
 1 

The genetic architecture of fitness drives population viability during rapid 
environmental change 

Marty Kardos* 

Flathead Lake Biological Station 
Division of Biological Sciences 

University of Montana 

 
Northwest Fisheries Science Center  
National Marine Fisheries Service 

National Oceanic and Atmospheric Administration, 
Seattle, WA, USA 

martin.kardos@noaa.gov 
 

Gordon Luikart 
Flathead Lake Biological Station 
Division of Biological Sciences 

University of Montana 

gordon.luikart@mso.umt.edu 
 

 
*Correspondence to martin.kardos@noaa.gov 
The authors wish to be identified to the reviewers. 
 
Keywords: Adaptation, adaptive potential, conservation genomics, extinction, natural selection, 
climate change, population dynamics, eco-evolutionary dynamics, biodiversity loss, polygenic 
traits 
 
ABSTRACT 
The rapid global loss of biodiversity calls for improved predictions of how populations will 
evolve and respond demographically to ongoing environmental change. The heritability (h2) of 
selected traits has long been known to affect evolutionary and demographic responses to 
environmental change. However, effects of the genetic architecture underlying the h2 of a 
selected trait on population responses to selection are less well understood. We use deterministic 
models and stochastic simulations to show that the genetic architecture underlying h2 can 
dramatically affect population viability during environmental change. Polygenic trait 
architectures (many loci, each with a small phenotypic effect) conferred higher population 
viability than genetic architectures with the same initial h2 and large-effect loci under a wide 
range of scenarios. Population viability also depended strongly on the initial frequency of large-
effect beneficial alleles, with moderately low initial allele frequencies conferring higher viability 
than rare or already-frequent large-effect alleles. Greater population viability associated with 
polygenic architectures appears to be due to higher short term evolutionary potential compared to 
architectures with large-effect loci. These results suggest that integrating information on the trait 
genetic architecture into quantitiative genetic and population viability analysis will substantially 
improve our understanding and prediction of evolutionary and demographic responses following 
environmental change. 
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INTRODUCTION 
One of the most urgent undertakings for science is to understand how biodiversity will respond 
to human-driven environmental change (Mills et al. 2018; Nadeau and Urban 2019; Stockwell et 
al. 2003; Urban et al. 2016; Wilson 2016). Populations can persist through environmental change 
either by shifting their geographic distributions to track suitable habitats, or by adapting to 
changing local conditions (Pease et al. 1989). Predicting how populations will evolve and 
respond demographically to selection imposed by environmental change (e.g., global warming) 
is a difficult task, but crucial to understanding and mitigating the ongoing extinction crisis 
(Alberto et al. 2013; Chevin and Lande 2010; Funk et al. 2018; Shaw 2019; Stockwell et al. 
2003; Urban et al. 2016). 
 
This need has motivated several theoretical and simulation-based analyses of evolutionary and 
demographic responses to selection induced by environmental change (Bay et al. 2017; 
Gomulkiewicz et al. 2010; Lynch et al. 1991; Nunney 2015; Pease et al. 1989). These studies 
generally combined models of the genetic basis of a selected phenotype, fitness as a function of 
phenotype, and density-dependent fitness to link adaptation to population dynamics under 
environmental change. Such models can be used to identify at-risk populations, and to identify 
the factors that most strongly affect population responses to environmental change and potential 
resource management strategies to mitigate extinction risk.  
 
Realistic genetic models of variation in selected phenotypes are crucial for inferring evolutionary 
and demographic responses to selection. The expected phenotypic response per generation has 
long been known to be proportional to the selected trait’s heritability (h2, the proportion of 
phenotypic variance due to additive genetic effects). h2 is therefore a key genetic parameter for 
modelling evolutionary and demographic responses to environmental change (Chevin and Lande 
2010; Falconer and Mackay 1996; Gomulkiewicz and Holt 1995; Lynch and Lande 1993; 
Nadeau and Urban 2019; Urban et al. 2016). Population genetics theory shows that the genetic 
architecture of a trait (i.e., the number, distribution of effect sizes, and allele frequencies of the 
loci underlying h2) can strongly affect the temporal dynamics of h2 and set the limits of adaptive 
phenotype evolution (Chevalet 1994; Walsh and Lynch 2018).  
 
Polygenic traits (affected by many loci, each with a small effect) are expected to have higher 
evolutionary potential than traits with large-effect loci and the same initial h2. This is because h2 
and the rate of adaptation are expected to decline more rapidly during adaptation for traits with 
large-effect loci than when a selected trait is polygenic (Barton and Keightley 2002; Chevalet 
1994; Walsh and Lynch 2018). This makes the scope for potential adaptive phenotypic evolution 
generally larger for polygenic traits than for traits with the same initial h2 and large-effect loci. 
Populations with polygenic selected phenotypes may therefore be substantially more likely to 
adapt to new conditions, and to remain viable through environmentally-induced selection than 
when large-effect loci are responsible for much of the h2. Knowing the initial h2 of the selected 
trait, and using realistic models of the genetic basis of phenotypic variation could hence be 
crucial to inferring biological responses to environmental change. However, most previous 
analyses of the response to environmental change either didn’t measure h2, or assumed that h2 
was constant during bouts of selection (Bay et al. 2017; Bürger and Lynch 1995; Chevin 2019; 
Gomulkiewicz and Holt 1995; Gomulkiewicz et al. 2010; Lande 1983; Lynch and Lande 1993; 
Nunney 2015; Pease et al. 1989). For example, Nunney (2015) and Bay et al. (2017) did not 
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account for h2 in their population genetic analyses of the effects of trait genetic architecture on 
popultion dynamics. Lande (1983), Gomulkiewicz et al. (2010), and Chevin (2019) assumed that 
the genetic variance contributed by loci with small effects remained constant through time. 
However, the selection response is expected to alter the genetic variance, and the resulting 
temporal variation in h2 can substantially affect the evolutionary response (Walsh and Lynch 
2018).  
 
Omitting h2 or the effects of genetic architecture on temporal variation in h2 may result in 
unreliable inferences of evolutionary and demographic responses to environmental change. 
Recent studies show that many fitness-related traits are highly polygenic (Boyle et al. 2017). 
Assuming that h2 is constant through time despite adaptive evolution – consistent with the 
infinitesimal model of inheritance in a large population – may be reasonable in such cases. Many 
other traits, including some that are likely important for adaptation to climate change (Thompson 
et al. 2019), are governed by loci with very large phenotypic effects and a broad range of allele 
frequencies (Barson et al. 2015; Epstein et al. 2016; Jones et al. 2018; Kardos et al. 2015; 
Lamichhaney et al. 2016; Pearse et al. 2019; Thompson et al. 2019). This emerging picture of a 
large diversity in the genetic architecture of fitness traits, and the importance of genetic 
architecture to adaptive potential, suggests that including information on both the initial h2 and 
the underlying genetic architecture of the selected phenotype(s) might substantially improve our 
understanding and prediction of evolutionary and demographic responses to environmental 
change. 
 
The objective of this paper is to determine when the genetic architecture of a selected phenotype 
affects the viability of populations subjected to a shifting phenotypic optimum caused by 
environmental change. To address this, we developed deterministic evolutionary-demographic 
models, and stochastic, individual-based simulations that account for the initial h2 and the effects 
of the genetic architecture on temporal change of h2. 
 
METHODS 
A deterministic model of population responses to environmental change 
We first develop a deterministic, evolutionary-demographic model that builds upon previous 
approaches used to investigate evolutionary rescue (Chevin and Lande 2010; Gomulkiewicz and 
Holt 1995; Gomulkiewicz et al. 2010; Lande 1983; Lynch and Lande 1993). We use this model 
to determine expectations for phenotypic evolution and population growth under a range of 
simple genetic architectures with purely additive phenotypic effects, multiple unlinked loci with 
equal phenotypic effects, and no linkage disequilibrium, epistasis or plasticity. Further down we 
evaluate the effects of linkage disequilibrium, and varying phenotypic effects among loci in the 
analysis of this model.  
 
We model sexually reproducing, non-selfing, diploid populations that have discrete generations 
and follow a discrete logistic model of density-dependent population growth (May 1974). 
Individual fitness is a Gaussian function of a quantitative trait, with the fitness of an individual 
with phenotype value z being  
 

𝑊(𝑧) = 	𝑊!"#𝑒
$("#$)

&

&'& 	,                                (1) 
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where Wmax is the fitness (expected lifetime reproductive success) of an individual with optimum 
phenotype value 𝜃 when the population size N is very close to zero, and c2 defines the width of 
the fitness function. The population has an initial mean phenotype of 𝑧!0 equal to the initial 
phenotypic optimum 𝜃0. The selected phenotype is assumed to be normally distributed with 
additive genetic (VG) and random environmental (VE) variance components summing to the total 
phenotypic variance Vz (h2 = VG/Vz). The phenotype’s probability density function is 
 

𝑃(𝑧) = &
'"√)*

𝑒$
("#"()&

&)" ,                                   (2) 
 
where 𝑧! is the mean phenotype, and 𝜎𝑧 the phenotype standard deviation. 𝑧! is calculated as  
 
 
𝑧! =	𝜃0 +𝑛∑ 𝑓𝑖

′𝑔𝑖
3
𝑖=1 −𝐺!0,                            (3) 

 
where 𝑓𝑖

′  is the frequency of the ith of the three possible genotypes per di-allelic locus, 𝑔𝑖 is the 
genetic value of the ith of the three possible genotypes per locus, n is the number of diallelic loci 
affecting the trait, and 𝐺!0 is the value of the second term (i.e., the mean additive genetic value 
among individuals in the population) in the first generation. 𝑔1 is calculated as 
 
𝑔1 = 𝑎𝜑,                                                       (4) 
 
where a is half the phenotypic difference between the two alternative homozygous genotypes, 
and 𝜑 is the number of copies of the allele that confers a larger phenotype (the A1 allele) in the 
ith of the three possible genotypes. The third term in (3) ensures that 𝑧!0 is exactly equal to 𝜃0, 
and is necessary because the focal allele at each locus increases the size of the phenotype (i.e., a 
in (4) is always positive). A sudden environmental change permanently shifts 𝜃 from its initial 
value 𝜃0 in the first generation to 𝜃1, thus imposing directional selection on the phenotype and an 
environmental challenge to population persistence.  
 
We assume that the A1 allele has the same initial frequency p0 at each locus. Further, the 
frequency of the A1 allele(s) is assumed to evolve identically at each of the n loci, such that p in 
generation t + 1 at each locus is 
 
𝑝𝑡+1 =

𝑝𝑡2𝑤, 11,𝑡+𝑝𝑡(1−𝑝𝑡)𝑤, 12,𝑡
𝑤, 𝑡

,                               (5) 
 
where 𝑤! 11,t and 𝑤! 12,t represent the mean relative fitness of homozygous A1A1 genotypes, and 
heterozygous A1A2 genotypes in generation t, respectively, and 𝑤! 𝑡 is the mean individual fitness 
in generation t. Mean absolute individual fitness in the population is calculated by integrating 
over the product of the fitness and phenotype density functions: 
 
𝑊####= ∫𝑊(𝑧)𝑃(𝑧)	𝑑𝑧.                                     (6) 
 
The mean genotype-specific relative fitness (i.e., 𝑤! 11 or 𝑤! 12) is calculated as in (5) except with 
the variance (Vz) and mean (𝑧!) of the phenotype probability density function in (2) being 
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conditional on holding the genotype constant at a locus. The Vz conditional on holding the 
genotype constant at a locus is  
 
𝑉𝑧,𝐶 =	∑ 2𝑝(1− 𝑝)𝑎2 +𝑉𝐸𝑛−1

𝑖=1 .                   (7) 
 
The mean phenotype conditional on holding the genotype constant at a locus is 
 
𝑧!𝑔 =	𝜃0 +𝑔′+ (𝑛− 1) ∑ 𝑓𝑖

′𝑔𝑖
3
𝑖=1 −𝐺!0,       (8) 

 
where 𝑔′ is the genetic value of the single-locus genotype being held constant (i.e., 𝑔′ = 0 for 
genotype A2A2, 𝑔′ = a for A1A2, and 𝑔′ = 2a for A1A1).  
 
We calculate h2 each generation as   
 
ℎ2 = ∑ 2𝑝𝑖11−𝑝𝑖2𝑎2

𝑛
𝑖=1

𝑉𝑧
.                                      (9) 

 
Population size (N) in generation t + 1 is calculated following the discrete logistic model as  
 
𝑁𝑡+1 = 𝑁𝑡𝑒

6ln1𝑊((((𝑡271−
𝑁𝑡
𝐾 :;,                              (10) 

 
where K is the carrying capacity. We numerically iterated this model for 80 generations to 
evaluate the effects of the number of loci underlying h2 on the evolutionary and demographic 
responses to a sudden shift in the optimum phenotype due to an environmental change.  
 
We chose combinations of parameter values to test effects of the genetic architecture of a 
relatively highly heritable trait on population persistence under strong environmentally-induced 
selection (i.e., 	𝜃&	in the far right tail of the initial phenotype distribution, Figure 1). We first 
considered the simple case where either 1 or 2 large-effect loci (large-effect architectures), or 
100 loci with small effects (polygenic architecture) contributed to VG. We set parameters values 
as maximum fitness Wmax = 1.5, initial heritability ℎ0

2 = 0.6, initial phenotype variance to VP = 
10, initial mean phenotype 𝑧!0 = 100, initial optimum phenotype 𝜃0 = 100 (in arbitrary units), 
new optimum phenotype	𝜃1 = 110 (3.2 standard deviations from 𝜃0), width of the fitness 
function c = 6, the initial population size 𝑁0 = 500, carrying capacity K = 1,000. Each of the 
small-effect loci contributed equally to VG. The fitness function and the initial phenotype 
probability density distribution are shown in Figure 1. This combination of parameters yields an 
initial mean absolute fitness of  𝑊####= 	0.44 and threfore a rapid initial decline in population size. 
We considered a population extinct when N was < 2. Note that this model, and the models below, 
control for the initial evolvability (mean-scaled additive genetic variance) (Hansen et al. 2011) in 
addition to ℎ0

2. 
 
The strong effect of the initial frequency of large-effect alleles on the temporal dynamics of h2 

means it is crucial for the  p0 values to be biologically meaningful. Large-effect alleles occur 
across a wide range of frequencies in natural populations (Barson et al. 2015; Johnston et al. 
2013; Küpper et al. 2015; Thompson et al. 2019). For example, the GREB1L locus strongly 
affects seasonal timing of migration from the ocean to freshwater (ranging from Spring to Fall) 
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in Chinook salmon and steelhead (Thompson et al. 2019). The allele associated with earlier entry 
into fresh water occurred at frequencies ranging from 0.002 to 0.488 across three populations 
(Thompson et al. 2019). Several mechanisms, including balancing selection (e.g., net 
heterozygous advantage or spatial variation in phenotypic optima), gene flow among populations 
with different phenotypic optima, and directional selection associated with historical 
environmental change can lead to large-effect polymorphisms occurring across a wide range of 
allele frequencies (Barson et al. 2015; Johnston et al. 2013). We therefore consider a broad range 
of initial frequencies of common beneficial alleles in our analysis of this model (p0 = 0.1, 0.25, 
0.5, 0.75, or 0.9) at each of n loci that affect the selected trait. Evolutionary potential is 
determined by p0 in this scenario when ℎ0

2 is held constant (Walsh and Lynch 2018). Varying p0 

while holding ℎ0
2 constant therefore allows us to evaluate the influence of evolutionary potential 

on population dynamics in this simplistic model. Note, however, that this analysis does not 
address historical factors that determine p0. Below we model initial allele frequencies as 
determined by historical mutation and selection in individual-based simulations.   
 
While this model is useful for understanding population responses to selection, it makes some 
assumptions that are unlikely to hold in natural populations (e.g., no selection-induced linkage 
disequilibrium [LD]). LD among loci affecting a selected phenotype could be substantial, and 
may affect the pace of adaptation when multiple loci are involved and locus-specific selection is 
strong (Barton and Turelli 1991). This model (and previous similar models) also assumes that the 
selected phenotype is normally distributed. However, strong selection and/or large-effect loci 
might skew the phenotype distribution away from normality (Barton and Turelli 1991). We 
therefore repeated the above analyses, this time implementing an explicit simulation-based 
model of genotype and the phenotype distributions for this model (details in Supplementary 
Materials). The simulated phenotypes were approximately normally distributed (Figure S1).  
 
A stochastic, individual-based simulation model of population responses to environmental 
change 
While deterministic models, such as the ones described above, are useful for understanding 
expected responses to selection, they do not incorporate the potentially important effects of 
evolutionary and demographic stochasticity on population responses to a changing environment. 
We therefore developed a stochastic, individual-based simulation model of evolution and 
population dynamics under environmentally-induced selection. This model simulates populations 
forward-in-time with density-dependent fitness and viability selection on a quantitative trait. The 
initial population size was set to N0 = 500 individuals, with a carrying capacity of K = 1,000 
individuals. Fitness was density-dependent and followed the discrete logistic model of 
population growth in eq. (10) above. Mates were paired at random, with no self-fertilization 
allowed. The number of offspring per breeding pair was Poisson distributed (i.e., assuming 
randomly distributed fecundity among breeding pairs) with an arbitraily assigned mean and 
variance of 4 offspring. Alleles were transferred from parent to offspring following Mendelian 
probabilities.  
 
Simulating the selected phenotype 
The selected phenotype had an initial variance of Vz = 10 and an initial heritability of ℎ0

2 = 0.6. 
Individual i’s phenotype was  
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𝑧𝑖 =	𝜃0 + ∑ 𝜍𝑗𝑖	𝑎𝑗

𝑛
𝑗=1 +	ε𝑖−𝐺!0,                  (11) 

 
where	𝜃F is the specified optimum (equal to the initial mean) phenotype in the first generation, 
𝐺!0 is the mean additive genetic value among individuals (i.e., the second term in [10]) in the first 
generation, 𝜍𝑗𝑖	 is individual i’s count of the allele conferring a larger phenotype at the jth of n 
loci, and aj is the phenotypic effect of the positively selected allele (i.e., the allele conferring a 
larger phenotype) at the jth locus, and the environmental effect 𝜀𝑖 is drawn at random from a 
normal distribution with mean = 0 and variance = VE. As in eqs. (3) and (8), the −𝐺̅F term in (11) 
ensures that the selected phenotype distribution is centered around 𝜃0 in the first generation. We 
simulated phenotypes as a function of 1 or 2 large-effect loci or 100 small-effect loci, each with 
the same initial beneficial allele frequency p0, and effect size a (consistent with the deterministic 
models above). Each locus had additive phenotypic effects and there was no epistasis. 
 
Fitness as a function of phenotype 
Each population was subjected to viability selection on the simulated phenotype. The expected 
(deterministic) fitness (w) for each individual in generation t was calculated as in equation (1) 
above. The mean deterministic fitness in generation t (𝑊####𝑡), Nt, and K were applied to equation 
(10) to find the deterministic expected population size in generation t + 1 (Nexp,t+1, the total 
expected number of offspring left by generation t). The mean probability of surviving to 
breeding age among individuals in generation t was then calculated as  
 
𝑠# = 𝑁𝑒𝑥𝑝,𝑡+1

𝑁𝑡𝑛,𝑜
.                                                   (12) 

 
The number of individuals in generation t surviving to maturity was calculated as  
 
𝑁𝑠,𝑡 = ∑ 𝑟𝑖	𝑁𝑡

𝑖=1 '0			if	𝑟𝑖 >	𝑠#1			if	𝑟𝑖 ≤	𝑠#
,                        (13) 

 
where Ri is a number selected at random from a uniform distribution bounded by 0 and 1 (using 
the runif function in R). This is equivalent to a random draw from binomial distribution with 
parameters Nt and 𝑠#. 𝑁𝑠,𝑡 individuals surviving to maturity in generation t are then selected at 
random from Nt individuals, with sampling weight w, such that individuals with z closer to 𝜃 are 
more likely to survive to maturity. We calculated the extinction rate each generation as the 
proportion of 500 replicate simulated populations with < 2 individuals remaining. A flow chart 
summarizing the structure of the individual-based simulation model is shown in Figure S2. 
 
Simulations of different life histories, heratibilities, and allele frequency distributions 
The simulations above assumed that all of the positively-selected alleles conferring a larger 
phenotype have the same p0 and equal phenotypic effects. A more realistic situation is likely 
where a selected phenotype is governed by both large- and small-effect loci across a wide range 
of initial allele frequencies. We therefore modified our individual-based simulation model to 
evaluate the effects of genetic architecture on population responses to selection when both large- 
and small-effect loci with a wide range of initial allele frequencies were present. The selected 
phenotype had an initial heritability of ℎ0

2 = 0.6.  
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We ran simulations with and without a single large-effect locus. For simulations with a large-
effect locus, we attributed 90% of the VG to the large-effect locus as 2pqa2 = 0.9VG. The 
remaining 10% of the VG was split evenly among the other 99 loci. For simulations without a 
large-effect locus, the VG was split evenly among all 100 loci. The residual phenotypic variance 
(VE) was attributed to random environmental differences among individuals (VE = Vz – VG; VG = 
h2Vz). The initial frequency of the positively selected, large-effect alleles was drawn at random 
from a uniform distribution ranging from 0.05 to 0.95. We set these p0 limits to avoid extremely 
large phenotypic effects (i.e., extreme values of a) at large-effect loci, while incorporating a 
broad range of large-effect allele frequencies as observed in natural populations (Barson et al. 
2015; Thompson et al. 2019). The p0 values at the small-effect loci were drawn at random from a 
beta distribution with parameters 𝛼 and 𝛽 each set to 0.5 which results in a typical U-shaped 
allele frequency distribution where most loci had the minor allele at low frequency (Kimura 
1984) [p. 147].  
 
We parameterized these simulations to approximately mimic two divergent life histories 
including high survival combined with low fedundity (e.g., large mammals; Mduma et al. 1999) 
and low survival combined with high fedundity (e.g., free-living corals; Fadlallah 1983) to 
determine if life history strategy affected the results. The maximum fitness (Wmax = the expected 
reproductive success of a perfectly adapted individual at very low population density) was Wmax 
= 1.5 for large mammals (mean number of offspring per breeding pair = 4, survival to maturity 
probability = 0.75), and Wmax = 1.3 for corals (mean number of offspring per breeding pair = 26; 
survival to maturity probability = 0.1). Note that Wmax is equivalent to the geometric population 
growth rate (𝜆) for a perfectly adapted population with N very near zero. We assumed N0 = 500 
and K = 1,000, and N0 = 10,000 and K = 20,000 for simulations of approximate large mammal 
and coral life histories, respectively. We initially ran 1,000 coral and large mammal simulation 
repetitions (500 with a large-effect locus, and 500 with a polygenic trait architecture) to evaluate 
the effects of genetic architecture on the population responses to selection associated with the 
shifted phenotypic optimum. We ran 1,500 additional simulations with a large-effect locus and 
99 small-effect loci affecting the selected phenotype to determine how p0 of a large-effect locus 
affected population dynamics. 
 
We varied the parameter values of our individual-based simulations using a large mammal life 
history to test whether our findings hold across a range of other scenarios. For example, the size 
of the shift in 𝜃 (particularly with reference to the width of the fitness function [c]) is a key 
parameter as it determines the effect of an environmental change on fitness. Our main analyses 
considered an sudden increase in 𝜃 of 10 units (Figure 1), such that the new optimum phenotype 
was in the far right tail of the initial phenoytpe distribution and elicited a substantial decrease in 
fitness (see Results). We added a scenarios where 𝜃 shifted by only 5 and 7.5 units to test the 
effect of trait genetic architecture on population dynamics associated with weaker selection 
arising from smaller changes in the optimum phenotype. We also accounted for potential effects 
of variation in other parameters by simulating lower and higher initial heritability of the selected 
trait (ℎ0

2=0.4 and 0.8), gene flow from a population where 𝜃 was held constant at 𝜃0, weaker 
effects at large-effect loci (i.e., the large-effect locus being responsible for 50% and 70% of VG), 
a stochastic linear temporal increase in 𝜃 (Lynch and Lande 1993)(instead of a sudden shift as 
above), selection with linked loci (on 10 chromosome pairs), and plasticity in the selected 
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phenotype. The methodological details of these simulation scenarios are described in the 
Supplementary Materials.  
 
Lastly, we developed another individual-based simulation model that explicitly accounts for 
effects of historical factors on the allele frequency distribution at the onset of environmental 
change and subsequent responses to selection. These simulations used a long burnin period (≥
1,000 generations) to allow the VG to reach approximate mutation-drift-selection equilibrium 
before shifting the phenotypic optimum. The details of this model are described in the 
Supplementary Materials. 
 
Effects of the short term selection limit on population dynamics 
Effects of genetic architecture on responses to environmental change may be driven largely by 
variation in the potential for populations to evolve rapidly. To test this, we defined a short term 
selection limit (𝐿) and quantified its relationship to population viability in our individual-based 
simulations with different genetic architectures underlying the selected phenotype. We defined 𝐿 
as the expected adaptive change in the mean phenotypic (𝑧!) over t generations, assuming that the 
difference between 𝑧! and the phenotypic optimum (𝜃) is constant through time (i.e., an increase 
in 𝑧! over a generation results an equivalent increase in 𝜃), and that natural selection is the only 
driver of phenotypic evolution. 𝐿 therefore measures the potential of a population to evolve in 
response to selection over the short term under the idealistic conditions of consistently strong 
selection and no genetic drift. 
 
We used numerical methods to calculate the initial 𝐿 at the beginning of each simulation 
repetition (L0) in the scenarios with a large mammal life history and no mutation. We first used 
equations 4-7 to calculate the expected change in the allele frequencies and mean phenotype over 
the first t = 10 generations under the conditions outlined above. We chose t = 10 generations 
because most simulated populations that persisted began increasing in size by the tenth 
generation (see Results). L0 was then calculated as the difference between the predicted mean 
phenotype at t = 10 generations and the mean phenotype at the beginning of the simulation.  
 
We used regression analysis to measure the relationship between L0 and population viability. The 
glm function with a logit link function in R was used to fit generlized linear models (GLMs) with 
population persistence as the reponse (coded as 0 for extinct populations, and 1 for populations 
that persisted for 80 generations) and L0 was the predictor. We fitted separate GLMs for the 500 
simulations with a large-effect locus, and for the 500 simulations with a polygenic selected trait 
in each simulation scenario. The odds ratios from the GLMs were used to measure the size of the 
effect of L0 on population viability. We also analyzed the data from all simulation scenarios 
(both with and without large-effect loci) combined in a single GLM to evaluate the influence of 
L0 on population persistence across all of the analyzed scenarios and genetic architectures. 
Finally, we quantified the temporal dynamics in L across the first 30 generations in each 
simulation scenario to determine how the potential for rapid evolution changed throughout the 
selection response under different genetic architectures.    
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Statistical analysis of extinction rate 
We constructed 95% percentile bootstrap confidence intervals (Efron and Tibshirani 1994) for 
the proportion of extinct populations in each simulated scenario. First, we randomly resampled 𝜂 
simulated data sets 1,000 times, with replacement, from the 𝜂 original simulation repetitions. For 
each of the 1,000 bootstrap samples, we calculated the proportion of the 𝜂 resampled populations 
that were extinct (N < 2 individuals) in each of the 80 generations. We constructed the 95% 
bootstrap confidence intervals for the extinction rate for each of the 80 generations as the 2.5% 
and 97.5% quantiles from the bootstrap distributions.   
 
RESULTS  
Deterministic predictions of evolutionary and demographic responses to environmental 
change 
Results from our deterministic model suggest that the genetic architecture underlying the h2 of a 
selected trait strongly affects the evolutionary and demographic responses to a sudden 
environmentally-induced shift in the phenotypic optimum 𝜃. First, phenotypic evolution and 
population growth after the onset of selection were highly dependent on the initial frequency p0 

of large-effect alleles, but relatively insensitive to p0 when many small-effect loci were involved 
(Figure 2). Populations with already-frequent large-effect benficial alleles did not have enough 
evolutionary potential to remain viable. For example, populations with a single large-effect locus 
and p0 ≥ 0.5 all went extinct before 30 generations as they were unable to approach the new 
phenotypic optimum. However, population size N eventually approached carrying capacity K in 
populations with p0 < 0.5. The time to reach 𝑁 ≈ 𝐾	was approximately 25 generations longer 
when there was a single large-effect locus and p0 = 0.25 compared to p0 = 0.1 (Figure 2A). With 
2 large-effect loci, the expected time to reach 𝑁 ≈ 𝐾 was nearly identical for p0 = 0.1 and p0 = 
0.25. Populations with 2 large-effect loci recovered slowly with p0 = 0.5, and went extinct by 20 
generations with p0 > 0.5 (Figure 2B).  
 
The rate of adaptation and recovery of population size was much less affected by p0 when the 
selected trait was polygenic, with the phenotype approaching the new phenotypic optimum 𝜃1, 
and N approaching K for all values of p0 (Figure 2C). Results from analyses of this model with 
initial heritability ℎ0

2 = 0.4 and  ℎ0
2 = 0.8 were qualitatively equivalent to the results presented 

here (Figures S3, S4). Repeating these analyses with simulated phenotypes to account for 
selection-induced LD and any deviation from the assumed normal phenotype distribution did not 
substantively affect the results (Supplementary Materials, Figure S5). 
 
Stochastic, individual-based simulations of evolutionary and demographic responses 
environmental change 
Similar to the deterministic results, our individual-based simulations show that the lowest initial 
positively-selected, large-effect allele frequency (p0 = 0.1) conferred substantially increased 
adaptation, demographic recovery, and a lower extinction rate compared to beneficial, large-
effect alleles with higher p0 (Figure 3A, 3B). The phenotypic response to selection was larger 
over the long run for the polygenic architecture than with large effec loci for all p0. This led to 
the polygenic architecture conferring lower extinction rate and larger N on average compared to 
the large-effect genetic architectures for all p0 values except p0 = 0.1, in which case the large-
effect loci resulted in faster adaptive phenotypic evolution and population size recovery from 
selection (along with lower extinction rates) compared to the polygenic architecture. Repeating 
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these individual-based simulations with ℎ0
2 = 0.4 and ℎ0

2 = 0.8 generated results that agreed 
qualitatively with those presented here (ℎ0

2 = 0.6) (Figures S6-S9). 
 
Simulations of different life histories and allele frequency distributions 
Results from our simulations of populations with variable p0 are similar to the simpler models 
presented above, with the very large-effect alleles conferring less adaption, smaller population 
sizes, and a higher extinction rate on average than when the selected trait was polygenic (Figure 
4). Many populations with an already-frequent large-effect allele were unable to reach the new 
phenotypic optimum. Note though that some populations where the large-effect beneficial allele 
was initially rare overshot the phenotypic optimum. Populations with a polygenic selected trait 
more closely matched the new phenotypic optimum on average compared to the populations with 
a large-effect locus (Figure 4). The extinction rate at generation 80 was 2.0 times higher with the 
large-effect locus (64% extinction rate) compared to the polygenic architecture (32% extinction 
rate) in simulations assuming a large mammal life history. Similarly, the extinction rate was 2.7 
times higher among populations with a large-effect locus (72% extinction rate) compared to the 
polygenic architecture (27% extinction rate) in simulations assuming a free living coral-like life 
history. 
 
These simulation results further suggest that p0 at large-effect loci strongly affects population 
dynamics (Figure 5). The average final population sizes were highest for both life histories when 
p0 was ~0.1-0.2. The lower average population growth with p0 < 0.1 is likely caused by rare, 
positively-selected alleles frequently being lost to genetic drift as the populations initially 
declined rapidly due to selection. The weaker evolutionary and demographic response in 
populations with already-frequent, large-effect beneficial alleles (Figure 4) resulted in lower 
population growth rates and eventual extinction in a large fraction of populations with p0 > 0.2. 
Strikingly, all of the populations with a coral life history and p0 > 0.5 went extinct by generation 
80.  
 
Polygenic architectures conferred higher population viability on average compared to when 
large-effect loci were present for all of the alternative simulation scenarios: lower and higher 
initial heritability than above, gene flow from a population with a stationary phenotypic 
optimum, linked loci, weaker effect sizes at large-effect loci, a stochastic linear temporal 
increase in 𝜃, phenotypic plasticity, a smaller shift in 𝜃 (from 100 to 107.5), and with mutation 
and historical stabilizing selection (Supplementary Materials; Figures S6-S17). However, the 
increased evolutionary and demographic responses to selection associated with polygenic 
architecture was smaller when there was immigration from a population with a stationary 𝜃 
(Figures S10 & S11), when the large-effect loci contributed a smaller fraction of the genetic 
variance VG (Figure S12), and when the environmentally-induced shift in the optimum phenotype 
was smaller (see detailed results in Supplementary Materials). For example, the extinction rate at 
80 generations was only 1.53 times higher with a large effect locus than for the polygenic 
architecture (compared to a 2-fold difference in the simulations of closed populations above) 
when there were 4 immigrants per generation from a population with a stationary phenotypic 
optimum (Supplementary Materials, Figure S9; similar results for 8 immigrants/generation are 
shown in Figure S10). The extinction rate for populations with a large-effect locus contributing 
only 50% of the VG was only 1.28 times higher than in populations with a polygenic architecture 
(Supplementary Materials, Figure S12). For populations with a smaller shift in the phenotypic 
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optimum (𝜃0 = 100 and 𝜃1 = 107.5), the extinction rate was 8.6% in the populations with a 
large effect locus explaining 90% of the VG, and only 0.5% among populations with a polygenic 
selected phenotype (Figure S16). Less than 1% of all populations went extinct when the 
phenotypic optimum shifted from 𝜃0 = 100	to 𝜃1 = 105 (Figure S16). 
 
Effects of the short term selection limit on population dynamics 
Population viability (i.e., persistence versus extinction) was statistically significantly associated 
with the initial short term selection limit L0 (P < 0.05) in seven out of the eight simulation 
scenarios with a large effect locus (Figures 6, S19-S26, Table S1). The only scenario with a 
large-effect locus where population viability was not statistically significantly associated with L0 
was when the selected phenotype was strongly plastic (plasticity parameter m = 0.4, Figure S26) 
where the extinction rate was only 3%. The odds ratios from the GLMs of population persistence 
versus L0 in scenarios with a large effect locus ranged from 1.19 when there was a sudden shift 
in 𝜃, no plasticity, and a major locus responsible for 50% of VG, to 2.94 when there was a sudden 
shift in 𝜃, no plasticity, and a major locus responsible for 90% of VG (Table S1). This translates 
to a 19% to 294% increase in the odds of population persistance per unit increase in L0.  
 
Population persistence was not statistically significantly associated with L0 (P < 0.05) in any 
scenario where the selected phenotype was polygenic (Table S2). The odds ratios from GLMs 
from simulations with a polygenic trait were centered around one, ranging from 0.85 to 1.25 
(Table S2). The only scenario with a large-effect locus that had an odds ratio similar to its 
polygenic counterpart was when the the large-effect locus was responsible for 50% of the VG 
(Figure S27, Tables S1 & S2).  
 
Consistent with results from individual simualtion scenarios, population viability was not 
statistically significantly associated with L0 when analyzing simulations from all scenarios with a 
polygenic selected trait combined (P = 0.65, odds ratio = 1.03). However, population persistence 
was statistically significantly associated with L0 in our analysis of all simualtion scenarios 
combined with a large-effect locus combined (P < 2x10-16, odds ratio = 1.38). The GLM of 
population viability versus L0 across all simulated scenarios (i.e., all simulations with polygenic 
and major locus trait architectures combined) was statistically significant (P < 2x10-16) with an 
odds ratio of 1.25, meaning that a one unit increase in L0 was associated with a 25% increase in 
the odds of population persistance (Figure S27).  
 
Polygenic trait architectures conferred larger short term selection limit L than genetic 
architectures with large-effect loci, both at the onset of selection and subsequently through the 
first 30 generations (Figures S19-S26; Figure 6). The average L0 across 500 simulation replicates 
was approximately 𝐿0( = 12 in all simulation scenarios with a polygenic selected trait. 𝐿0(  ranged 
from 5.21 to 5.36 among simulations with a large-effect locus responsible for 90% of the VG. 
However, the 𝐿0(  was condiserably higher for simulations where the large-effect locus was 
responsible for 70% of the VG (𝐿0(  = 7.5), and 50% of the VG (𝐿0( = 9.2) (Figures S20 & S21).  
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DISCUSSION 
The results from the wide range of analyses above suggest that the genetic architecture 
underlying the h2 of a selected trait can strongly affect population viability during environmental 
change. Understanding of the effects of environmental change on population viability will be 
advanced by accounting for the strong effects of trait genetic architecture on evolutionary and 
population dynamics. Polygenic architectures on average conferred higher evolutionary 
potential, more consistent evolutionary responses to selection, and increased population viability 
compared to when the selected trait was governed by large-effect loci. When loci with large 
phenotypic effects are present, the initial frequency of large-effect beneficial alleles can strongly 
affect population responses to selection. Large-effect loci appear to confer adaptation and 
demographic recovery that is similar or higher than with polygenic architectures only when the 
positively selected alleles are initially infrequent (Figure 4). Additionally, while predicting how 
wild populations will respond to ongoing rapid environmental change remains challenging, the 
models and results presented here can inform future theoretical and empirical efforts to 
understand eco-evolutionary dynamics and the extent of the ongoing extinction crisis. 
 
The influence of genetic architecture on variation in population responses to environmental 
change will depend on how often fitness traits have loci with large enough effects to alter h2 
during bouts of adaptation. Recent results from several taxa, including mammals (Barson et al. 
2015; Epstein et al. 2016; Jones et al. 2018; Kardos et al. 2015), salmonids (Barson et al. 2015; 
Pearse et al. 2019; Thompson et al. 2019), and birds (Lamichhaney et al. 2015; Lamichhaney et 
al. 2016) suggest that very large-effect alleles often influence fitness-related traits in wild 
populations. Interestingly, variation in seemingly complex fitness-related traits that are often 
assumed to be polygenic, such as horn size (a sexually-selected, condition-dependent trait) 
(Johnston et al. 2013), migration timing (Thompson et al. 2019), propensity to migrate (Pearse et 
al. 2019), and age at maturity (Barson et al. 2015), has in some cases turned out to be driven 
almost entirely by variation at large-effect loci. It is therefore crucial to quantify the effect sizes 
and allele frequencies at loci with large effects when they are present in systems where future 
eco-evolutionary dynamics are of interest (Funk et al. 2018; Yang et al. 2014).  
 
It can be difficult to predict or measure the frequency of alleles with large beneficial effects 
under rapid environmental change. For example, large-effect alleles for traits subjected to 
historical balancing selection, are likely to be at intermediate frequencies (Llaurens et al. 2017). 
Recent large-effect mutations are likely to be found at low frequencies. Previously neutral or 
nearly-neutral alleles that affect fitness in new conditions are likely to be found across the entire 
spectrum of allele frequencies. Fortunately, increasingly efficient DNA sequencing and 
improving approaches for conducting genotype-phenotype association analysis provide the tools 
necessary to estimate h2, and to identify large-effect loci (and to estimate their allele frequencies) 
where they exist. 
 
Why do polygenic architectures usually confer increased population viability compared to 
genetic architectures including large-effect loci? This pattern arises in part from a slower and less 
variable decline in h2 during adaptation for polygenic traits than for traits with large-effect loci 
(Figures S3-S6, S8). The rapid decline in h2 when beneficial alleles with large effects are already 
common, and the frequent loss of initially rare large-effect alleles means that there is a narrow 
window of p0 where traits with large-effect architectures are likely to evolve in response to 
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selection as fast or faster than polygenic traits. Holding the initial heritability constant, the 
potential for adaptive phenotypic change is considerably smaller when large-effect loci are 
present compared to a polygenic architecture (Walsh and Lynch 2018)(Figure 6). It appears that 
large effect loci often do not confer enough adaptive potential over the short term to accomodate 
large, rapid shifts in phenotypic optima. Additionally, evolutionary and demographic responses 
to selection appear to be more stochastic in populations with large-effect loci (Figure 4). This 
suggests that reliably predicting population responses to selection will be more difficult when 
large-effect loci are present, particularly when the initial large-effect allele frequency is not 
known precisely. These results highlight the importance of identifying large-effect loci where 
they exist, and using information on their effect-sizes and allele frequencies along with ℎ0

2 in 
models predicting demographic responses to environmental change. Predictions of population 
responses to selection are likely to be misleading if they do not account for the strong effects of 
genetic architecture on the temporal dynamics of h2 and adaptation.  
 
Understanding how populations will respond to environmental change is both challenging and 
vitally important in conservation and evolutionary ecology (Urban et al. 2016). Reliable 
predictions of how biodiversity will respond to large-scale environmental change are necessary 
to efficiently prioritize scarce conservation resources and to develop effective conservation 
strategies. Improved understanding of vulnerability to environmental change could also advance 
strategies to conserve vital natural and agricultural resources (Aitken and Whitlock 2013; 
Flanagan et al. 2018; Funk et al. 2018), for example by identifying populations and species to 
prioritize for conservation action. However, there are substantial obstacles to reliably predicting 
responses to selection. The complex and interacting effects of environmental stochasticity, 
genotype-by-environment interactions, phenotypic plasticity, pleiotropy, dominance interactions, 
gene flow, simultaneous selection on correlated traits, and changing community structure (i.e., 
species interactions) can all strongly affect adaptation and population dynamics, but are also 
difficult to measure and to forecast into the future. Consequently, reliable predictions of 
population responses to environmental change in the wild will be difficult to achieve, even in 
well-studied systems where the heritability, genetic architecture, and fitness effects of the 
relevant phenotype(s) are known. We therefore encourage caution when attempting to predict 
eco-evolutionary dynamics under climate change and other human-driven environmental 
changes. 
 
While recognizing the difficulties involved, our results suggest that integrating genomic, 
classical quantitative genetic, and population viability analyses (e.g., applying the modelling 
approaches used here) is likely the most promising way forward to increased understanding the 
impacts of human-driven environmental change on population dynamics and extinction. 
Predictions of evolutionary and demographic responses to selection based only on trait loci 
detetected with genomic analyses will often be unreliable because a substantial fraction of 
phenotypic variation will frequently be explained by many undetected loci with small effects 
(Shaw 2019). We also argue that predictions based solely on classical quantatitive genetics 
approaches (Shaw 2019) will also frequently perform poorly because the selection response with 
large effect loci deviates strongly from expectations arising from the infinitesimal model of 
inheritance. Integrating genomic information (i.e., the genetic basis of phenotypic variation) into 
quantitiative genetic and population viability analyses will almost certainly improve predictions 
of  responses to selection. Incorporating such ‘genomically-informed’ quantitative genetic 
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approaches into population projection models has the potential to improve understanding of the 
impact of environmental change on population dynamics and extinction. 
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FIGURES 

 
Figure 1. Fitness function and the phenotype distribution at the onset of selection in our 
determinstic model. The phenotype probability density distribuition is shown in red (left vertical 
axis). The vertical dashed line shows the initial mean phenothype 𝑧F̅. The gray dashed line 
represents the Gaussian fitness function with standard deviation c = 6 (right vertical axis).  The 
vertical dotted line shows the new optimum phenotype 𝜃. Integrating over the product of the 
phenotype and fitness functions [see eq. (6)] yields the mean intrinsic fitness (𝑊U ) in the 
population (i.e., ignoring effects of population density).  
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Figure 2. Deterministic predictions of population size (N, top row), trait heritability (h2, middle 
row), and mean phenotype (bottom row) through time in density-regulated populations with a 
single large-effect locus (A), two large-effect loci (B), and 100 small-effect loci (C) affecting a 
quantitative trait under selection after a sudden environmental change. Initial population size was 
N = 500 with carrying capacity of K = 1,000, and the initial heritability was ℎ0

2  = 0.6 in all cases. 
The optimum phenotype shifted from 𝜃0=100  to 𝜃1=110 in the first generation. Line types 
indicate the initial frequencies of the positively selected allele(s) conferring a larger phenotype, 
as indicated in the legend. 
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Figure 3. Individual-based simulations of evolutionary and population dynamics in density-
regulated populations with a single large-effect locus (A), two large-effect loci (B), and 100 
small-effect loci (C) affecting a quantitative trait under selection after a sudden environmental 
change. The optimum phenotype shifted from 𝜃0=100  to 𝜃1=110 in the first generation. 
Initial population size was N0 = 500, and capacity was K = 1,000. The initial heritability was ℎ0

2 
= 0.6 in all cases. Line types indicate the initial frequency of the positively selected allele(s) 
conferring a larger phenotype as indicated in the legend.  
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Figure 4. Effects of genetic architecture on phenotypic evolution and population dynamics in 
closed populations with life histories approximating large mammals (A), and corals (B). Results 
are shown in blue for populations with a large-effect locus, and in orange for populations where 
the selected trait was polygenic. The phenotypic optimum permanently shifted from its initial 
value 𝜃0 = 100  to 𝜃1 = 110 in generation one. The initial heritability was ℎ0

2  = 0.6. Thin 
colored lines show the population size (top row) and mean phenotype (middle row) through time. 
Thick colored lines show the mean population size and phenotype across all 500 repetitions. The 
bottom panels show the proportion of extinct populations through time, with percentile bootstrap 
95% confidence intervals. The dashed black lines represent the carrying capacity in the top two 
panels, and 𝜃1	in the middle panels. 
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Figure 5. Effects of the initial large-effect allele frequency (p0) on final population size in 
simulations with approximate large mammal (A) and coral (B) life histories. The y-axis 
represents the final population size at generation 80 (N80), and the x-axis shows the large-effect 
allele p0.  The solid lines represent the mean N80 across 2,000 simulation repetitions in non-
overlapping p0 windows of width 0.05. Dashed lines are 95% percentile bootstrap confidence 
intervals for mean N80. 
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Figure 6. Temporal dynamics of the sort term selection limit (L) (A) and the relationship 
between population persistence (0 = extinct; 1 = population persisted) and the initial short term 
selection limit (L0) (B). The data are shown from all simulation scenarios where there was a 
large-effect locus (blue) and where the selected trait was polygenic (orange) combined. The thick 
colored lines in A represent the mean across all 4,000 individual simulation repetitions. The 
black lines in B are fitted logistic regression lines.   
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