). This model (and previous similar models) also assumes that the 
selected phenotype is normally distributed. However, strong selection and/or large-effect loci 
might skew the phenotype distribution away from normality (Barton and Turelli 1991). We 
therefore repeated the above analyses, this time implementing an explicit simulation-based 
model of genotype and the phenotype distributions for this model (details in Supplementary 
Materials). The simulated phenotypes were approximately normally distributed (Figure S1).  
 
A stochastic, individual-based simulation model of population responses to environmental 
change 
While deterministic models, such as the ones described above, are useful for understanding 
expected responses to selection, they do not incorporate the potentially important effects of 
evolutionary and demographic stochasticity on population responses to a changing environment. 
We therefore developed a stochastic, individual-based simulation model of evolution and 
population dynamics under environmentally-induced selection. This model simulates populations 
forward-in-time with density-dependent fitness and viability selection on a quantitative trait. The 
initial population size was set to N0 = 500 individuals, with a carrying capacity of K = 1,000 
individuals. Fitness was density-dependent and followed the discrete logistic model of 
population growth in eq. (10) above. Mates were paired at random, with no self-fertilization 
allowed. The number of offspring per breeding pair was Poisson distributed with a mean of 𝑛!𝑜 = 
4 offspring. Alleles were transferred from parent to offspring following Mendelian probabilities.  
 
Simulating the selected phenotype 
The selected phenotype had an initial variance of Vz = 10 and an initial heritability of ℎ0

2 = 0.6. 
Individual i’s phenotype was  
 
 
𝑧𝑖 =	𝜃0 + ∑ 𝜍𝑗𝑖	𝑎𝑗

𝑛
𝑗=1 +	ε𝑖−𝐺!0,                  (11) 
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where	𝜃G is the specified optimum (equal to the initial mean) phenotype in the first generation, 
𝐺!0 is the mean additive genetic value among individuals (i.e., the second term in [10]) in the first 
generation, 𝜍𝑗𝑖	 is individual i’s count of the allele conferring a larger phenotype at the jth of n 
loci, and aj is the phenotypic effect of the positively selected allele (i.e., the allele conferring a 
larger phenotype) at the jth locus, and the environmental effect 𝜀𝑖 is drawn at random from a 
normal distribution with mean = 0 and variance = VE. As in eqs. (3) and (8), the −�̅�G term in (11) 
ensures that the selected phenotype distribution is centered around 𝜃0 in the first generation. We 
simulated phenotypes as a function of 1, 2, or 100 loci, each with the same initial beneficial 
allele frequency p0, and effect size a (consistent with the deterministic models above). Each 
locus had additive phenotypic effects and there was no epistasis. 
 
Fitness as a function of phenotype 
Each population was subjected to viability selection on the simulated phenotype. The expected 
(deterministic) fitness (w) for each individual in generation t was calculated as in equation (1) 
above. The mean deterministic fitness in generation t (𝑊####𝑡), Nt, and K were applied to equation 
(10) to find the deterministic expected population size in generation t + 1 (Nexp,t+1, the total 
expected number of offspring left by generation t). The mean probability of surviving to 
breeding age among individuals in generation t was then calculated as  
 
𝑠# = 𝑁𝑒𝑥𝑝,𝑡+1

𝑁𝑡𝑛,𝑜
.                                                   (12) 

 
The number of individuals in generation t surviving to maturity was calculated as  
 
𝑁𝑠,𝑡 = ∑ 𝑟𝑖	𝑁𝑡

𝑖=1 '0			if	𝑅𝑖 >	𝑠#1			if	𝑅𝑖 ≤	𝑠#
,                        (13) 

 
where Ri is a number selected at random from a uniform distribution bounded by 0 and 1 (using 
the runif function in R). 𝑁𝑠,𝑡 individuals surviving to maturity in generation t are then selected at 
random from Nt individuals, with sampling weight w, such that individuals with z closer to 𝜃 are 
more likely to survive to maturity. We calculated the extinction rate each generation as the 
proportion of 500 replicate simulated populations with < 2 individuals remaining. A flow chart 
summarizing the structure of the individual-based simulation model is shown in Figure S2. 
 
Simulations of different life histories, heratibilities, and allele frequency distributions 
The simulations above assumed that all of the positively-selected alleles conferring a larger 
phenotype have the same p0 and equal phenotypic effects. A more realistic situation is likely 
where a selected phenotype is governed by both large- and small-effect loci across a wide range 
of initial allele frequencies. We therefore modified our individual-based simulation model to 
evaluate the effects of genetic architecture on population responses to selection when both large- 
and small-effect loci with a wide range of initial allele frequencies were present. The selected 
phenotype had an initial heritability of ℎ0

2 = 0.6.  
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We ran simulations with and without a single large-effect locus. For simulations with a large-
effect locus, we attributed 90% of the VG to the large-effect locus as 2pqa2 = 0.9VG. The 
remaining 10% of the VG was split evenly among the other 99 loci. For simulations without a 
large-effect locus, the VG was split evenly among all 100 loci. The residual phenotypic variance 
(VE) was attributed to random environmental differences among individuals (VE = Vz – VG; VG = 
h2Vz). The initial frequency of the positively selected, large-effect alleles was drawn at random 
from a uniform distribution ranging from 0.05 to 0.95. We set these p0 limits to avoid extremely 
large phenotypic effects (i.e., extreme values of a) at large-effect loci, while incorporating a 
broad range of large-effect allele frequencies as observed in natural populations (Barson et al. 
2015; Thompson et al. 2019). The p0 values at the small-effect loci were drawn at random from a 
beta distribution with parameters 𝛼 and 𝛽 each set to 0.5 which results in a typical U-shaped 
allele frequency distribution where most loci had the minor allele at low frequency (Kimura 
1984) [p. 147].  
 
We parameterized these simulations to approximately mimic two divergent life histories typical 
of large mammals (Mduma et al. 1999) (high survival and low fecundity) and free-living corals 
(Fadlallah 1983)(low survival and high fecundity) to determine if life history strategy affected 
the results. The maximum fitness (Wmax = the expected reproductive success of a perfectly 
adapted individual at very low population density) was Wmax = 1.5 for large mammals (mean 
number of offspring per breeding pair = 4, survival to maturity probability = 0.75), and Wmax = 
1.3 for corals (mean number of offspring per breeding pair = 26; survival to maturity probability 
= 0.1). Note that Wmax is equivalent to the geometric population growth rate (𝜆) for a perfectly 
adapted population with N very near zero. We assumed N0 = 500 and K = 1,000, and N0 = 10,000 
and K = 20,000 for simulations of approximate large mammal and coral life histories, 
respectively. We initially ran 1,000 coral and large mammal simulation repetitions (500 with a 
large-effect locus, and 500 with a polygenic trait architecture) to evaluate the effects of genetic 
architecture on the population responses to selection associated with the shifted phenotypic 
optimum. We ran 1,500 additional simulations with a large-effect locus and 99 small-effect loci 
affecting the selected phenotype to determine how p0 of a large-effect locus affected population 
dynamics. 
 
We varied the parameter values of our individual-based simulations using a large mammal life 
history to test whether our findings hold across a range of other scenarios. For example, the size 
of the shift in 𝜃 (particularly with reference to the width of the fitness function [c]) is a key 
parameter as it determines the effect of an environmental change on fitness. Our main analyses 
considered an sudden increase in 𝜃 of 10 units (Figure 1), such that the new optimum phenotype 
was in the far right tail of the initial phenoytpe distribution and elicited a substantial decrease in 
fitness (see Results). We added a scenarios where 𝜃 shifted by only 5 and 7.5 units to test the 
effect of trait genetic architecture on population dynamics associated with weaker selection 
arising from smaller changes in the optimum phenotype. We also accounted for potential effects 
of variation in other parameters by simulating lower and higher initial heritability of the selected 
trait (ℎ0

2=0.4 and 0.8), gene flow from a population where 𝜃 was held constant at 𝜃0, weaker 
effects at large-effect loci (i.e., the large-effect locus being responsible for 50% and 70% of VG), 
a stochastic linear temporal increase in 𝜃 (Lynch and Lande 1993)(instead of a sudden shift as 
above), selection with linked loci (on 10 chromosome pairs), and plasticity in the selected 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 27, 2020. ; https://doi.org/10.1101/660803doi: bioRxiv preprint 

https://doi.org/10.1101/660803


 9 

phenotype. The methodological details of these simulation scenarios are described in the 
Supplementary Materials.  
 
Lastly, we developed another individual-based simulation model that explicitly accounts for 
effects of historical factors on the allele frequency distribution at the onset of environmental 
change and subsequent responses to selection. These simulations used a long burnin period (≥
1,000 generations) to allow the VG to reach approximate mutation-drift-selection equilibrium 
before shifting the phenotypic optimum. The details of this model are described in the 
Supplementary Materials. 
 
Effects of the short term selection limit on population dynamics 
Effects of genetic architecture on responses to environmental change may be driven largely by 
variation in the potential for populations to evolve rapidly. To test this, we defined a short term 
selection limit (𝐿) and quantified its relationship to population viability in our individual-based 
simulations with different genetic architectures underlying the selected phenotype. We defined 𝐿 
as the expected adaptive change in the mean phenotypic (𝑧!) over t generations, assuming that the 
difference between 𝑧! and the phenotypic optimum (𝜃) is constant through time (i.e., an increase 
in 𝑧! over a generation results an equivalent increase in 𝜃), and that natural selection is the only 
driver of phenotypic evolution. 𝐿 therefore measures the potential of a population to evolve in 
response to selection over the short term under the idealistic conditions of consistently strong 
selection and no genetic drift. 
 
We used numerical methods to calculate the initial 𝐿 at the beginning of each simulation 
repetition (L0) in the scenarios with a large mammal life history and no mutation. We first used 
equations 4-7 to calculate the expected change in the allele frequencies and mean phenotype over 
the first t = 10 generations under the conditions outlined above. We chose t = 10 generations 
because most simulated populations that persisted began increasing in size by the tenth 
generation (see Results). L0 was then calculated as the difference between the predicted mean 
phenotype at t = 10 generations and the mean phenotype at the beginning of the simulation.  
 
We used regression analysis to measure the relationship between L0 and population viability. The 
glm function with a logit link function in R was used to fit generlized linear models (GLMs) with 
population persistence as the reponse (coded as 0 for extinct populations, and 1 for populations 
that persisted for 80 generations) and L0 was the predictor. We fitted separate GLMs for the 500 
simulations with a large-effect locus, and for the 500 simulations with a polygenic selected trait 
in each simulation scenario. The odds ratios from the GLMs were used to measure the size of the 
effect of L0 on population viability. We also analyzed the data from all simulation scenarios 
(both with and without large-effect loci) combined in a single GLM to evaluate the influence of 
L0 on population persistence across all of the analyzed scenarios and genetic architectures. 
Finally, we quantified the temporal dynamics in L across the first 30 generations in each 
simulation scenario to determine how the potential for rapid evolution changed throughout the 
selection response under different genetic architectures.    
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Statistical analysis of extinction rate 
We constructed 95% percentile bootstrap confidence intervals (Efron and Tibshirani 1994) for 
the proportion of extinct populations in each simulated scenario. First, we randomly resampled 𝜂 
simulated data sets 1,000 times, with replacement, from the 𝜂 original simulation repetitions. For 
each of the 1,000 bootstrap samples, we calculated the proportion of the 𝜂 resampled populations 
that were extinct (N < 2 individuals) in each of the 80 generations. We constructed the 95% 
bootstrap confidence intervals for the extinction rate for each of the 80 generations as the 2.5% 
and 97.5% quantiles from the bootstrap distributions.   
 
R packages implementing the deterministic and stochastic models, and R scripts for the 
simulations, statistical analyses, and figures are available in Supplementary File 2. 
 
RESULTS  
 
Deterministic predictions of evolutionary and demographic responses to environmental 
change 
Results from our deterministic model suggest that the genetic architecture underlying the h2 of a 
selected trait strongly affects the evolutionary and demographic responses to a sudden 
environmentally-induced shift in the phenotypic imum 𝜃. First, phenotypic evolution and 
population growth after the onset of selection were highly dependent on the initial frequency p0 

of large-effect alleles, but relatively insensitive to p0 when many small-effect loci were involved 
(Figure 2). Populations with already-frequent large-effect benficial alleles did not have enough 
evolutionary potential to remain viable. For example, populations with a single large-effect locus 
and p0 ≥ 0.5 all went extinct before 30 generations as they were unable to approach the new 
phenotypic optimum. However, population size N eventually approached carrying capacity K in 
populations with p0 < 0.5. The time to reach 𝑁 ≈ 𝐾	was approximately 25 generations longer 
when there was a single large-effect locus and p0 = 0.25 compared to p0 = 0.1 (Figure 2A). With 
2 large-effect loci, the expected time to reach 𝑁 ≈ 𝐾 was nearly identical for p0 = 0.1 and p0 = 
0.25. Populations with 2 large-effect loci recovered slowly with p0 = 0.5, and went extinct by 20 
generations with p0 > 0.5 (Figure 2B).  
 
The rate of adaptation and recovery of population size was much less affected by p0 when the 
selected trait was polygenic, with the phenotype approaching the new phenotypic optimum 𝜃1, 
and N approaching K for all values of p0 (Figure 2C). Results from analyses of this model with 
initial heritability ℎ0

2 = 0.4 and  ℎ0
2 = 0.8 were qualitatively equivalent to the results presented 

here (Figures S3, S4). Repeating these analyses with simulated phenotypes to account for 
selection-induced LD and any deviation from the assumed normal phenotype distribution did not 
substantively affect the results (Supplementary Materials, Figure S5). 
 
Stochastic, individual-based simulations of evolutionary and demographic responses 
environmental change 
Similar to the deterministic results, our individual-based simulations show that the lowest initial 
positively-selected, large-effect allele frequency (p0 = 0.1) conferred substantially increased 
adaptation, demographic recovery, and a lower extinction rate compared to beneficial, large-
effect alleles with higher p0 (Figure 3A, 3B). The phenotypic response to selection was larger 
over the long run for the polygenic architecture than with large effec loci for all p0. This led to 
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the polygenic architecture conferring lower extinction rate and larger N on average compared to 
the large-effect genetic architectures for all p0 values except p0 = 0.1, in which case the large-
effect loci resulted in faster adaptive phenotypic evolution and population size recovery from 
selection (along with lower extinction rates) compared to the polygenic architecture. Repeating 
these individual-based simulations with ℎ0

2 = 0.4 and ℎ0
2 = 0.8 generated results that agreed 

qualitatively with those presented here (ℎ0
2 = 0.6) (Figures S6-S9). 

 
 
Simulations of different life histories and allele frequency distributions 
Results from our simulations of populations with variable p0 are similar to the simpler models 
presented above, with the very large-effect alleles conferring lower adaption, smaller population 
sizes, and a higher extinction rate on average than when the selected trait was polygenic (Figure 
4). Many populations with an already-frequent large-effect allele were unable to reach the new 
phenotypic optimum. Note though that some populations where the large-effect beneficial allele 
was initially rare overshot the phenotypic optimum. Populations with a polygenic selected trait 
more closely matched the new phenotypic optimum on average compared to the populations with 
a large-effect locus (Figure 4). The extinction rate at generation 80 was 2.0 times higher with the 
large-effect locus (64% extinction rate) compared to the polygenic architecture (32% extinction 
rate) in simulations assuming a large mammal life history. Similarly, the extinction rate was 2.7 
times higher among populations with a large-effect locus (72% extinction rate) compared to the 
polygenic architecture (27% extinction rate) in simulations assuming a free living coral-like life 
history. 
 
These simulation results further suggest that p0 at large-effect loci strongly affects population 
dynamics (Figure 5). The average final population sizes were highest for both life histories when 
p0 was ~0.1-0.2. The lower average population growth with p0 < 0.1 is likely caused by rare, 
positively-selected alleles frequently being lost to genetic drift as the populations initially 
declined rapidly due to selection. The weaker evolutionary and demographic response in 
populations with already-frequent, large-effect beneficial alleles (Figure 4) resulted in lower 
population growth rates and eventual extinction in a large fraction of populations with p0 > 0.2. 
Strikingly, all of the populations with a coral life history and p0 > 0.5 went extinct by generation 
80.  
 
Polygenic architectures conferred higher population viability on average compared to when 
large-effect loci were present for all of the alternative simulation scenarios: lower and higher 
initial heritability than above, gene flow from a population with a stationary phenotypic 
optimum, linked loci, weaker effect sizes at large-effect loci, a stochastic linear temporal 
increase in 𝜃, phenotypic plasticity, a smaller shift in 𝜃 (from 100 to 107.5), and with mutation 
and historical stabilizing selection (Supplementary Materials; Figures S6-S17). However, the 
increased evolutionary and demographic responses to selection associated with polygenic 
architecture was smaller when there was immigration from a population with a stationary 𝜃 
(Figures S10 & S11), when the large-effect loci contributed a smaller fraction of the genetic 
variance VG (Figure S12), and when the environmentally-induced shift in the optimum phenotype 
was smaller (see detailed results in Supplementary Materials). For example, the extinction rate at 
80 generations was only 1.53 times higher with a large effect locus than for the polygenic 
architecture (compared to a 2-fold difference in the simulations of closed populations above) 
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when there were 4 immigrants per generation from a population with a stationary phenotypic 
optimum (Supplementary Materials, Figure S9; similar results for 8 immigrants/generation are 
shown in Figure S10). The extinction rate among populations with a large-effect locus explaining 
only 50% of h2 was only 1.28 times higher than with a polygenic architecture (Supplementary 
Materials, Figure S12). For populations with a smaller shift in the phenotypic optimum (𝜃0 =
100 and 𝜃1 = 107.5), the extinction rate was 8.6% in the populations with a large effect locus 
explaining 90% of the VG, and only 0.5% among populations with a polygenic selected 
phenotype (Figure S16). Less than 1% of all populations went extinct when the phenotypic 
optimum shifted from 𝜃0 = 100	to 𝜃1 = 105 (Figure S16). 
 
Effects of the short term selection limit on population dynamics 
Population viability (i.e., persistence versus extinction) was statistically significantly associated 
with the initial short term selection limit L0 (P < 0.05) in seven out of the eight simulation 
scenarios with a large effect locus (Figures 6, S19-S26, Table S1). The only scenario with a 
large-effect locus where population viability was not statistically significantly associated with L0 
was when the selected phenotype was strongly plastic (plasticity parameter m = 0.4, Figure S26) 
where the extinction rate was only 3%. The odds ratios from the GLMs of population persistence 
versus L0 in scenarios with a large effect locus ranged from 1.19 when there was a sudden shift 
in 𝜃, no plasticity, and a major locus responsible for 50% of VG, to 2.94 when there was a sudden 
shift in 𝜃, no plasticity, and a major locus responsible for 90% of VG (Table S1). This translates 
to a 19% to 294% increase in the odds of population persistance per unit increase in L0.  
 
Population persistence was not statistically significantly associated with L0 (P < 0.05) in any 
scenario where the selected phenotype was polygenic (Table S2). The odds ratios from GLMs 
from simulations with a polygenic trait were centered around one, ranging from 0.85 to 1.25 
(Table S2). The only scenario with a large-effect locus that had an odds ratio similar to its 
polygenic counterpart was when the the large-effect locus was responsible for 50% of the VG 
(Figure S27, Tables S1 & S2).  
 
Consistent with results from individual simualtion scenarios, population viability was not 
statistically significantly associated with L0 when analyzing simulations from all scenarios with a 
polygenic selected trait combined (P = 0.65, odds ratio = 1.03). However, population persistence 
was statistically significantly associated with L0 in our analysis of all simualtion scenarios 
combined with a large-effect locus combined (P < 2x10-16, odds ratio = 1.38). The GLM of 
population viability versus L0 across all simulated scenarios (i.e., all simulations with polygenic 
and major locus trait architectures combined) was statistically significant (P < 2x10-16) with an 
odds ratio of 1.25, meaning that a one unit increase in L0 was associated with a 25% increase in 
the odds of population persistance (Figure S27).  
 
Polygenic trait architectures conferred larger short term selection limit L than genetic 
architectures with large-effect loci, both at the onset of selection and subsequently through the 
first 30 generations (Figures S19-S26; Figure 6). The average L0 across 500 simulation replicates 
was approximately 𝐿0( = 12 in all simulation scenarios with a polygenic selected trait. 𝐿0(  ranged 
from 5.21 to 5.36 among simulations with a large-effect locus responsible for 90% of the VG. 
However, the 𝐿0(  was condiserably higher for simulations where the large-effect locus was 
responsible for 70% of the VG (𝐿0(  = 7.5), and 50% of the VG (𝐿0( = 9.2) (Figures S20 & S21).  
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DISCUSSION 
The results from the wide range of analyses above suggest that the genetic architecture 
underlying the h2 of a selected trait can strongly affect population viability during environmental 
change. Understanding of the effects of environmental change on population viability will be 
advanced by accounting for the strong effects of trait genetic architecture on evolutionary and 
population dynamics. Polygenic architectures on average conferred higher evolutionary 
potential, more consistent evolutionary responses to selection, and increased population viability 
compared to when the selected trait was governed by large-effect loci. When loci with large 
phenotypic effects are present, the initial frequency of large-effect beneficial alleles can strongly 
affect population responses to selection. Large-effect loci appear to confer adaptation and 
demographic recovery that is similar or higher than with polygenic architectures only when the 
positively selected alleles are initially infrequent (Figure 4). Additionally, while predicting how 
wild populations will respond to ongoing rapid environmental change remains challenging, the 
models and results presented here can inform future theoretical and empirical efforts to 
understand eco-evolutionary dynamics and the extent of the ongoing extinction crisis. 
 
The influence of genetic architecture on variation in population responses to environmental 
change will depend on how often fitness traits have loci with large enough effects to reduce h2 
during bouts of adaptation. Recent results from several taxa, including mammals (Barson et al. 
2015; Epstein et al. 2016; Jones et al. 2018; Kardos et al. 2015), salmonids (Barson et al. 2015; 
Pearse et al. 2019; Thompson et al. 2019), and birds (Lamichhaney et al. 2015; Lamichhaney et 
al. 2016) suggest that very large-effect alleles often influence fitness-related traits in wild 
populations. Interestingly, seemingly complex fitness-related traits that are often assumed to be 
polygenic, such as horn size (a sexually-selected, condition-dependent trait) (Johnston et al. 
2013), migration timing (Thompson et al. 2019), propensity to migrate (Pearse et al. 2019), and 
age at maturity (Barson et al. 2015), have in some cases turned out to be driven almost entirely 
by variation at individual loci. It is therefore crucial to quantify the effect sizes and allele 
frequencies at loci with large effects when they are present in systems where future eco-
evolutionary dynamics are of interest (Funk et al. 2018; Yang et al. 2014).  
 
It can be difficult to predict or measure the frequency of alleles with large beneficial effects 
under rapid environmental change. For example, large-effect alleles for traits subjected to 
historical balancing selection, are likely to be at intermediate frequencies (Llaurens et al. 2017). 
Recent large-effect mutations are likely to be found at low frequencies. Previously neutral or 
nearly-neutral alleles that affect fitness in new conditions are likely to be found across the entire 
spectrum of allele frequencies. Fortunately, increasingly efficient DNA sequencing and 
improving approaches for conducting genotype-phenotype association analysis provide the tools 
necessary to estimate h2, and to identify large-effect loci (and to estimate their allele frequencies) 
where they exist. 
 
Why do polygenic architectures usually confer increased population viability compared to 
genetic architectures including large-effect loci? This pattern arises in part from a slower and less 
variable decline in h2 during adaptation for polygenic traits than for traits with large-effect loci 
(Figures S3-S6, S8). The rapid decline in h2 when beneficial alleles with large effects are already 
common, and the frequent loss of initially rare large-effect alleles means that there is a narrow 
window of p0 where traits with large-effect architectures are likely to evolve in response to 
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selection as fast or faster than polygenic traits. Holding the initial heritability constant, the 
potential for adaptive phenotypic change is considerably smaller when large-effect loci are 
present compared to a polygenic architecture (Walsh and Lynch 2018)(Figure 6). It appears that 
large effect loci often do not confer enough adaptive potential over the short term to accomodate 
large, rapid shifts in phenotypic optima. Additionally, evolutionary and demographic responses 
to selection appear to be more stochastic in populations with large-effect loci (Figure 4). This 
suggests that reliably predicting population responses to selection will be more difficult when 
large-effect loci are present, particularly when the initial large-effect allele frequency is not 
known precisely. These results highlight the importance of identifying large-effect loci where 
they exist, and using information on their effect-sizes and allele frequencies along with ℎ0

2 in 
models predicting demographic responses to environmental change. Predictions of population 
responses to selection are likely to be misleading if they do not account for the strong effects of 
genetic architecture on the temporal dynamics of h2 and adaptation.  
 
Understanding how populations will respond to environmental change is both challenging and 
vitally important in conservation and evolutionary ecology (Urban et al. 2016). Reliable 
predictions of how biodiversity will respond to large-scale environmental change are necessary 
to efficiently prioritize scarce conservation resources and to develop effective conservation 
strategies. Improved understanding of vulnerability to environmental change could also advance 
strategies to conserve vital natural and agricultural resources (Aitken and Whitlock 2013; 
Flanagan et al. 2018; Funk et al. 2018), for example by identifying populations and species to 
prioritize for conservation action. However, there are substantial obstacles to reliably predicting 
responses to selection. The complex and interacting effects of environmental stochasticity, 
genotype-by-environment interactions, phenotypic plasticity, pleiotropy, dominance interactions, 
gene flow, simultaneous selection on correlated traits, and changing community structure (i.e., 
species interactions) can all strongly affect adaptation and population dynamics, but are also 
difficult to measure and to forecast into the future. Consequently, reliable predictions of 
population responses to environmental change in the wild will  be difficult to achieve, even in 
well-studied systems where the heritability, genetic architecture, and fitness effects of the 
relevant phenotype(s) are known. We therefore encourage caution when attempting to predict 
eco-evolutionary dynamics under climate change and other human-driven environmental 
changes. 
 
While recognizing the difficulties involved, our results suggest that integrating genomic, 
classical quantitative genetic, and population viability analyses (e.g., applying the modelling 
approaches used here) is likely the most promising way forward to increased understanding the 
impacts of human-driven environmental change on population dynamics and extinction. 
Predictions of evolutionary and demographic responses to selection based only on trait loci 
detetected with genomic analyses will often be unreliable because a substantial fraction of 
phenotypic variation will frequently be explained by many undetected loci with small effects 
(Shaw 2019). We also argue that predictions based solely on classical quantatitive genetics 
approaches (Shaw 2019) will also frequently perform poorly because the selection response with 
large effect loci deviates strongly from expectations arising from the infinitesimal model of 
inheritance. Integrating genomic information (i.e., the genetic basis of phenotypic variation) into 
quantitiative genetic analysis will almost certainly improve predictions of  responses to selection. 
Incorporating such ‘genomically-informed’ quantitative genetic approaches into population 
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projection models has the potential to improve understanding of the impact of environmental 
change on population dynamics and extinction. 
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FIGURES 
 

 
Figure 1. Fitness function and the phenotype distribution and at the onset of selection in our 
determinstic model. The phenotype probability density distribuition is shown in red (left vertical 
axis). The vertical dashed line shows the initial mean phenothype 𝑧G̅. The gray dashed line 
represents the Gaussian fitness function with standard deviation c = 6 (right vertical axis).  The 
vertical dotted line shows the new optimum phenotype 𝜃. Integrating over the product of the 
phenotype and fitness functions [see eq. (6)] yields the mean intrinsic fitness (𝑊V ) in the 
population (i.e., ignoring effects of population density).  
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Figure 2. Deterministic predictions of population size (N, top row), trait heritability (h2, middle 
row), and mean phenotype (bottom row) through time in density-regulated populations with a 
single large-effect locus (A), two large-effect loci (B), and 100 small-effect loci (C) affecting a 
quantitative trait under selection after a sudden environmental change. Initial population size was 
N = 500 with carrying capacity of K = 1,000, and the initial heritability was ℎ0

2  = 0.6 in all cases. 
The optimum phenotype shifted from 𝜃0=100  to 𝜃1=110 in the first generation. Line types 
indicate the initial frequencies of the positively selected allele(s) conferring a larger phenotype, 
as indicated in the legend. 
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Figure 3. Individual-based simulations of evolutionary and population dynamics in density-
regulated populations with a single large-effect locus (A), two large-effect loci (B), and 100 
small-effect loci (C) affecting a quantitative trait under selection after a sudden environmental 
change. The optimum phenotype shifted from 𝜃0=100  to 𝜃1=110 in the first generation. 
Initial population size was N0 = 500, and capacity was K = 1,000. The initial heritability was ℎ0

2 
= 0.6 in all cases. Line types indicate the initial frequency of the positively selected allele(s) 
conferring a larger phenotype as indicated in the legend.  
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Figure 4. Effects of genetic architecture on phenotypic evolution and population dynamics in 
closed populations with life histories approximating large mammals (A), and corals (B). Results 
are shown in blue for populations with a large-effect locus, and in orange for populations where 
the selected trait was polygenic. The phenotypic optimum permanently shifted from its initial 
value 𝜃0 = 100  to 𝜃1 = 110 in generation one. The initial heritability was ℎ0

2  = 0.6. Thin lines 
show the population size (top row) and mean phenotype (middle row) through time. Thick lines 
show the mean population size and phenotype across all 500 repetitions. The bottom panels show 
the proportion of extinct populations through time, with percentile bootstrap 95% confidence 
intervals. 
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Figure 5. Effects of the initial large-effect allele frequency (p0) on final population size in 
simulations with approximate large mammal (A) and coral (B) life histories. The y-axis 
represents the final population size at generation 80 (N80), and the x-axis shows the large-effect 
allele p0.  The solid lines represent the mean N80 across 2,000 simulation repetitions in non-
overlapping p0 windows of width 0.05. Dashed lines are 95% percentile bootstrap confidence 
intervals for mean N80. 
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Figure 6. Temporal dynamics of the sort term selection limit (L) (A) and the relationship 
between population persistence (0 = extinct; 1 = population persisted) and the initial short term 
selection limit (L0) (B). The data are shown from all simulation scenarios where there was a 
large-effect locus (blue) and where the selected trait was polygenic (orange) combined. The thick 
dark lines in A represent the mean across all 4,000 individual simulation repetitions. The black 
lines in B are fitted logistic regression lines.   
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Effects of gene flow on the influence of genetic architecture on population viability 
Previous work suggests that selection with gene flow can favor the evolution of genetic 
architectures that have large-effect loci1. The presence of large-effect loci may therefore confer 
more robust evolutionary and demographic responses to selection when there is gene flow from 
populations with a different phenotypic optimum. We ran simulations equivalent to our 
individual-based simulations with a large mammal-like life history in the main text, except with 
immigration (either 4 or 8 immigrants / generation) from a population where the phenotypic 
optimum remained at 100 instead of shifting to 110 in the first generation.  
 
The polygenic trait architecture conferred higher population viability in populations with 
immigration from a population with a different phenotypic optimum. The extinction rate was 
55% among populations with a polygenic architecture, and 76% in populations with a large-
effect locus when the immigration rate was four individuals per generation (Figure S10). With a 
higher immigration rate (8 individuals per generation), the extinction rate was 48% among 
populations with the polygenic architecture, and 74% in populations with a large-effect locus 
(Figure S11).  
 
Effects of major locus effect sizes on population viability 
We then evaluated the influence of the major locus effect sizes on evolutionary and demographic 
responses to selection. We ran our simulations of large mammals with the large-effect locus 
responsible for 50%, 70% and 90% of ℎG) and compared the results to simulations where the 
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selected trait was polygenic. In all cases, the responses to selection were stronger for the 
polygenic architecture than when there was a large-effect locus. The extinction rates were 1.28, 
1.84, and 2.01 times higher with large-effect loci responsible for 50%, 70%, and 90% of ℎG), 
respectively, than for the polygenic architecture (extinction rate = 0.32, Figure S12).  
 
Effects of genetic architecture on population viability with a temporally increasing and 
stochastic phenotypic optimum value 
Our analyses in the main text of the paper focused on the simple scenario where selection is 
induced by a sudden and permanent environmental change. However, some environmental 
change is often stochastic and spread out over long periods of time. We therefore used our 
individual-based simulation model with a large mammal-like life history to evaluate the effects 
of genetic architecture on population dynamics under this type of environmental change. We ran 
simulations equivalent to those shown in Figure 4A in the main text, except here the phenotypic 
optimum increased linearly with time (from 100 to 110) over the first x generations, with an error 
term to incorporate temporal stochasticity. The phenotypic optimum value for generation t was 
calculated as 
 
 

𝜃J = W𝜃G +
J
K
(𝜃LMK − 𝜃G) + 	𝜀										if	𝑡 < 𝑥																																												

𝜃LMK + 𝜀																																						if	𝑡	 ≥ 𝑥																																											
            (S1) 

 
 
where 𝜃G is the initial phenotypic optimum, 𝜃LMK is the final deterministic phenotypic optimum 
value, and 𝜀 is normally distributed with mean of zero and standard deviation of 2. We ran 500 
simulation replicates with x = 10 generations, and also with x = 20 generations. The results are 
shown below in Figure S13, and were qualitatively equivalent to those presented in Figure 4A in 
the main text. 
 
Effects of genetic architecture on population viability with linked loci 
Our analyses in the main text assumed that loci were unlinked. Linkage disequilibrium arising 
from having linked fitness-related loci can affect the response to selection2. We therefore ran 
simulations equivalent to those shown in Figure 4A, except here we placed the selected loci 
randomly across 10 chromosomes, each with a genetic length of 50 cM and physical length of 
100 Mb, randomly selected crossover locations, and a Poisson distributed number of crossovers 
per meiosis. The results are shown in Figure S14 below, and were nearly identical to those in 
Figure 4A. 
 
Effects of the genetic architecture on population viability with phenotypic plasticity 
A previous theoretical population genetic model suggested that loci with large effects may 
provide higher adaptive potential and population viability when the selected phenotype is 
plastic3. We therefore tested effects of genetic architecture in the presence of phenotypic 
plasticity. We used a model of plasticity similar to that of Nunney3. We modified equation (11) 
from the main text to incorporate a linear effect of the optimal phenotype on the realized 
phenotype as  
 
𝑧1 =	𝜃G +∑ 𝑐N1	𝑎NO

NP& + 	𝑚^𝜃J − _𝜃G − �̅�G + ∑ 𝑐N1	𝑎NO
NP& `a	−�̅�G + 	ε1,            (S2)       
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where m is the rate change in expected phenotype per unit difference between the optimal 
phenotype and individual i’s expected phenotype in the absence of plasticity. The plasticity 
model is shown with examples in Figure S18 below. We ran 500 simulation replicates equivalent 
to those described above (where there is a stochastic and linear increase in 𝜃 with time [x = 10]) 
except here we considered values of m = 0.1, 0.2, and 0.4. The results from these simulations are 
consistent with the results above and in the main text (e.g., Figure 4). The polygenic architecture 
on average conferred higher population sizes and a lower extinction rate than when there was a 
large-effect locus in simulations with m = 0.1, and m = 0.2 (Figure S15). The extinction rate was 
<0.05 for both genetic architectures when phenotypic plasticity was strong (m = 0.4).  
 
Simulations with mutation and historical stabilizing selection 
The individual-based simulations above made simplifying assumptions regarding the allele 
frequency distribution at the onset of environmentally-induced selection. To account for effects 
of historical selection on the allele frequency distribution, we ran simulations with a burnin 
period where alleles affecting the selected trait arose by mutation, and then evolved by genetic 
drift and stabilizing selection on the quantitative trait prior to an environmentally-induced change 
in 𝜃 that challenged population persistence. These simulations assumed the large mammal life 
history described in the main text, and began with constant population size of N0 = 500, 
phenotypic variance due only to environmental effects (Ve = 4), and no alleles segregating at loci 
that affect the trait. We used the stochastic house-of-cards model (Bürger and Lande 1994; 
Turelli 1984) to parameterize the mutation rate giving rise to the polygenic part of the VG 
(VG,poly). We drew the effect sizes of new mutations from a flat distribution [following Bürger & 
Lande (1994)] ranging from 𝛼 = -0.5 to 𝛼 = 0.5. The necessary mutation rate was calculated as 
 

𝜇 =
QA,BCDER&S'F&

GH
'&I)J

T

Uℕ'F&WH
,                                       (S3) 

 
where 𝜎X) is the variance of the flat distribution from which 𝛼 values were drawn, ℕ = 1 × 10Y 
is the number of unlinked nucleotides where mutations can occur (Bürger and Lande 1994)and c 
= 6 as in the analyses above.  
 
We ran 500 simulations with large-effect mutations as follows. The polygenic mutation rate was 
set to 𝜇 = 9.35 × 10$Z after setting 𝑉𝐺,𝑝𝑜𝑙𝑦 in (13) to 0.6 (10% off the eventual VG). A single 
large effect mutation with effect size 𝛼 was drawn randomly from a flat distribution ranging 
from 𝛼 = 3 to 𝛼 = 8 was introduced in every generation when there was no large effect allele 
already in the population. This range of 𝛼 values was chosen as populations with 𝛼 > 8 almost 
always went extinct. The phenotypic optimum was initially set to 𝜃0 = 0, and held constant for 
1,000 generations to allow the 𝑉𝐺,𝑝𝑜𝑙𝑦 to reach approximate selection-drift-mutation equilibrum 
before the onset of density-dependent population growth. We set up the simulations so that half 
of the repetitions would have a large effect, beneficial allele at relatively low frequency (p0 < 
0.5), and half would have a relatively high frequency (p0 > 0.5) at the onset of density-dependent 
population growth and the environmentally-induced challenge to population persistence. To 
achieve this, we introduced an historical shift in the phenotypic optimum to allow an initially 
rare, large effect, beneficial allele to become relatively frequent before the onset of density 
dependent population growth (as seen in many natural populations, e.g., (Barson et al. 2015; 
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Jones et al. 2018; Thompson et al. 2019)). Specifically, 𝜃0 was shifted to 𝜃1	in generation 1,001. 
We set 𝜃1 = 6 in the 250 simulations with a desired p0 < 0.5, and 𝜃1 = 12 for the 250 
simulations with desired p0 > 0.5 (large historical shifts in 𝜃 result in greater change in allele 
freuquency). We initiated density-dependent population growth and increased 𝜃	by 10 units 
relative to the current population mean phenotype (for consistency with individual-based 
simulations described in prevsious sections) when the large effect allele was in the correct allele 
frequency range (i.e., p < 0.5 or p > 0.5), and h2 was between 0.55 and 0.65 to control the h2 at 
the onset of density-dependent population growth and for consistency with the previous 
individual-based simulations above. No mutations were allowed after the onset of density-
dependent population growth in order to focus on evolutionary and population dynamics arising 
from standing genetic variation. 
 
We then ran 1,000 additional simulations where the VG was due entirely to polygenic mutation 
(𝜇 = 7.35 × 10$^), such that ℎ2 ≈ 0.6 at the onset of density-dependent population growth. 
Here, the simulations ran for 1,200 generations with 𝜃0 = 0, and constant population size to 
allow the VG to reach approximate mutation-drift-selection equilibrium. We initiated density-
dependent population growth and increased 𝜃	by 10 units relative to the current population mean 
phenotype in generation 1,201 (consisten with the simulations above with large-effect loci). We 
retained only 500 simulation repetitions where the realized ℎ2 was between 0.55 and 0.65 so that 
these simulations with a polygenic trait architecture were similar to the mutation-based 
simulations with large effect loci in terms of the h2 at the onset of the environmentally-induced 
challenge to population persistence. We analyzed the output from the mutation-based simulations 
as for the individual-based simulations described in main text. the results from these simulations 
are shown in Figure S17.  
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SUPPLEMENTARY FIGURES 
 

 
Figure S1. Distribution of simulated phenotypes. The simulated phenotype distributions are 
shown for three initial allele frequencies (p0 = 0.1, 0.25, 0.5), and three numbers of loci 
contributing to the selected phenotype (n = 1, 2, and 100 loci). Each panel shows the distribution 
of 50,000 simulated phenotypes. 
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Fig. S2. Flowchart of the sequence of events in the simulation model. Details of each step in the 
simulation procedure are described in detail above in the Material and Methods.  
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Figure S3. Deterministic predictions of evolutionary and demographic responses to directional 
selection in density-regulated populations with a single large-effect locus (A), two large-effect 
loci (B), and 100 small-effect loci (C) affecting a quantitative trait under directional selection 
after a sudden environmental change. The initial heritability was h2 = 0.4 in all cases. Line types 
indicate the initial frequencies of the positively selected allele(s) conferring a larger phenotype. 
Initial population size was K/2.  
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Figure S4. Deterministic predictions of evolutionary and demographic responses to directional 
selection in density-regulated populations with a single large-effect locus (A), two large-effect 
loci (B), and 100 small-effect loci (C) affecting a quantitative trait under directional selection 
after a sudden environmental change. The initial heritability was h2 = 0.8 in all cases. Line types 
indicate the initial frequencies of the positively selected allele(s) conferring a larger phenotype. 
Initial population size was K/2.  
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Figure S5. Evolutionary and demographic responses to a sudden change in the phenotypic 
optimum in density-regulated populations with a single large-effect locus (A), two large-effect 
loci (B), and 100 small-effect loci (C) affecting a quantitative trait under directional selection 
after a sudden environmental change. The lines in the first, second, and third rows show the 
mean population size, heritability, and mean phenotype across all 500 simulation repetitions 
versus time in generations.  The initial heritability was h2 = 0.6 in all cases. We varied the initial 
frequencies of the positively selected alleles conferring a larger phenotype from 0.1 to 0.9. Initial 
population size was N0 = 500, and carrying capacity was K= 1,000 in all simulations. The lines 
show the mean of each parameter across 500 simulation repetitions. The mean h2 and phenotype 
values shown were calculated across all populations with sizes > N = 0 each generation. The 
model used here is identical to that used to produce the data shown in Figure 1 in the main text, 
except here we simulated the distributions of individual genotypes and phenotypes to account for 
any selection-induced linkage disequilibrium and deviations from the normality in the 
phenotypic distribution. Specifically, each generation we simulated the genotypes, phenotypes, 
and mating among 50,000 pseudo individuals. The genotypes in the first generation were 
initialized using the assumed p0. The phenotypes were simulated following the individual-based 
quantitative genetic model described in the main text. Offspring were assigned parents using 
weighted sampling (with the sample function in R), with the weights assigned based on 
phenotype using equation (1) in the main text. Population size in year t + 1 (Nt+1) was determined 
with equation (10) in the main text, with 𝑤VJ replaced with the mean fitness among the 50,000 
pseudo individuals in year t. This approach allowed us to precisely determine the expected 
distribution of individual fitness while accounting for any selection-induced linkage 
disequilibrium and non-normality in the phenotype distribution. 
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Figure S6. Individual-based simulations of evolutionary and demographic responses to 
directional selection in density-regulated populations with a single large-effect locus (A), two 
large-effect loci (B), and 100 small-effect loci (C) affecting a quantitative trait under directional 
selection after a sudden environmental change. The initial heritability was ℎG) = 0.4 in all cases. 
Line types indicate the initial frequencies of the positively selected allele(s) conferring a larger 
phenotype. Initial population size was N0 = 500, and varying capacity was K = 1,000. The 
extinction rates from these simulations are shown in Figure S6. The lines in the first, second, and 
third rows show the mean population size, heritability, and mean phenotype across all 500 
simulation repetitions versus time in generations.   
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Figure S7. Extinction rates in density-regulated populations with a single large-effect locus (A), 
two large-effect loci (B), and 100 small-effect loci (C) affecting a quantitative trait under 
directional selection after a sudden environmental change. The initial heritability was ℎG) = 0.4 in 
all cases. Line types indicate the initial frequencies of the positively selected allele(s) conferring 
a larger phenotype. Initial population size was N0 = 500, and varying capacity was K = 1,000.  
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Figure S8. Individual-based simulations of evolutionary and demographic responses to 
directional selection in density-regulated populations with a single large-effect locus (A), two 
large-effect loci (B), and 100 small-effect loci (C) affecting a quantitative trait under directional 
selection after a sudden environmental change. The lines in the first, second, and third rows show 
the mean population size, heritability, and mean phenotype across all 500 simulation repetitions 
versus time in generations.  The initial heritability was ℎG) = 0.8 in all cases. Line types indicate 
the initial frequencies of the positively selected allele(s) conferring a larger phenotype. Initial 
population size was N0 = 500, and varying capacity was K = 1,000. The extinction rates from 
these simulations are shown in Figure S8. 
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Figure S9. Extinction rates in density-regulated populations with a single large-effect locus (A), 
two large-effect loci (B), and 100 small-effect loci (C) affecting a quantitative trait under 
directional selection after a sudden environmental change. The initial heritability was ℎG) = 0.8 in 
all cases. Line types indicate the initial frequencies of the positively selected allele(s) conferring 
a larger phenotype. Initial population size was N0 = 500, and varying capacity was K = 1,000.  
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Figure S10. Effects of genetic architecture on phenotypic evolution and population dynamics in 
populations with an approximate large mammal life history and a low immigration rate (4 
immigrants per generation) from a population with a constant phenotypic optimum of size = 100. 
Results from populations with a large-effect locus are shown in blue; populations where the 
selected trait was polygenic are in orange. Thin lines show the population size (top row) and 
mean phenotype (middle row) through time. Thick lines show the mean population size and 
phenotype across all 500 repetitions. The bottom panels show the proportion of extinct 
populations through time, with bootstrap 95% confidence intervals. 
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Figure S11. Effects of genetic architecture on phenotypic evolution and population dynamics in 
populations with an approximate large mammal life history and a high immigration rate (8 
immigrants per generation) from a population with a constant phenotypic optimum of size = 100. 
Results from populations with a large-effect locus are shown in blue; populations where the 
selected trait was polygenic are in orange. Thin lines show the population size (top row) and 
mean phenotype (middle row) through time. Thick lines show the mean population size and 
phenotype across all 500 repetitions. The bottom panels show the proportion of extinct 
populations through time, with bootstrap 95% confidence intervals. 
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Figure S12. Effects of the effect size of large-effect loci on population dynamics.  
The results are from simulations parameterized as in our simulations shown in Figure 3A, except 
here we varied the proportion of the genetic variance attributed to the large effect locus. Results 
from populations where a major locus was responsible for 90% (green), 70% (red), 50% (blue) 
of the additive genetic variance (VG). Orange lines show results from populations where there 
selected trait was polygenic (no large-effect locus). The bottom panel shows the proportion of 
extinct populations though time.  
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Figure S13. Effects of genetic architecture on phenotypic evolution and population dynamics in 
populations with a large mammal-like life history and with a stochastic linear increase in the 
optimum phenotype value with time. We ran simulations where the expected optimum 
phenotype increased linearly from 100 to 110 in either 10 (A) or 20 (B) generatiosn. Results 
from populations with a large-effect locus are shown in blue; populations where the selected trait 
was polygenic are in orange. Thin lines show the population size (top row) and mean phenotype 
(middle row) through time. Thick lines show the mean population size and phenotype across all 
500 repetitions. The bottom panels show the proportion of extinct populations through time, with 
bootstrap 95% confidence intervals. 
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Figure S14. Effects of genetic architecture on phenotypic evolution and population dynamics 
with linkage in closed populations with a life history approximating large mammals. Results 
from populations with a large-effect locus are shown in blue; populations where the selected trait 
was polygenic are in orange. Thin lines show the population size (top row) and mean phenotype 
(middle row) through time. Thick lines show the mean population size across all simulation 
replicates. The bottom panels show the proportion of extinct populations through time, with 
bootstrap 95% confidence intervals. 
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Figure S15. Effects of genetic architecture on phenotypic evolution and population dynamics in 
populations with life history approximating large mammals and plasticity in the selected 
phenotype. Results are shown form simulations with the strength of selection set to m = 0.1 (A), 
m = 0.2 (B), m = 0.4 (C). Results from populations with a large-effect locus are shown in blue; 
populations where the selected trait was polygenic are in orange. Thin lines show the population 
size (top row) and mean phenotype (middle row) through time. Thick lines show the mean 
population size across all simulation replicates. The bottom panels show the proportion of extinct 
populations through time, with bootstrap 95% confidence intervals. 
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Figure S16. Effects of genetic architecture on phenotypic evolution and population dynamics in 
populations with life history approximating large mammals and plasticity in the selected 
phenotype. Results are shown form simulations equivalent to those shown in Figure 4 in the 
main text, except here the phenotypic optimum 𝜃 shifted from 100 to either 105 (A) or 107.5 (B) 
instead of to 110. Results from populations with a large-effect locus are shown in blue; 
populations where the selected trait was polygenic are in orange. Thin lines show the population 
size (top row) and mean phenotype (middle row) through time. Thick lines show the mean 
population size across all simulation replicates. The bottom panels show the proportion of extinct 
populations through time, with bootstrap 95% confidence intervals. 
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Figure S17. Effects of genetic architecture on phenotypic evolution and population dynamics in 
populations with life histories approximating large mammals and plasticity in the selected 
phenotype. Results are shown from simulations with a long burn and mutation to allow the 
genetic variance to reach approximate equilibrium. Results from populations with a large-effect 
locus are shown in gray; populations where the selected trait was polygenic are in dark red. Thin 
lines show the population size (top panel) and mean phenotype (middle panel) through time for 
each of 500 simulation repetitions. Thick lines show the mean population size and phenotype 
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across all simulation replicates. The bottom panel shows the proportion of extinct populations 
through time, with bootstrap 95% bootstrap confidence intervals. 
 

 
Figure S18. Model of plasticity shown as the individual phenotype plotted against the optimum 
phenotype. The dashed black line represents the case where individual phenotype equals the 
optimum phenotype. The expected phenotypes (i.e., ignoring random environmental effects) are 
shown for two individuals with breeding values of 102 and 107. The blue lines show the 
expected phenotypes with plasticity parameter m = 0.2, and the orange lines show the expected 
phenotypes with m = 0.5.   
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Figure S19. Temporal dynamics of the selection limit (L)(A), and the relationship between population viability 
and the selection limit at the beginning of the simulations (L0) (B). Results are shown for simulated populations with 
a major locus responsible for 90% of VG (top row, blue lines), and where the selected trait was polygenic (bottom 
row, orange lines). The black lines in B are fitted logistic regression lines. 
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Figure S20. Temporal dynamics of the selection limit (L)(A), and the relationship between population viability 
and the selection limit at the beginning of the simulations (L0) (B). Results are shown for simulated populations with 
a major locus responsible for 70% of VG (top row, blue lines), and where the selected trait was polygenic (bottom 
row, orange lines). The black lines in B are fitted logistic regression lines. 
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Figure S21. Temporal dynamics of the selection limit (L)(A), and the relationship between population viability 
and the selection limit at the beginning of the simulations (L0) (B). Results are shown for simulated populations with 
a major locus responsible for 50% of VG (top row, blue lines), and where the selected trait was polygenic (bottom 
row, orange lines). The black lines in B are fitted logistic regression lines. 
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Figure S22. Temporal dynamics of the selection limit (L)(A), and the relationship between population viability 
and the selection limit at the beginning of the simulations (L0) (B). Results are shown for simulated populations with 
a major locus responsible for 90% of VG (top row, blue lines), and where the selected trait was polygenic (bottom 
row, orange lines). The optimum phenotype in these simulations shifted from 100 to 110 over the first 20 
generations. The black lines in B are fitted logistic regression lines. 
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Figure S23. Temporal dynamics of the selection limit (L)(A), and the relationship between population viability 
and the selection limit at the beginning of the simulations (L0) (B). Results are shown for simulated populations with 
a major locus responsible for 90% of VG (top row, blue lines), and where the selected trait was polygenic (bottom 
row, orange lines). The optimum phenotype in these simulations shifted from 100 to 110 over the first 10 
generations. The black lines in B are fitted logistic regression lines. 
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Figure S24. Temporal dynamics of the selection limit (L)(A), and the relationship between population viability 
and the selection limit at the beginning of the simulations (L0) (B). Results are shown for simulated populations with 
a major locus responsible for 90% of VG (top row, blue lines), and where the selected trait was polygenic (bottom 
row, orange lines). The optimum phenotype in these simulations shifted from 100 to 110 over the first 10 
generations, and the selected phenotype was plastic with plasticity parameter m = 0.1 as described in the main text. 
The black lines in B are fitted logistic regression lines. 
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Figure S25. Temporal dynamics of the selection limit (L)(A), and the relationship between population viability 
and the selection limit at the beginning of the simulations (L0) (B). Results are shown for simulated populations with 
a major locus responsible for 90% of VG (top row, blue lines), and where the selected trait was polygenic (bottom 
row, orange lines). The optimum phenotype in these simulations shifted from 100 to 110 over the first 10 
generations, and the selected phenotype was plastic with plasticity parameter m = 0.2 as described in the main text. 
The black lines in B are fitted logistic regression lines. 
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Figure S26. Temporal dynamics of the selection limit (L)(A), and the relationship between population viability 
and the selection limit at the beginning of the simulations (L0) (B). Results are shown for simulated populations with 
a major locus responsible for 90% of VG (top row, blue lines), and where the selected trait was polygenic (bottom 
row, orange lines). The optimum phenotype in these simulations shifted from 100 to 110 over the first 10 
generations, and the selected phenotype was plastic with plasticity parameter m = 0.4 as described in the main text. 
The black lines in B are fitted logistic regression lines. 
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Figure S27. Odds ratios from logistic regressions of population persistence versus the short term 
selection limit (L0) for simulations where the selected trait was polygenic (y-axis), and 
simulation scenarios with a large-effect locus (x-axis). The dashed line has an intercept and a 
slope of 1. Points below the line represent instances where the odds ratios from analysis of the 
polygenic scenario are smaller than the odds ratios from simulations with a large effect locus but 
were identical otherwise.  
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Figure S28. Population persistence (1 = population persisted to 80 generations, 0 = population 
went extinct within 80 generations) versus the initial short term selection limit (L0). The fitted 
logistic regression line is shown in black.  
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Table S1. Logistic regression results from analyses of population persistence as a function of the 
initial short term selection limit (L0) for simulations where the selected trait was governed in part 
by a large-effect locus. The data shown are the scenario that is being analyzed (scenario), the 
Figures where the simulation results are shown (Associated Figure(s)), the P-value from the 
regression analysis (P) and the associated regression coefficient estimate (b), and the odds ratio 
from the logistic regression model.  

Scenario Associated Figure(s) P b 
Odds Ratio 
(exp(b)) 

VQTL/VG = 0.9 3, S11 2.2x10-29 1.08 2.943 
VQTL/VG = 0.7 S11 3.6x10-15 0.612 1.845 
VQTL/VG = 0.5 S11 0.002 0.175 1.191 
20 generations to 
theta1 S13A 1.8x10-16 0.586 1.797 
10 generations to 
theta1 S13B 1.8x10-23 0.816 2.261 
plasticity (m = 0.1) S16A 1.7x10-21 0.77 2.159 
plasticity (m = 0.2) S16B 2.9x10-20 0.851 2.342 
plasticity (m = 0.4) S16C 0.219 0.23 1.259 

 
 
 
Table S2. Logistic regression results from analyses of population persistence as a function of the 
initial short term selection limit (L0) for simulations with a polygenic selected trait. The data 
shown are the scenario that is being analyzed (scenario), the Figures where the simulation results 
are shown (Associated Figure(s)), the P-value from the regression analysis (P) and the associated 
regression coefficient estimate (b), and the odds ratio from the logistic regression model.  

Scenario* Associated Figure(s) P b 
Odds Ratio 
(exp(b)) 

Polygenic 3, S11 0.058 0.22 1.25 
20 generations to theta1 S13A 0.61 -0.06 0.94 
10 generations to theta1 S13B 0.48 -0.09 0.91 
plasticity (m = 0.1) S16A 0.82 0.03 1.03 
plasticity (m = 0.2) S16B 0.39 0.16 1.17 
plasticity (m = 0.4) S16C 0.65 -0.16 0.85 
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