1	Guiding T lymphopoiesis from pluripotent stem cells by defined
2	transcription factors
3	Rongqun Guo ^{1,2,3,5,6,10} , Fangxiao Hu ^{1,2,5,6,10} , Qitong Weng ^{1,2,3,5,6,10} , Cui $Lv^{1,2,5,6}$,
4	Hongling Wu ^{1,2,5,6} , Lijuan Liu ^{1,2,4,5,6} , Zongcheng Li ⁷ , Yang Zeng ⁷ , Zhijie Bai ⁷ ,
5	Mengyun Zhang ^{1,2,4,5,6} , Yuting Liu ^{1,2,5,6} , Xiaofei Liu ^{1,2,4,5,6} , Chengxiang Xia ^{1,2,3,5,6} ,
6	Tongjie Wang ^{1,2,5,6} , Peiqing Zhou ^{1,2,3,5,6} , Kaitao Wang ^{1,2,4,5,6} , Yong Dong ^{1,2,5,6} , Yuxuan
7	Luo ⁸ , Xiangzhong Zhang ⁸ , Yuxian Guan ^{1,2,5,6} , Yang Geng ^{1,2,4,5,6} , Juan Du ^{1,2,3,5,6} ,
8	Yangqiu Li ⁹ , Yu Lan ⁹ , Jiekai Chen ^{1,2,3,4,5,6} , Bing Liu ⁷ *, Jinyong Wang ^{1,2,3,4,5,6} *
9	¹ State Key Laboratory of Experimental Hematology, CAS Key Laboratory of
10	Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese
11	Academy of Sciences, Guangzhou, China.
12	² Guangzhou Regenerative Medicine and Health-Guangdong Laboratory
13	(GRMH-GDL), Guangzhou, China.
14	³ University of Chinese Academy of Sciences, Beijing, China.
15	⁴ Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health,
16	Guangzhou Medical University, Guangzhou, China.
17	⁵ Guangdong Provincial Key Laboratory of Stem cell and Regenerative Medicine,
18	Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences,
19	Guangzhou, China.
20	⁶ Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing,
21	China.
22	⁷ State Key Laboratory of Proteomics, Translational Medicine Center of Stem Cells,

- 23 Fifth Medical Center, General Hospital of PLA, Beijing, China.
- ⁸Department of Hematology, the Third Affiliated Hospital of Sun Yat-Sen University,
- 25 Guangzhou, China.
- ⁹Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of
- 27 Hematology, School of Medicine, Jinan University, Guangzhou, China.
- 10 These authors contributed equally.
- 29 *e-mail: <u>wang_jinyong@gibh.ac.cn; bingliu17@yahoo.com</u>

30 ABSTRACT

Achievement of immunocompetent and therapeutic T lymphopoiesis from pluripotent 31 stem cells is a central aim in T cell regenerative medicine. To date, preferentially 32 regenerating T lymphopoiesis in vivo from pluripotent stem cells (PSC) remains a 33 34 practical challenge. Here we documented that synergistic and transient expression of 35 Runx1 and Hoxa9 restricted in the time window of endothelial to hematopoietic 36 transition and hematopoietic maturation stages induced in vitro from PSC (iR9-PSC) 37 preferentially generated engraftable hematopoietic progenitors capable of homing to thymus and developing into mature T (iT) cells in primary and secondary 38 immunodeficient recipients. Single-cell transcriptome and functional analyses 39 40 illustrated the cellular trajectory of T lineage induction from PSC, unveiling the T-lineage specification determined at as early as hemogenic endothelial cell stage and 41 42 identifying the *bona fide* pre-thymic progenitors. The iT cells distributed normally in central and peripheral lymphoid organs and exhibited abundant TCRaß repertoire. 43 The regenerative T lymphopoiesis rescued the immune-surveillance ability in 44

immunodeficient mice. Furthermore, gene-edited iR9-PSC produced tumor-specific-T
cells *in vivo* that effectively eradicated tumor cells. This study provides insight into
universal generation of functional and therapeutic T lymphopoiesis from the unlimited
and editable PSC source.

49 Key Words: Pluripotent stem cells, transcription factors, *Runx1*, *Hoxa9*, T
50 lymphopoiesis

51 INTRODUCATION

52 A prominent method to generate T cells is an in vitro system via co-culture of either mouse or human hematopoietic stem/progenitors (HSPC) with stromal cell lines 53 expressing the Notch ligand, such as OP9-DL1/DL4 or 3D-based MS5-hDLL1/4¹⁻³. 54 Despite the great contribution of this approach to studying T cell development *in vitro*, 55 phenotypic T cells produced by this approach face severe immunocompetency 56 problems in vivo after engraftment, due to the inadequate in vitro recapitulation of 57 natural thymus microenvironment. Natural mouse Sca1⁺cKit⁺ and human CD34⁺ 58 blood progenitor cells can be induced into $CD7^+$ pre-thymic cells in vitro, which 59 successfully colonize thymi and mature into immunocompetent T cells in vivo ^{4,5}. 60 However, this in vitro plus in vivo two-step approach never succeeded in generating 61 62 induced T lymphopoiesis when starting from pluripotent stem cells (PSC), as induced 63 T cell progenitors from PSC showed intrinsic thymus-homing defect in vivo⁶. 64 Another prevailing concept for generating functional T lymphopoiesis from PSC is via induction of hematopoietic stem cell (HSC)-like intermediates followed by in vivo 65 multi-lineage hematopoiesis, including T cells ⁷⁻¹⁰. However, generating robust *bona* 66

fide induced-HSC (iHSC) from PSC remains inefficient ^{11,12} and whether this approach can generate therapeutic tumor-killing T cells is unknown. Recently, Hoxb5 is shown to convert natural B cells into functional T cells *in vivo* ¹³, providing an alternative method to shorten the immune system recovery gap in conventional HSC transplantation. Nonetheless, a solid and universal approach, capable of generating immunocompetent and therapeutic T lymphopoiesis from the unlimited and gene-editable PSC, is still lacking.

74 Accumulated developmental evidence shows that blood progenitors prior to the occurrence of definitive HSC, also possess T cell lineage differentiation potential ¹⁴⁻¹⁷. 75 Despite the abundant knowledge of the pivotal transcription factors regulating T cell 76 development from HSC derivatives ¹⁸, intrinsic determinants of T cell lineage 77 78 potential in the HSC-independent hematopoietic progenitors at the pre-liver and 79 pre-thymus stages remain elusive. Thus, identifying such crucial T lineage-potential 80 determinants might help to establish a solid protocol for efficiently reconstituting T 81 lymphopoiesis from PSC.

In this study by a unbiased *in vivo* functional screening approach, we identified that the coordinated and transient expression of exogenous *Runx1* and *Hoxa9* at the early time window from endothelial to hematopoietic transition stage to hematopoietic progenitor maturation stage induced in vitro from PSC, produced a type of induced hematopoietic progenitor cells (iHPC) with thymus-homing features, which was engraftable and gave rise to induced T cells (iT cells) with abundant TCR $\alpha\beta$ repertoire in immune deficient mice. Physiologically, the iT cells successfully rescued immune

89	surveillance function in immune deficient mice. Therapeutically, these iT cells
90	possessed anti-tumor activities in vivo when engineered to carry tumor antigen
91	specific TCR at PSC stage. For the first time, we establish a novel approach of
92	preferentially generating functional and therapeutic T lymphopoiesis in vivo from
93	PSC, which technically creates a link between the unlimited and editable PSC source
94	and T cell-based immunotherapy for translational purpose.

96 **RESULTS**

97 Reconstitution of T lymphopoiesis *in vivo* from inducible 98 *Runx1-p2a-Hoxa9*-embryonic stem cells

We hypothesized that the lymphogenic potential is determined by intrinsic 99 determinants at putative endothelial precursor cell stage prior to and independent of 100 101 HSC formation. Therefore, enforced expression of these master determinants might 102 direct lymphoid differentiation from PSC. Since Runx1 is pivotal for endothelial to hematopoietic transition (EHT) $^{19-21}$, definitive hematopoietic development $^{22-24}$ and T 103 cell development 18 , we started from evaluating the potential effect of *Runx1* in 104 105 lymphogenic commitment from PSC. To avoid the expression variations introduced 106 by viral delivery systems, we inserted the inducible expression cassette of *Runx1* into 107 the Rosa26 locus of embryonic stem cells (*iRunx1*-ESC, C57BL/6 background) by 108 homologous recombination (Supplementary information, Fig. S1a), which resulted in 109 the conditional expression of exogenous *Runx1* in the presence of doxycycline 110 (Supplementary information, Fig. S1b). We used AFT024-(mSCF/mIL3/mIL6/hFlt3L) 111 cell line-cultured supernatants as conditioned medium (CM) for the in vitro induction of induced hemogenic endothelial progenitors (iHEC) and subsequent iHPC, as 112 AFT024 CM is beneficial for the generation of induced HPC in vitro²⁵. To 113 114 functionally assess the T lymphopoiesis potential of iHPC, we transplanted the bulk cells containing abundant iHPC (referred as iHPC thereafter) into irradiated (2.25 Gy) 115 B-NDG recipients (iHPC recipients) and used the occurrence of $CD3^+$ cells in 116 peripheral blood (PB) as a positive readout of induced T lymphopoiesis *in vivo* (Fig. 117

118	1a). Based on a modified protocol for HEC induction from PSC ²⁶ , we successfully
119	generated iHEC and hematopoietic progenitor derivatives (Supplementary
120	information, Figs. S1c-e). However, the <i>iRunx1</i> -ESC derivatives eventually failed to
121	generate T cells on the conditions of either in vitro OP9-DL1 co-culture system
122	(Supplementary information, Fig. S1f) or in vivo transplantation setting
123	(Supplementary information, Fig. S1g). We speculated that the other transcription
124	factors essential for T lineage generation might be absent in the <i>iRunx1</i> -ESC
125	derivatives. To identify these absent factors, we sorted the single iHEC from
126	iRunx1-ESC and performed single-cell RNA-Seq. In comparison with E11
127	T1-pre-HSC (CD31 ⁺ CD41 ^{low} CD45 ⁻ c-kit ⁺ CD201 ^{high}), we identified eight
128	hematopoietic-essential transcription factors, <i>Hoxa5</i> ⁸ , <i>Hoxa7</i> ²⁷ , <i>Hoxa9</i> ²⁸ , <i>Hoxa10</i> ²⁹ ,
129	Hlf ³⁰ , Ikzf1 ³¹ , Nkx2-3 ³² , and Setbp1 ³³ , which were barely expressed in
130	iRunx1-ES-derived iHEC but abundantly expressed in E11 T1-pre-HSC (Fig. 1b).
131	Consistent with the previous reports that human PSC-derived HEC lacks expression
132	of HOXA family ^{8,34} . We further used an " <i>iRunx1+Xi</i> " tandem-factor-knock-in
133	strategy to perform unbiased screening of the potential combinatory effects of these
134	factors with Runx1 in lymphoid lineage induction. Following the same induction
135	protocol, we identified that the inducible expression of exogenous Runx1 and Hoxa9
136	from day 6 to day 11 during the induction program led to the production of robust
137	iHEC phenotypically resembling embryonic pre-HSC
138	(CD31 ⁺ CD41 ^{low} CD45 ⁻ c-kit ⁺ CD201 ^{high}) (Fig. 1c) ³⁵ . Notably, CD201 ^{+/high} expression
139	can enrich hemogenic precursors with both definitive HPC and HSC potential from as

140	early as E9.5 embryos ³⁶ . After co-culture of these iHEC with OP9-DL1 feeder line
141	(GFP ⁺) in the presence of CM and doxycycline (1 μ g/ml), robust iHPC occurred at
142	day 21, including phenotypic pre-thymic progenitors (Lin ⁻ c-kit ⁺ CD127 ⁺ /CD135 ⁺) ¹⁸
143	(Fig. 1d), and CD11b ⁺ /Gr1 ⁺ myeloid cells, but no CD3 ⁺ T cells (Supplementary
144	information, Fig. S1h). To further assess the engraftment potential of these iHPC, we
145	transplanted 0.5-1 million <i>iR9</i> -ESC-derived iHPC (day-21) into irradiated (2.25 Gy)
146	B-NDG mice (8-week-old, CD45.1 strain) in the absence of doxycycline. Four weeks
147	after transplantation, we observed donor-derived $CD45.2^+$ $CD3^+$ T cells, but no
148	CD45.2 ⁺ CD19 ⁺ B cells and no CD45.2 ⁺ CD11b ⁺ myeloid cells, in the PB of B-NDG
149	mice transplanted with the iHPC (Fig. 1e). Five independent experiments indicated
150	that the <i>iR9</i> -ESC-derived iHPC gave rise to CD3 ⁺ iT cells in over 80% B-NDG
151	recipients (iT-B-NDG mice, 32/40) (Fig. 1f; Supplementary information, Fig. S1i). In
152	addition, the day-17 iHPC also reconstituted T lymphopoiesis in B-NDG recipients
153	(Supplementary information, Figs. S2a-d). Thus, we established a novel approach of
154	preferentially generating iT cells from gene-edited PSC by defined transcription factor
155	Runx1 and Hoxa9.

The iT cells show features of multi-organ distributions and abundant TCR diversity

We further analyzed the tissue distributions and immunophenotypes of the regenerated T lymphocytes in iT-B-NDG mice. Mature CD4SP and CD8SP iT cells were detected in the spleen, lymph node and PB of iT-B-NDG mice, the majority of which were TCRβ positive (Fig. 2a). In addition, $\gamma\delta$ iT cells were also detected in gut

162	and lung tissues of iT-B-NDG mice (Supplementary information, Fig. S3a). Induced
163	NK cells (iNK, CD45.2 ⁺ NK1.1 ⁺ CD3 ⁻) were also detected in the spleen and bone
164	marrow of iT-B-NDG mice (Supplementary information, Fig. S3b). The thymus of
165	iT-B-NDG mice also contained induced CD4SP (iCD4SP), induced double positive
166	(iDP, CD45.2 ⁺ CD4 ⁺ CD8 ⁺), induced CD8SP (iCD8SP), and induced double negative
167	(iDN, CD45.2 ⁺ Lin ⁻ CD4 ⁻ CD8 ⁻) cells when examined at week-4 and week-5 after
168	transplantation of iHPC. Interestingly, the majority of the iDN cells were at iDN1
169	(CD45.2 ⁺ Lin ⁻ CD4 ⁻ CD8 ⁻ CD44 ⁺ CD25 ⁻) phase at week-4, and at iDN2
170	(CD45.2 ⁺ Lin ⁻ CD4 ⁻ CD8 ⁻ CD44 ⁺ CD25 ⁺)/iDN3 (CD45.2 ⁺ Lin ⁻ CD4 ⁻ CD8 ⁻ CD44 ⁻ CD25 ⁺)
171	phases at week-5 (Fig. 2b). Besides the iT cells and induced NK1.1 ⁺ CD3 ⁻ NK (iNK)
172	cells detected in bone marrow, we also observed $iR9$ -ES-derived Lin ⁻ Sca1 ⁺ cKit ⁺
173	(iLSK) progenitor cells (Fig. 2c). To assess whether the iLSK cells can contribute to T
174	lymphopoiesis, we sorted this population from primary iHPC recipients (week-6) and
175	performed secondary transplantation. Six weeks after transplantation, iT cells
176	appeared in PB, BM, and SP of the B-NDG recipients (Fig. 2d). Of note, despite
177	iR9-ES-derived myeloid lineage cells were barely detected in vivo, the iLSK cells
178	indeed gave rise to very limited myeloid colonies in CFU assay (data not shown). To
179	further characterize the iT cells at transcriptome level, we sorted 1,000 cell aliquots of
180	the CD4SP iT cells and CD8SP iT cells from the spleens of iT-B-NDG mice for
181	RNA-Seq analysis. Our data indicated that the CD4SP iT cells resembled natural
182	CD4SP T cells, and the CD8SP iT cells resembled natural CD8SP T cells, both of
183	which expressed surface marker-encoding genes Cd2, Fas, Cd3e, Cxcr3, Cd28, Cd27,

184	Cd7, Cd5, and Il7r (Fig. 2e). Of note, the CD4SP iT cells, but not CD8SP iT cells,
185	expressed the ThPOK (T helper inducing POK factor, also known as Zbtb7b), a
186	master regulator in regulating CD4 vs. CD8 T cell lineage commitment ³⁷ . In addition,
187	the iT cells also expressed T cell identity genes and key regulators Tcf7 ³⁸ , Tox ³⁹ , Lck
188	⁴⁰ , Gata3 ⁴¹ , Bcl11b ⁴² , Ikzf2 ⁴³ , and Rora ⁴⁴ (Fig. 2f). In comparison with natural T
189	cell counterparts, the iT cells also showed features of discrepantly expressed genes (a
190	difference in expression of over two-fold; adjusted P value < 0.05 (DESeq2 R
191	package)) (Supplementary information, Table S1), including weaker expression of
192	Tcf7. Genomic PCR sequencing using primer pairs flanking the Runx1-p2a-Hoxa9
193	element further confirmed that the reconstituted iT cells in vivo were of iR9-PSC
194	origin, which carried the inserted Runx1-p2a-Hoxa9 (Supplementary information, Fig.
195	S3c). To further assess the diversities of the TCR $\alpha\beta$ clonotypes of the iT cells, we
196	performed TCR deep sequencing using the sorted naïve CD4SP
197	(CD45.2 ⁺ CD4 ⁺ CD62L ⁺ CD44 ⁻) and CD8SP iT cells (CD45.2 ⁺ CD8 ⁺ CD62L ⁺ CD44 ⁻)
198	from the spleens and thymi of iT-B-NDG mice at week-6 after transplantation of
199	iHPC. The aliquots of 15,000 sorted naïve CD4SP and CD8SP iT cells were used as
200	cell inputs for TCR $\alpha\beta$ sequencing at the transcription level. TCR $\alpha\beta$ clonotype
201	profiling using MiXCR 45 captured abundant diversities of TCR $\alpha\beta$ sequences among
202	the sorted naïve iT cells isolated from the thymi (Figs. 2g, h) and spleens (Figs. 2i, j)
203	of the iT-B-NDG mice. Collectively, these data indicate that the <i>iR9</i> -ESC-derived
204	iHPC reconstitute T lymphopoiesis in vivo resembling natural T cell development.
• c =	

205 Single iHEC efficiently give rise to iT cells both *in vitro* and *in vivo*

10

206	To further investigate the efficiency of iHEC differentiating into iT cells, we sorted
207	single iHEC into individual wells (24 well-plates) pre-seeded with OP9-DL1 feeder
208	cells (Fig. 3a). After ten-day co-culture, over 15 percent individual iHEC formed
209	blood colonies (76/384 wells) (Fig. 3b), which contained abundant pre-thymic
210	progenitors (Lin ⁻ c-kit ⁺ CD127 ⁺ /CD135 ⁺) (Supplementary information, Fig. S4). After
211	co-culture with OP9-DL1 feeder line in the presence of hFlt3L and hIL7, these
212	iHEC-formed blood colonies (30/30) further differentiated into CD3 ⁺ iT cells in vitro
213	(Fig. 3b), including a major population of TCR $\gamma\delta$ iT cells, and a small proportion of
214	$CD8^+$ TCR β iT cells (Fig. 3c). To assess the T lymphopoiesis potential of these
215	single-iHEC-derived iHPC, we further collected the iHPC from each colony at day 21
216	and transplanted them into individual B-NDG mice. Four weeks after transplantation,
217	CD11b ⁻ CD19 ⁻ CD3 ⁺ iT cells were detected in approximately 28% (7/25) B-NDG mice
218	transplanted with the cell derivatives from individual iHEC-formed clones (Figs. 3b,
219	d). Collectively, the <i>iR9</i> -ESC-derived iHEC robustly gave rise to T cells at the single
220	cell level.

221 Cellular trajectory from iHEC to pre-thymic progenitors

To characterize the single iHEC at transcriptome level, we performed single-cell RNA-Seq using the sorted iHEC and compared them with natural single E11 endothelial cells (EC), Type-I pre-HSC, Type-II pre-HSC, E12 HSC, E14 HSC, and adult HSC described previously ³⁵. Principle component analysis indicated that the iHEC localized between embryonic EC and pre-HSC (Figs. 4a, b). A large proportion of iHEC expressed artery or vein-related genes, suggestive of their EC-like nature

228	(Fig. 4c). Most iHEC expressed endothelial surface marker-encoding genes Cdh5
229	(coding VE-Cadherin, 70/70) and Esam (57/70), which were continuously expressed
230	from embryonic EC to pre-HSC at a relatively high level. On the other hand, partial
231	iHEC expressed Procr (coding CD201, 32/70), Cd47 (33/70) and Cd63 (44/70),
232	which were upregulated from EC to pre-HSC (Fig. 4d). The expression of
233	transcription factors related to endothelial and hematopoietic development further
234	revealed that the iHEC shared a similar feature with embryonic EC and pre-HSC.
235	Majority of the iHEC expressed Fli1 (66/70), Erg (42/70), Lmo2 (49/70), Mycn
236	(65/70), and Sox7 (38/70). Specifically, a small proportion of iHEC expressed Bcl11a
237	(11/70) and Hoxb5 (24/70). All these transcription factors are pivotal for lymphoid
238	lineage development (Fig. 4e). Thus, the molecular features of the iHEC show
239	similarities with embryonic EC and pre-HSC.

240 To further characterize the iHPC during the hematopoietic maturation process, we sorted the single iHPC from day-14, day-17, day-21 cell products derived from 241 242 *iR9*-ES and performed single-cell RNA-Seq. To visualize the time course data of 243 iHPC, we performed t-distributed stochastic neighbor embedding (tSNE, the genes 244 with expression value TPM >1 in more than 30 samples were selected) analysis and illustrated that the day-14-iHPC formed a unique population distinct from 245 246 day-11-iHEC and the major population of day-17 iHPC. However, the day-17 iHPC and day-21 iHPC already merged (Fig. 4f). In addition, the day-21 iHPC formed a 247 248 new subpopulation labeled with relatively abundant Gata2 expression (Supplementary information, Fig. S5a), indicating the heterogeneity of the iHPC. The 249

250	endothelia-related transcription factors, such as Sox7 and Sox18, were abundantly
251	expressed in day-11 iHEC, however, were immediately silenced in day-14 iHPC (Fig.
252	4g). The <i>Ets1</i> gene, involving embryonic endothelial and lymphoid development ⁴⁶ ,
253	was shut down in day-14 iHPC but turned on again in day-17 iHPC (Fig. 4g). The
254	transcription factors involving hematopoietic development, such as Lyl1 ⁴⁷ , Etv6 ⁴⁸ ,
255	Prdm5 ⁹ , Myb ⁴⁹ , Sfpi1 ⁵⁰⁻⁵² , and Meis1 ⁵³ , were widely expressed among day-14, 17,
256	and 21 iHPC populations. (Fig. 4h). Further, the transcription factors related to
257	lymphoid development, including Lmo2 54, Bcl11a 55, Ikzf1 56, Myc 18,57, Gata3 58, and
258	<i>Tcf</i> 7 ³⁸ , were also expressed in iHPC (Fig. 4i; Supplementary information, Fig. S5b).
259	Of note, day-17 and day-21 iHPC showed abundant expression of Tcf7 (Fig. 4i).
260	Given the thymus-homing problem of the PSC-derived HPC reported by others ⁶ , we
261	observed that the day-21-iHPC derived from iR9-ES abundantly expressed surface
262	marker-encoding gene Kit ¹⁸ , Flt3 ¹⁸ , Cd7 ^{4,5} , Ccr9 ^{59,60} , and Cxcr4 ^{61,62} , which is a
263	feature of natural pre-thymic progenitors possessing thymus-homing ability (Fig. 4j).
264	However, the subpopulation with relatively abundant Gata2 expression on Day21
265	lacks the thymus-homing feature genes, indicating that these cells unlikely
266	contributed to the regenerated iT lymphopoiesis. Collectively, the iR9-ES-derived
267	iHPC show hematopoietic or lymphopoietic features at transcriptome level and the
268	day-21 iHPC contain robust pre-thymic progenitor-like cells.

269 The iT cells reject allogeneic skin and form memory response *in vivo*

270 To investigate the function of iT cells derived from *iR9*-ESC (C57BL/6 background)

271 *in vivo*, we transferred the iT cells (5 million equivalents of iT cells per $Rag1^{-/-}$)

272	isolated from iT-B-NDG spleen into $Rag1^{-/-}$ mice (iT- $Rag1^{-/-}$ mice). Four days after
273	the adoptive iT cell transfer, we transplanted allogeneic skin from BALB/c mice into
274	the iT- $Rag1^{-/-}$ mice. The allogeneic skin grafts were rapidly rejected by iT- $Rag1^{-/-}$
275	mice at around day 9 after transplantation, as indicated by bulged, ulcerative and
276	necrotic lesions at the graft sites (Fig. 5a). Besides the mature iT cells (CD4SP,
277	CD8SP) in the PB of iT-Rag1 ^{-/-} mice (Fig. 5b), activated CD4SP and CD8SP iT cells
278	(CD44 ^{high} CD69 ⁺) were also detected in the rejected allogeneic skin tissues (Fig. 5c).
279	The iT-Rag1 ^{-/-} mice still showed the existence of iT cells in PB thirty days after the
280	primary allogeneic rejection, and again rejected the secondary allogeneic skin grafts
281	(Supplementary information, Fig. S6). Flow cytometry indicated that $IL17^+$ and
282	$IFN\gamma^{\scriptscriptstyle +}$ CD4 $^{\scriptscriptstyle +}$ iT cells, and $IFN\gamma^{\scriptscriptstyle +}$ CD8 $^{\scriptscriptstyle +}$ iT cells existed in the primary- and
283	secondary-rejected skin grafts (Fig. 5d). Collectively, these results indicated that the
284	adoptively transferred iT cells in Rag1 ^{-/-} mice mediated rejection of allogeneic skin
285	grafts and sustained immunological memory, suggestive of a typical adaptive
286	immune response.

287 The iT cells derived from TCR-edited iPSC eradicate tumor cells *in vivo*

Regarding the advantages of unlimited cell source and gene-editing advantage of 288 iPSC, we introduced tumor antigen-specific TCR (MHC-I restricted OVA TCR, OT1) 289 into *iR9*-iPSC and further assessed the anti-tumor activity of the derived OT1 iT cells. 290 We reprogrammed mouse MEF (C57BL/6 background, CD45.2 strain) into iPSC 291 Oct4/Klf4/Sox2. 292 using retroviruses carrying Two cassettes of rtTA-TRE-Runx1-p2a-Hoxa9-HygroR and CAG-OT1-TCR-IRES-GFP-PuroR were 293

294	inserted into the loci of Rosa26 and Hipp11 of iPSC (OT1-iR9-iPSC), respectively
295	(Fig. 6a). Intracellular staining indicated that the OT1-TCR were expressed in the
296	OT1-iR9-iPSC (Fig. 6b). The OT1-iR9-iPSC were further induced into OT1-iHEC
297	(Fig. 6c) and OT1-iHPC (Fig. 6d). We transplanted the OT1-iHPC (three million per
298	mouse) into irradiated (4.5 Gy) Rag1 ^{-/-} mice (OT1-iHPC recipients) to reconstitute
299	OT1-iT lymphopoiesis. Six weeks after transplantation, the OT1-iHPC recipients
300	showed GFP^+CD8^+ iT cells expressing OT1 TCR $\alpha\beta$ in PB (Fig. 6e). We then
301	engrafted E.G7-OVA tumor cells into the groin of the Rag1 ^{-/-} or OT1-iT reconstituted
302	$Rag1^{-/-}$ mice (OT1-iT- $Rag1^{-/-}$ mice) by subcutaneous injection (0.2 million/mouse).
303	Tumor growth kinetics demonstrated that the E.G7-OVA tumors were dramatically
304	inhibited in the OT1-iT- $Rag1^{-/-}$ mice in comparison with the control $Rag1^{-/-}$ mice (Fig.
305	6f). We sacrificed the OT1-iT- $Rag1^{-/-}$ mice for the distribution analysis of the iT cells
306	in tumors and lymphoid organs 19 days after the tumor cell transplantation. Flow
307	cytometry analysis demonstrated that the E.G7-OVA tumors in the OT1-iT-Rag1-/-
308	mice were infiltrated with $CD8^+$ OT1-iT cells, which contained effector (CD44 ⁺
309	CD62L ⁻) and memory (CD44 ⁺ CD62L ⁺) iT cells, and IFN γ -secreting iT cells (Fig. 6g).
310	We also observed abundant $CD8^+$ iT cells carrying OT1 TCR $\alpha\beta$ in the bone marrow,
311	lymph node, and spleen of these mice (Supplementary information, Fig. S7).
312	Collectively, these data indicate that the iT cells derived from TCR-engineered iPSC
313	show anti-tumor activity in a solid tumor model.

314 **DISCUSSION**

In this study, the iHEC from *iR9*-PSC gave rise to blood progenitor cells preferentially

316 differentiating into iT cells in vivo. It is possible that the combinatory expression of *Runx1* and *Hoxa9*, pivotal transcription factors for definitive hematopoiesis $^{22-24,63}$ and 317 T cell development ¹⁸, synergistically and preferentially orchestrates the T and NK 318 319 lineage potentials but intrinsically compromises the other blood lineage potentials 320 during the early EHT and subsequent hematopoietic maturation phases in our 321 induction protocol. Regarding the developmental evidence that an earlier wave of 322 hematopoiesis preceding HSC emergence also produces blood progenitors possessing the T cell lineage potential $^{14-16}$, it is also possible that the *iR9*-PSC-derived iHPC 323 resemble the developmental HPC prior to the occurrence of definitive HSC since 324 325 overexpression of *Runx1* and *Hoxa9* at definitive HSC phase promoted 326 myeloid-instead of lymphoid-biased hematopoiesis in vivo (Supplementary 327 information, Fig. S8). The hematopoietic maturation step in the presence of OP9-DL1 328 feeder line unlikely causes T-lineage-biased iHPC, as an inducible expression of another transcription factor cocktail in PSC exactly using the same protocol gave rise 329 330 to iHPC preferentially contributing to B lymphopoiesis in B-NDG recipients 331 (unpublished data). Nonetheless, our data support the concept that synergies of 332 distinct transcription factors intrinsically determine variable hematopoietic lineage 333 potentials at as early as hemogenic endothelial cell stage.

Intravenous infusion of the iHPC from *iR9*-PSC successfully reconstituted iT lymphopoiesis *in vivo*. The induced LSK cells from the primary iHPC recipients further gave rise to T lymphocytes in secondary recipients. The occurrences of iDN1, iDN2, iDN3, iDN4 cells at different time-points in the thymi of iT-B-NDG mice

338	strongly indicated that the induced pre-thymic progenitors (Lin ⁻ c-kit ⁺ CD127 ⁺ /CD135 ⁺)
339	have the capacities of homing to central lymphoid organs and developed normally
340	following a cellular trajectory resembling natural T cell development. Despite the
341	inefficient generation of CD4SP iT cells in vitro due to the MHC-I restricted
342	OP9-DL1 feeder cells, robust phenotypic CD4SP iT cells generated in vivo and
343	successful allogeneic rejection mediated by the CD4SP and CD8SP iT cells support
344	that the regenerated regulatory iT cells possess normal immune functions. In
345	combination with the new method of generating induced B (iB) cells (unpublished
346	data), it would be promising to further test the coordinated immune responses of iT
347	cells and iB cells in infection models. Besides the pivotal roles of exogenous Runx1
348	and Hoxa9 during EHT and subsequent iHPC maturation phases, we could not
349	exclude the possibilities that the weak leaky expression of these two factors further
350	facilitated the iT cell development in vivo after infusion into immune-deficient mice,
351	as <i>Runx1</i> and <i>Hoxa9</i> are also involved in T cell development in bone marrow ⁶⁴ and
352	thymus ¹⁸ . In contrast to our approach, an induced T cell progenitor population
353	(DN2/DN3 cell phase) from mouse ESC lacked thymus-homing capacity in vivo and
354	required congenic fetal thymus organ for further development into mature T cells ⁶ ,
355	which implicated that an intrinsic gene network program essential for physiological T
356	cell development were not fully activated during hematopoietic induction from PSC,
357	which can be rescued by exogenous expression of <i>Runx1</i> and <i>Hoxa9</i> . Nonetheless, our
358	approach fully reconstitutes functional T lymphopoiesis in vivo using PSC source,
359	which avoids the malfunction risks of in vitro generated T cells due to the

360 insufficiency of negative and positive selections.

361	The single iHEC exhibited a transcriptome signature resembling E11 AGM EC and
362	pre-HSC. Activating the signature genes lacking in the iHEC but abundant in natural
363	E11 AGM EC or pre-HSC might further promote the production of a homogenous
364	iHEC population, thus consequently resulting in more efficient T cell generation or
365	multi-lineage hematopoietic reconstitution. The feature of T cell-lineage-bias
366	commitment from <i>iR9</i> -PSC brings advantages for gene editing using <i>iR9</i> -PSC rather
367	than using canonical adult HSPC, since manipulating HSPC in vitro always faces
368	stemness loss and might even introduce unknown impacts on the functions of other
369	blood lineage derivatives from the edited HSPC.

370 In conclusion, this study establishes a novel approach of preferentially 371 reconstituting functional and therapeutic T lymphopoiesis *in vivo* using PSC source by 372 defined transcription factors. At single cell resolution, we unveil that the T-lineage 373 specification is determined at as early as hemogenic endothelial cell stage and identify 374 the bona fide pre-thymic progenitors with thymus-homing features. Given the 375 enormous demand of regenerative T lymphopoiesis in treating T cell deficient and 376 cancer-bearing patients, this study provides insight into therapeutic T lymphopoiesis 377 using PSC source.

378 ACKNOWLEDGEMENTS

This work is supported by the Strategic Priority Research Program of Chinese Academy of Sciences (XDA16010601), the CAS Key Research Program of Frontier Sciences (QYZDB-SSW-SMC057), the Major Research and Development Project of

382	Guangzhou Regenerative Medicine and Health Guangdong Laboratory
383	(2018GZR110104006), the Chinese Ministry of Science and Technology
384	(2015CB964401, 2016YFA0100601, 2017YFA0103401, 2015CB964902, and
385	2015CB964901), the Health and Medical Care Collaborative Innovation Program of
386	Guangzhou Scientific and Technology (201803040017), the Major Scientific and
387	Technological Project of Guangdong Province (2014B020225005), the Science and
388	Technology Planning Project of Guangdong Province (2017B030314056), the
389	Program for Guangdong Introducing Innovative and Entrepreneurial Teams
390	(2017ZT07S347), the National Natural Science Foundation of China (31471117,
391	81470281, 31600948, 31425012).

392 AUTHOR CONTRIBUTIONS

393 R.G. and F.H. conducted all the major experiments, data analysis and wrote the 394 manuscript. Q.W., C.Lv, H.W., L.L., Y.Z., Z.B., M.Z., Y.L., X.L., C.X., T.W., P.Z., 395 K.W., Y.D., Y.L., YX.G. and Y.G. participated in multiple experiments; Q.W. and Z.L. 396 performed RNA-Seq and data analysis. C.Lv, H.W., Y.L., P.Z., Y.L., X.Z. and J.C. constructed vectors, prepared iPSC, designed and participated gene editing. Y.L. and 397 YQ.L. discussed the single cell data; B.L. and J.W. discussed the data and wrote the 398 manuscript; and J.W. designed the project and provided the final approval of the 399 400 manuscript.

401 **Competing Interests**: The authors declare no competing interests.

402

403 MATERIALS AND METHODS

19

404	Mice

405	B-NDG (NOD- <i>Prkdc</i> ^{Scid} <i>IL2rg</i> ^{tm1} /Bcgen, CD45.1 ⁺) mice were purchased from
406	Biocytogen Jiangsu Co., Ltd (Jiangsu, China). BALB/c and C57BL/6 (CD45.2 ⁺) mice
407	were purchased from Bejing Vital River Laboratory Animal Technology. Rag1 ^{-/-}
408	mice (C57BL/6 background) were a gift from Dr. Z. Liu from the Institute of
409	Biophysics (CAS, China). Mice were housed in the SPF-grade animal facility of the
410	Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences
411	(GIBH, CAS, China). All animal experiments were approved by the Institutional
412	Animal Care and Use Committee of Guangzhou Institutes of Biomedicine and Health
413	(IACUC-GIBH).
414	Cell culture
415	Mouse embryonic fibroblasts (MEFs) were derived from 13.5 d.p.c C57BL/6 mouse
416	embryos. MEFs were maintained in DMEM/high glucose (Hyclone), 10% FBS
417	(Natocor) supplemented with 1% nonessential amino acids (NEAA, Gibco). C57BL/6
418	mouse embryonic stem cells (Biocytogen) were maintained on feeder layers in ES

419 medium containing DMEM/high glucose, 15% FBS (Gibco), 1% NEAA, 1%

420 GlutaMAX (Gibco), 1% Sodium Pyruvate (Gibco), 0.1 mM β-mercaptoethanol

421 (Gibco), 1 µM PD0325901 (Selleck), 3 µM Chir99021 (Selleck) and 1000 U/ml LIF.

422 The OP9-DL1 cells (GFP⁺) were maintained in α -MEM (Gibco) supplemented with

423 20% FBS (CellMax). The AFT024 cell lines (ATCC) were maintained in DMEM/high

- 424 glucose, 10% FBS (Natocor) supplemented with 0.1 mM β -mercaptoethanol and 1%
- 425 Sodium Pyruvate. HEK293T (ATCC) and Plat-E (Cell Biolabs, Inc) cells were

maintained in DMEM/high glucose supplemented with 10% FBS (Natocor).
E.G7-OVA cell line (ATCC) was cultured in RPMI 1640 (Gibco) supplemented with
10% FBS (Natocor), 1% GlutaMAX, 1% sodium pyruvate, and 0.1 mM
β-mercaptoethanol.

430 Hematopoietic differentiation

PSC were trypsinized by 0.05% Trypsin-EDTA (Gibco) and resuspended in the basic 431 432 differentiation medium (BDM: IMDM, 15% FBS (Gibco), 200µg/ml iron-saturated 433 transferring (Sigma), 0.45 mM monothiolglycerol (Sigma), 1% GlutaMAX, and 50 434 µg/ml ascorbic acid (Sigma)). For removing the feeder layers, the PSC were plated 435 into the 0.1% gelatin-coated (Merck Millipore) well, and the floating cells were collected after 40 min. For EB generation ⁶⁵, the PSC were resuspended at 100,000 436 437 cells/ml in the BDM supplemented with 5 ng/ml BMP4 (Peprotech) and plated at 20 438 ul/drop for inverted culture in 15 cm dishes. At day 2.5, EBs were replanted into 439 gelatinized plates in BDM supplemented with 5 ng/ml BMP4 and 5 ng/ml VEGF 440 (Peprotech). At day 6, the medium was changed to BDM supplemented with 2% 441 conditioned medium derived from the supernatants of AFT024-mIL3, AFT024-mIL6, 442 AFT024-hFlt3L and AFT024-mSCF cell culture. Doxycycline (1 µg/ml, Sigma) was 443 added at day 6. The medium was replaced every other day. The plates were seeded with OP9-DL1 cells (20000 cells/well, 12-well plate) 12 hours prior to the 444 445 hematopoietic maturation step in EM medium (α -MEM, 15% DFBS (Hyclone), 200 446 µg/ml iron-saturated transferring, 0.45 mM monothiolglycerol, 1% GlutaMAX, 50 µg/ml ascorbic acid, 2% conditioned medium derived from supernatants of 447

448	AFT024-mIL3, AFT024-hFlt3L and AFT024-mSCF cell culture and 1 $\mu g/ml$
449	doxycycline. 100-500 sorted iHEC were seeded into each well for hematopoietic
450	maturation. The EM was half-replaced every two days.

451	Transp	lantation	of iHPC

8-10-week-old B-NDG mice were sublethally irradiated (2.25 Gy) by an X-ray
irradiator (RS2000, Rad Source Inc.). 0.5-1 million PSC-derived iHPC were injected
into each irradiated B-NDG mouse via retro-orbital veins. The mice were fed with
water containing co-trimoxazole (Tianjin Lisheng Pharmaceutical co., LTD) for two
weeks to prevent infection.

457 **T lymphocyte induction** *in vitro*

For T lymphocyte induction *in vitro*, OP9-DL1 coculture method¹ was used with 458 459 minor modifications. Briefly, the single-cell suspensions of iHPC (Day 21) were 460 maintained on OP9-DL1 feeder cells in T cell induction medium (TIM, α -MEM, 20%) 461 DFBS, and 1% GlutaMAX) supplemented with 2% conditioned medium derived from 462 supernatants of AFT024-hFlt3L and AFT024-hIL7 cell culture for sustained 12 days. 463 The iHEC-derived cells were trypsinized into single-cell suspensions and replanted into fresh OP9-DL1 monolayers every 6 days. And the TIM was replaced every 3 464 465 days.

466 Gene editing

467 Mouse MEF cells were reprogrammed into iPSC as described ⁶⁶. The *CAG* 468 *Pr-rtTA-3×Stop-TRE-Runx1-p2a-Hoxa9-pA-PGK Pr-HygroR* cassette was inserted 469 into the *Rosa26 locus* of mouse ESC/iPSC. The positive clones (*iR9*-ESC/iPSC) were

470	selected by Hygromycin B (150 μ g/ml, Invivogen) were further cultured in ES
471	medium supplemented with Dox (1 μ g/ml). The induced expression of <i>Runx1</i> and
472	Hoxa9 was confirmed by qPCR. For the generation of OT1-iR9-iPSC, a CAG Pr-OT1
473	$TCR\alpha$ -p2a-TCR β -IRES-GFP-PGK Pr-PuroR cassette was inserted into the Hipp11
474	locus of iR9-iPSC. The OT1 sequence was cloned from murine TCR OT1-2A.pMIG
475	II (Addgene). The OT1-iR9-iPSC positive clones were further selected by Puromycin
476	(1 μ g/ml, Invivogen) and the expression of OT1-TCR were measured by intra-cellular
477	staining.

478 Flow cytometry and cell sorting

Single-cell suspensions were prepared by 0.05% Trypsin-EDTA and filtered by 70 µm 479 filter. Single cells were blocked by Fc (CD16/32) (93, eBioscience) antibody, and then 480 481 stained with related antibodies. The following antibodies were used: c-kit (2B8, 482 eBioscience), CD31 (390, eBioscience), CD41 (eBioMWReg30, eBioscience), CD45 483 (30-F11, eBioscience), CD45.1 (A20, eBioscience), CD45.2 (104, eBioscience), CD2 484 (RM2-5, eBioscience), CD3 (145-2C11, eBioscience), CD4 (GK1.5, eBioscience), CD8a (53-6.7, eBioscience), CD19(eBio1D3, eBioscience), B220 (RA3-6B2, 485 eBioscience), CD11b (M1/70, eBioscience), NK1.1 (PK136, eBioscience), Ter119 486 (TER-119, eBioscience), Gr1 (RB6-8C5, eBioscience), CD201 (eBio1560, 487 488 eBioscience), CD135 (A2F10, eBioscience), CD127 (A7R34 eBioscience) FccRIa (MAR-1, biolegend), CD69 (H1.2F3, biolegend), CD62L (MEL-14, biolegend) IFNy 489 490 (XMG1.2, biolegend), IL17 (TC11-18H10.1, biolegend), CD44 (IM7, eBioscience), CD25 (PC61.5, eBioscience), TCRβ (H57-597, eBioscience), TCRγδ (GL3, 491

492	eBioscience), TCRva2 (B20.1, biolegend), TCRvβ5.1/5.2 (MR9-4, biolegend)
493	Streptavidin PE-Cy7 (eBioscience), Streptavidin eFlour 450 (eBioscience),
494	Streptavidin PE-Cy5 (biolegend). The cells were resuspended in the DAPI solution, or
495	PI solution (eBioscience) and were analyzed with Fortessa cytometer (BD
496	Biosciences). The cells were sorted using Arial II cytometer (BD Biosciences). The
497	flow data were analyzed with FlowJo (Three Star, Ashland OR).

498 Allogeneic skin transplantation

Individual $Rag1^{-/-}$ mice (8-10 weeks old) were adoptively transferred with splenic 499 cells equivalent to 5 million CD4⁺ and CD8⁺ iT cells from iT-B-NDG mice. Four days 500 after iT cell transfer, the allogeneic skin (BALB/c background) was transplanted as 501 described ⁶⁷. Grafts were considered rejection if there was a loss of distinct border, 502 visible signs of ulceration and necrosis to 80% of the graft area. The rejected skin 503 504 tissues were removed for analysis 9 days after skin transplantation. For analysis activated iT cells in rejected skin grafts, the single cell suspensions were prepared as 505 described ⁶⁸. The activated alloreactive iT lymphocytes were defined as 506 CD45.2⁺Ter119⁻CD11b⁻CD69⁺CD44⁺CD4⁺/CD8⁺. For analysis of cytokines released 507 by the alloreactive iT cells, we used anti-IL17 and anti-IFNy antibodies following an 508 intracellular staining protocol (eBioscience). 509

510 OT1-iT anti-tumor assay

For the reconstitution of the OT1-iT cells in $Rag1^{-/-}$ mice, three million OT1-iHPC were transplanted into each irradiated $Rag1^{-/-}$ mouse (4.5 Gy). OT1-iT cells (GFP⁺ CD8⁺ TCRV β 5⁺ TCRV α 2⁺) in PB were analyzed six weeks post-transplantation. The 514 E.G7-OVA cells were transplanted into the groin of the OT1-iT reconstituted mice by 515 subcutaneous injection (0.2 million/mouse). The tumor size was measured every 2 days and was calculated as length \times width (mm²). Mice with tumor size larger than 20 516 mm at the longest axis were euthanized for ethical consideration. To analyze the 517 518 tumor-infiltrating OT1-iT cells, tumors were isolated at day 15 and digested for 30 519 min at 37 by collagen IV solution (1mg/ml, Gibco) after being cut up. Then, the 520 single-cell suspensions were harvested for staining. The activated iT cells were 521 defined as CD45.2⁺GFP⁺CD8⁺CD44⁺CD62L⁻.

522 **RNA-seq and data analysis**

The cDNA of single iHEC sorted on day 11, and iHPC at Day 14, 17, and 21 or 523 1,000-CD4SP/CD8SP iT-cell aliquots of from spleens of iT-B-NDG mice were 524 generated and amplified using Discover-sc WTA Kit V2 (Vazyme). The quality of 525 526 amplified cDNA was assessed by qPCR analysis of housekeeping genes (B2m and 527 Gapdh). Samples that passed quality control were used for sequencing library 528 preparation by TruePrep DNA Library Prep Kit V2 (Vazyme). All libraries were 529 sequenced by illumina sequencer NextSeq 500. The raw data (fastq files) were generated using bcl2fastq software (version 2.16.0.10) and were uploaded to the Gene 530 Expression Omnibus public database (GSE121371, GSE121373, GSE128738). The 531 raw reads were aligned to mouse genome mm10 by HISAT2 (version 2.1.0)⁶⁹ and the 532 expression levels in TPM were estimated by StringTie (version 1.3.4)^{70,71}. The 533 534 wildtype CD4SP T cells, CD8SP T cells, myeloid cells, and B cells sequencing data (GSE105057) were downloaded from Gene Expression Omnibus¹³. Heat maps were 535

536	plotted using pheatmap (version 1.0.8). The natural embryonic single-cell data
537	(endothelial cells (CD31 ⁺ VE-cadherin ⁺ CD41 ⁻ CD43 ⁻ CD45 ⁻ Ter119 ⁻) T1 pre-HSC
538	(CD31 ⁺ CD45 ⁻ CD41 ^{low} c-kit ⁺ CD201 ^{high}), T2 pre-HSC (CD31 ⁺ CD45 ⁺ c-Kit ⁺ CD201 ⁺),
539	E12 HSC (Lin ⁻ Sca-1 ⁺ CD11b ^{low} CD201 ⁺), E14 HSC (CD45 ⁺ CD150 ⁺ CD48 ⁻ CD201 ⁺),
540	and adult HSC (CD45 ⁺ CD150 ⁺ CD48 ⁻ CD201 ⁺)) were downloaded from Gene
541	Expression Omnibus (GSE67120) ³⁵ .The batch effects of single-cell data between
542	iHEC and natural embryonic cells were removed using ComBat (sva R package,
543	version 3.26.0). The prcomp function of stats (R package, version 3.4.4) was used for
544	PCA. The DESeq2 was used for differential expression analysis. The PCA plot and
545	violin plot were plotted using ggplot2 (R package, version 2.2.1). tSNE was
546	performed by Rtsne (R package version 0.15). The TPM values of transcription
547	factors were log2-converted.

548 For TCR $\alpha\beta$ sequencing, 15,000 sorted CD4SP, and CD8SP naïve iT cells were 549 sorted from thymus or spleen of iT-B-NDG mice. The sorted iT cells of thymus were 550 gated on CD45.2⁺Ter119⁻CD11b⁻Gr1⁻CD19⁻B220⁻NK1.1⁻TCRγδ⁻CD4⁺CD8⁻ and CD45.2⁺Ter119⁻CD11b⁻Gr1⁻CD19⁻B220⁻NK1.1⁻TCRγδ⁻CD4⁻CD8⁺. The splenic naïve 551 iT cells gated CD45.2⁺CD4⁺CD8⁻CD62L⁺CD44⁻ 552 were on and CD45.2⁺CD4⁻CD8⁺CD62L⁺CD44⁻. The cDNA was generated and amplified by 553 554 SMARTer Mouse TCRaß Profiling Kit (Clontech). Libraries were sequenced by illumina sequencer MiSeq (2×250 cycles). The raw data (fastq files) were generated 555 556 using illumina bcl2fastq software and were uploaded to Gene Expression Omnibus public database (GSE121374). T cell receptors $\alpha\beta$ chains repertoires were aligned and 557

558	assembled using software MiXCR (version 2.1.12) 45 . The TCR $\alpha\beta$ clonotypes were
559	exported respectively by parameter 'chains' in exportClones command of MiXCR.
560	The exported clonotypes were visualized in the form of chord diagram using
561	VDJtools software (version 1.1.10) ⁷² .
562	Statistics
563	All quantitative analyses were based on a minimum of at least three sample replicates.
564	Data are presented as means \pm s.d. by GraphPad Prism. Independent-sample student T
565	test and One-way ANOVA were performed (SPSS). NS, not significant; $*p < 0.05$;
566	p < 0.01; p < 0.001
567	

568 **REFERENCES**

569	1	Schmitt, T. M. & Zuniga-Pflucker, J. C. Induction of T cell development from hematopoietic
570	_	progenitor cells by delta-like-1 in vitro. <i>Immunity</i> 17 , 749-756 (2002).
571	2	Mohtashami, M. et al. Direct comparison of Dll1- and Dll4-mediated Notch activation levels
572		shows differential lymphomyeloid lineage commitment outcomes. J Immunol 185, 867-876,
573		doi:10.4049/jimmunol.1000782 (2010).
574	3	Montel-Hagen, A. et al. Organoid-Induced Differentiation of Conventional T Cells from Human
575		Pluripotent Stem Cells. Cell Stem Cell 24, 376-389 e378, doi:10.1016/j.stem.2018.12.011
576		(2019).
577	4	Awong, G. et al. Human proT-cells generated in vitro facilitate hematopoietic stem
578		cell-derived T-lymphopoiesis in vivo and restore thymic architecture. Blood 122, 4210-4219,
579		doi:10.1182/blood-2012-12-472803 (2013).
580	5	Shukla, S. et al. Progenitor T-cell differentiation from hematopoietic stem cells using
581		Delta-like-4 and VCAM-1. Nat Methods 14, 531-538, doi:10.1038/nmeth.4258 (2017).
582	6	Schmitt, T. M. et al. Induction of T cell development and establishment of T cell competence
583		from embryonic stem cells differentiated in vitro. Nat Immunol 5, 410-417,
584		doi:10.1038/ni1055 (2004).
585	7	Sandler, V. M. et al. Reprogramming human endothelial cells to haematopoietic cells requires
586		vascular induction. Nature 511, 312-318, doi:10.1038/nature13547 (2014).
587	8	Sugimura, R. et al. Haematopoietic stem and progenitor cells from human pluripotent stem
588		cells. Nature 545, 432-438, doi:10.1038/nature22370 (2017).
589	9	Riddell, J. et al. Reprogramming committed murine blood cells to induced hematopoietic
590		stem cells with defined factors. <i>Cell</i> 157 , 549-564, doi:10.1016/j.cell.2014.04.006 (2014).

591 592	10	Lis, R. <i>et al.</i> Conversion of adult endothelium to immunocompetent haematopoietic stem cells. <i>Nature</i> 545 , 439-445, doi:10.1038/nature22326 (2017).
593	11	Stik, G. & Graf, T. Hoxb5, a Trojan horse to generate T cells. Nat Immunol 19, 210-212,
594		doi:10.1038/s41590-018-0053-y (2018).
595	12	Dzierzak, E. & Bigas, A. Blood Development: Hematopoietic Stem Cell Dependence and
596		Independence. <i>Cell Stem Cell</i> 22 , 639-651, doi:10.1016/j.stem.2018.04.015 (2018).
597	13	Zhang, M. et al. Transcription factor Hoxb5 reprograms B cells into functional T lymphocytes.
598		Nat Immunol 19 , 279-290, doi:10.1038/s41590-018-0046-x (2018).
599	14	Yoshimoto, M. <i>et al</i> . Autonomous murine T-cell progenitor production in the extra-embryonic
600		yolk sac before HSC emergence. <i>Blood</i> 119 , 5706-5714, doi:10.1182/blood-2011-12-397489
601		(2012).
602	15	Luis, T. C. <i>et al.</i> Initial seeding of the embryonic thymus by immune-restricted
603		lympho-myeloid progenitors. <i>Nat Immunol</i> 17 , 1424-1435, doi:10.1038/ni.3576 (2016).
604	16	Tian, Y. et al. The first wave of T lymphopoiesis in zebrafish arises from aorta endothelium
605	-	independent of hematopoietic stem cells. J Exp Med 214 , 3347-3360,
606		doi:10.1084/jem.20170488 (2017).
607	17	Zeng, Y. et al. Single-Cell RNA Sequencing Resolves Spatiotemporal Development of
608		Pre-thymic Lymphoid Progenitors and Thymus Organogenesis in Human Embryos. <i>Immunity</i> ,
609		doi:10.1016/j.immuni.2019.09.008.
610	18	Yui, M. A. & Rothenberg, E. V. Developmental gene networks: a triathlon on the course to T
611		cell identity. Nat Rev Immunol 14, 529-545, doi:10.1038/nri3702 (2014).
612	19	Sroczynska, P., Lancrin, C., Kouskoff, V. & Lacaud, G. The differential activities of Runx1
613		promoters define milestones during embryonic hematopoiesis. <i>Blood</i> 114 , 5279-5289,
614		doi:10.1182/blood-2009-05-222307 (2009).
615	20	Chen, M. J., Yokomizo, T., Zeigler, B. M., Dzierzak, E. & Speck, N. A. Runx1 is required for the
616		endothelial to haematopoietic cell transition but not thereafter. Nature 457, 887-891,
617		doi:10.1038/nature07619 (2009).
618	21	North, T. E. <i>et al.</i> Runx1 expression marks long-term repopulating hematopoietic stem cells in
619		the midgestation mouse embryo. <i>Immunity</i> 16 , 661-672 (2002).
620	22	Wang, Q. et al. Disruption of the Cbfa2 gene causes necrosis and hemorrhaging in the central
621		nervous system and blocks definitive hematopoiesis. Proc Natl Acad Sci U S A 93 , 3444-3449
622		(1996).
623	23	Okuda, T., van Deursen, J., Hiebert, S. W., Grosveld, G. & Downing, J. R. AML1, the target of
624		multiple chromosomal translocations in human leukemia, is essential for normal fetal liver
625		hematopoiesis. <i>Cell</i> 84 , 321-330 (1996).
626	24	Eilken, H. M., Nishikawa, S. & Schroeder, T. Continuous single-cell imaging of blood
627		generation from haemogenic endothelium. <i>Nature</i> 457 , 896-900, doi:10.1038/nature07760
628		(2009).
629	25	Pereira, C. F. <i>et al.</i> Induction of a hemogenic program in mouse fibroblasts. <i>Cell Stem Cell</i> 13 ,
630		205-218, doi:10.1016/j.stem.2013.05.024 (2013).
631	26	Pearson, S., Cuvertino, S., Fleury, M., Lacaud, G. & Kouskoff, V. In vivo repopulating activity
632		emerges at the onset of hematopoietic specification during embryonic stem cell
633		differentiation. <i>Stem Cell Reports</i> 4 , 431-444, doi:10.1016/j.stemcr.2015.01.003 (2015).
634	27	So, C. W., Karsunky, H., Wong, P., Weissman, I. L. & Cleary, M. L. Leukemic transformation of

635		hematopoietic progenitors by MLL-GAS7 in the absence of Hoxa7 or Hoxa9. Blood 103,
636		3192-3199, doi:10.1182/blood-2003-10-3722 (2004).
637	28	Ramos-Mejia, V. <i>et al.</i> HOXA9 promotes hematopoietic commitment of human embryonic
638	20	stem cells. <i>Blood</i> 124 , 3065-3075, doi:10.1182/blood-2014-03-558825 (2014).
639	29	Magnusson, M. <i>et al.</i> HOXA10 is a critical regulator for hematopoietic stem cells and
	29	
640		
641	20	doi:10.1182/blood-2006-10-054676 (2007).
642	30	Komorowska, K. <i>et al.</i> Hepatic Leukemia Factor Maintains Quiescence of Hematopoietic Stem
643		Cells and Protects the Stem Cell Pool during Regeneration. <i>Cell Rep</i> 21 , 3514-3523,
644	24	doi:10.1016/j.celrep.2017.11.084 (2017).
645	31	Davis, K. L. Ikaros: master of hematopoiesis, agent of leukemia. <i>Ther Adv Hematol</i> 2 , 359-368,
646		doi:10.1177/2040620711412419 (2011).
647	32	Nagel, S. et al. NKL homeobox gene activities in hematopoietic stem cells, T-cell development
648		and T-cell leukemia. <i>PLoS One</i> 12 , e0171164, doi:10.1371/journal.pone.0171164 (2017).
649	33	Oakley, K. et al. Setbp1 promotes the self-renewal of murine myeloid progenitors via
650		activation of Hoxa9 and Hoxa10. Blood 119, 6099-6108, doi:10.1182/blood-2011-10-388710
651		(2012).
652	34	Ng, E. S. et al. Differentiation of human embryonic stem cells to HOXA(+) hemogenic
653		vasculature that resembles the aorta-gonad-mesonephros. Nat Biotechnol 34, 1168-1179,
654		doi:10.1038/nbt.3702 (2016).
655	35	Zhou, F. et al. Tracing haematopoietic stem cell formation at single-cell resolution. Nature 533,
656		487-492, doi:10.1038/nature17997 (2016).
657	36	Inlay, M. A. et al. Identification of multipotent progenitors that emerge prior to
658		hematopoietic stem cells in embryonic development. Stem Cell Reports 2, 457-472,
659		doi:10.1016/j.stemcr.2014.02.001 (2014).
660	37	He, X., Park, K. & Kappes, D. J. The role of ThPOK in control of CD4/CD8 lineage commitment.
661		Annu Rev Immunol 28, 295-320, doi:10.1146/annurev.immunol.25.022106.141715 (2010).
662	38	Germar, K. et al. T-cell factor 1 is a gatekeeper for T-cell specification in response to Notch
663		signaling. Proc Natl Acad Sci U S A 108, 20060-20065, doi:10.1073/pnas.1110230108 (2011).
664	39	Aliahmad, P., Seksenyan, A. & Kaye, J. The many roles of TOX in the immune system. Curr Opin
665		Immunol 24 , 173-177, doi:10.1016/j.coi.2011.12.001 (2012).
666	40	Palacios, E. H. & Weiss, A. Function of the Src-family kinases, Lck and Fyn, in T-cell
667		development and activation. Oncogene 23, 7990-8000, doi:10.1038/sj.onc.1208074 (2004).
668	41	Taghon, T., Yui, M. A. & Rothenberg, E. V. Mast cell lineage diversion of T lineage precursors
669		by the essential T cell transcription factor GATA-3. <i>Nat Immunol</i> 8 , 845-855,
670		doi:10.1038/ni1486 (2007).
671	42	Liu, P., Li, P. & Burke, S. Critical roles of Bcl11b in T-cell development and maintenance of
672		T-cell identity. <i>Immunol Rev</i> 238, 138-149, doi:10.1111/j.1600-065X.2010.00953.x (2010).
673	43	Hahm, K. <i>et al.</i> Helios, a T cell-restricted Ikaros family member that quantitatively associates
674		with Ikaros at centromeric heterochromatin. <i>Genes Dev</i> 12 , 782-796 (1998).
675	44	Halim, T. Y. <i>et al.</i> Retinoic-acid-receptor-related orphan nuclear receptor alpha is required for
676		natural helper cell development and allergic inflammation. <i>Immunity</i> 37 , 463-474,
677		doi:10.1016/j.immuni.2012.06.012 (2012).
678	45	Bolotin, D. A. <i>et al.</i> MiXCR: software for comprehensive adaptive immunity profiling. <i>Nat</i>
0.0		

670		Mathads 12 280 281 day 10 1028 (smath 2264 (2015)
679 680	10	Methods 12 , 380-381, doi:10.1038/nmeth.3364 (2015).
680 681	46	Garrett-Sinha, L. A. Review of Ets1 structure, function, and roles in immunity. <i>Cell Mol Life Sci</i>
681	47	70 , 3375-3390, doi:10.1007/s00018-012-1243-7 (2013).
682	47	Zohren, F. et al. The transcription factor Lyl-1 regulates lymphoid specification and the
683		maintenance of early T lineage progenitors. Nat Immunol 13, 761-769, doi:10.1038/ni.2365
684		(2012).
685	48	Hock, H. et al. Tel/Etv6 is an essential and selective regulator of adult hematopoietic stem cell
686		survival. Genes Dev 18, 2336-2341, doi:10.1101/gad.1239604 (2004).
687	49	Greig, K. T., Carotta, S. & Nutt, S. L. Critical roles for c-Myb in hematopoietic progenitor cells.
688		Semin Immunol 20 , 247-256, doi:10.1016/j.smim.2008.05.003 (2008).
689	50	Wilkinson, A. C. et al. Single-cell analyses of regulatory network perturbations using
690		enhancer-targeting TALEs suggest novel roles for PU.1 during haematopoietic specification.
691		Development 141, 4018-4030, doi:10.1242/dev.115709 (2014).
692	51	Pang, S. H. M. et al. PU.1 Is Required for the Developmental Progression of Multipotent
693		Progenitors to Common Lymphoid Progenitors. <i>Front Immunol</i> 9 , 1264,
694		doi:10.3389/fimmu.2018.01264 (2018).
695	52	Sugimura, R. The significance and application of vascular niche in the development and
696		maintenance of hematopoietic stem cells. Int J Hematol 107 , 642-645,
697		doi:10.1007/s12185-018-2450-2 (2018).
698	53	Azcoitia, V., Aracil, M., Martinez, A. C. & Torres, M. The homeodomain protein Meis1 is
699		essential for definitive hematopoiesis and vascular patterning in the mouse embryo. Dev Biol
700		280 , 307-320, doi:10.1016/j.ydbio.2005.01.004 (2005).
701		
701	54	Nam, C. H. & Rabbitts, T. H. The role of LMO2 in development and in T cell leukemia after
701	54	Nam, C. H. & Rabbitts, T. H. The role of LMO2 in development and in T cell leukemia after chromosomal translocation or retroviral insertion. <i>Mol Ther</i> 13 , 15-25,
	54	
702	54	chromosomal translocation or retroviral insertion. Mol Ther 13, 15-25,
702 703		chromosomal translocation or retroviral insertion. <i>Mol Ther</i> 13 , 15-25, doi:10.1016/j.ymthe.2005.09.010 (2006).
702 703 704		chromosomal translocation or retroviral insertion. <i>Mol Ther</i> 13 , 15-25, doi:10.1016/j.ymthe.2005.09.010 (2006). Yu, Y. <i>et al.</i> Bcl11a is essential for lymphoid development and negatively regulates p53. <i>J Exp Med</i> 209 , 2467-2483, doi:10.1084/jem.20121846 (2012).
702 703 704 705	55	chromosomal translocation or retroviral insertion. <i>Mol Ther</i> 13 , 15-25, doi:10.1016/j.ymthe.2005.09.010 (2006). Yu, Y. <i>et al.</i> Bcl11a is essential for lymphoid development and negatively regulates p53. <i>J Exp Med</i> 209 , 2467-2483, doi:10.1084/jem.20121846 (2012). Boutboul, D. <i>et al.</i> Dominant-negative IKZF1 mutations cause a T, B, and myeloid cell
702 703 704 705 706 707	55	 chromosomal translocation or retroviral insertion. <i>Mol Ther</i> 13, 15-25, doi:10.1016/j.ymthe.2005.09.010 (2006). Yu, Y. <i>et al.</i> Bcl11a is essential for lymphoid development and negatively regulates p53. <i>J Exp Med</i> 209, 2467-2483, doi:10.1084/jem.20121846 (2012). Boutboul, D. <i>et al.</i> Dominant-negative IKZF1 mutations cause a T, B, and myeloid cell combined immunodeficiency. <i>J Clin Invest</i> 128, 3071-3087, doi:10.1172/JCl98164 (2018).
702 703 704 705 706 707 708	55 56	 chromosomal translocation or retroviral insertion. <i>Mol Ther</i> 13, 15-25, doi:10.1016/j.ymthe.2005.09.010 (2006). Yu, Y. <i>et al.</i> Bcl11a is essential for lymphoid development and negatively regulates p53. <i>J Exp Med</i> 209, 2467-2483, doi:10.1084/jem.20121846 (2012). Boutboul, D. <i>et al.</i> Dominant-negative IKZF1 mutations cause a T, B, and myeloid cell combined immunodeficiency. <i>J Clin Invest</i> 128, 3071-3087, doi:10.1172/JCl98164 (2018). Weng, A. P. <i>et al.</i> c-Myc is an important direct target of Notch1 in T-cell acute lymphoblastic
702 703 704 705 706 707 708 709	55 56 57	 chromosomal translocation or retroviral insertion. <i>Mol Ther</i> 13, 15-25, doi:10.1016/j.ymthe.2005.09.010 (2006). Yu, Y. <i>et al.</i> Bcl11a is essential for lymphoid development and negatively regulates p53. <i>J Exp Med</i> 209, 2467-2483, doi:10.1084/jem.20121846 (2012). Boutboul, D. <i>et al.</i> Dominant-negative IKZF1 mutations cause a T, B, and myeloid cell combined immunodeficiency. <i>J Clin Invest</i> 128, 3071-3087, doi:10.1172/JCl98164 (2018). Weng, A. P. <i>et al.</i> c-Myc is an important direct target of Notch1 in T-cell acute lymphoblastic leukemia/lymphoma. <i>Genes Dev</i> 20, 2096-2109, doi:10.1101/gad.1450406 (2006).
702 703 704 705 706 707 708 709 710	55 56	 chromosomal translocation or retroviral insertion. <i>Mol Ther</i> 13, 15-25, doi:10.1016/j.ymthe.2005.09.010 (2006). Yu, Y. <i>et al.</i> Bcl11a is essential for lymphoid development and negatively regulates p53. <i>J Exp Med</i> 209, 2467-2483, doi:10.1084/jem.20121846 (2012). Boutboul, D. <i>et al.</i> Dominant-negative IKZF1 mutations cause a T, B, and myeloid cell combined immunodeficiency. <i>J Clin Invest</i> 128, 3071-3087, doi:10.1172/JCl98164 (2018). Weng, A. P. <i>et al.</i> c-Myc is an important direct target of Notch1 in T-cell acute lymphoblastic leukemia/lymphoma. <i>Genes Dev</i> 20, 2096-2109, doi:10.1101/gad.1450406 (2006). Del Real, M. M. & Rothenberg, E. V. Architecture of a lymphomyeloid developmental switch
702 703 704 705 706 707 708 709 710 711	55 56 57	 chromosomal translocation or retroviral insertion. <i>Mol Ther</i> 13, 15-25, doi:10.1016/j.ymthe.2005.09.010 (2006). Yu, Y. <i>et al.</i> Bcl11a is essential for lymphoid development and negatively regulates p53. <i>J Exp Med</i> 209, 2467-2483, doi:10.1084/jem.20121846 (2012). Boutboul, D. <i>et al.</i> Dominant-negative IKZF1 mutations cause a T, B, and myeloid cell combined immunodeficiency. <i>J Clin Invest</i> 128, 3071-3087, doi:10.1172/JCl98164 (2018). Weng, A. P. <i>et al.</i> c-Myc is an important direct target of Notch1 in T-cell acute lymphoblastic leukemia/lymphoma. <i>Genes Dev</i> 20, 2096-2109, doi:10.1101/gad.1450406 (2006). Del Real, M. M. & Rothenberg, E. V. Architecture of a lymphomyeloid developmental switch controlled by PU.1, Notch and Gata3. <i>Development</i> 140, 1207-1219, doi:10.1242/dev.088559
702 703 704 705 706 707 708 709 710 711 712	55 56 57 58	 chromosomal translocation or retroviral insertion. <i>Mol Ther</i> 13, 15-25, doi:10.1016/j.ymthe.2005.09.010 (2006). Yu, Y. <i>et al.</i> Bcl11a is essential for lymphoid development and negatively regulates p53. <i>J Exp Med</i> 209, 2467-2483, doi:10.1084/jem.20121846 (2012). Boutboul, D. <i>et al.</i> Dominant-negative IKZF1 mutations cause a T, B, and myeloid cell combined immunodeficiency. <i>J Clin Invest</i> 128, 3071-3087, doi:10.1172/JCI98164 (2018). Weng, A. P. <i>et al.</i> c-Myc is an important direct target of Notch1 in T-cell acute lymphoblastic leukemia/lymphoma. <i>Genes Dev</i> 20, 2096-2109, doi:10.1101/gad.1450406 (2006). Del Real, M. M. & Rothenberg, E. V. Architecture of a lymphomyeloid developmental switch controlled by PU.1, Notch and Gata3. <i>Development</i> 140, 1207-1219, doi:10.1242/dev.088559 (2013).
702 703 704 705 706 707 708 709 710 711 712 713	55 56 57	 chromosomal translocation or retroviral insertion. <i>Mol Ther</i> 13, 15-25, doi:10.1016/j.ymthe.2005.09.010 (2006). Yu, Y. <i>et al.</i> Bcl11a is essential for lymphoid development and negatively regulates p53. <i>J Exp Med</i> 209, 2467-2483, doi:10.1084/jem.20121846 (2012). Boutboul, D. <i>et al.</i> Dominant-negative IKZF1 mutations cause a T, B, and myeloid cell combined immunodeficiency. <i>J Clin Invest</i> 128, 3071-3087, doi:10.1172/JCI98164 (2018). Weng, A. P. <i>et al.</i> c-Myc is an important direct target of Notch1 in T-cell acute lymphoblastic leukemia/lymphoma. <i>Genes Dev</i> 20, 2096-2109, doi:10.1101/gad.1450406 (2006). Del Real, M. M. & Rothenberg, E. V. Architecture of a lymphomyeloid developmental switch controlled by PU.1, Notch and Gata3. <i>Development</i> 140, 1207-1219, doi:10.1242/dev.088559 (2013). Uehara, S. <i>et al.</i> Premature expression of chemokine receptor CCR9 impairs T cell
702 703 704 705 706 707 708 709 710 711 712 713 714	55 56 57 58 59	 chromosomal translocation or retroviral insertion. <i>Mol Ther</i> 13, 15-25, doi:10.1016/j.ymthe.2005.09.010 (2006). Yu, Y. <i>et al.</i> Bcl11a is essential for lymphoid development and negatively regulates p53. <i>J Exp Med</i> 209, 2467-2483, doi:10.1084/jem.20121846 (2012). Boutboul, D. <i>et al.</i> Dominant-negative IKZF1 mutations cause a T, B, and myeloid cell combined immunodeficiency. <i>J Clin Invest</i> 128, 3071-3087, doi:10.1172/JCl98164 (2018). Weng, A. P. <i>et al.</i> c-Myc is an important direct target of Notch1 in T-cell acute lymphoblastic leukemia/lymphoma. <i>Genes Dev</i> 20, 2096-2109, doi:10.1101/gad.1450406 (2006). Del Real, M. M. & Rothenberg, E. V. Architecture of a lymphomyeloid developmental switch controlled by PU.1, Notch and Gata3. <i>Development</i> 140, 1207-1219, doi:10.1242/dev.088559 (2013). Uehara, S. <i>et al.</i> Premature expression of chemokine receptor CCR9 impairs T cell development. <i>J Immunol</i> 176, 75-84 (2006).
702 703 704 705 706 707 708 709 710 711 712 713 714 715	55 56 57 58	 chromosomal translocation or retroviral insertion. <i>Mol Ther</i> 13, 15-25, doi:10.1016/j.ymthe.2005.09.010 (2006). Yu, Y. <i>et al.</i> Bcl11a is essential for lymphoid development and negatively regulates p53. <i>J Exp Med</i> 209, 2467-2483, doi:10.1084/jem.20121846 (2012). Boutboul, D. <i>et al.</i> Dominant-negative IKZF1 mutations cause a T, B, and myeloid cell combined immunodeficiency. <i>J Clin Invest</i> 128, 3071-3087, doi:10.1172/JCI98164 (2018). Weng, A. P. <i>et al.</i> c-Myc is an important direct target of Notch1 in T-cell acute lymphoblastic leukemia/lymphoma. <i>Genes Dev</i> 20, 2096-2109, doi:10.1101/gad.1450406 (2006). Del Real, M. M. & Rothenberg, E. V. Architecture of a lymphomyeloid developmental switch controlled by PU.1, Notch and Gata3. <i>Development</i> 140, 1207-1219, doi:10.1242/dev.088559 (2013). Uehara, S. <i>et al.</i> Premature expression of chemokine receptor CCR9 impairs T cell development. <i>J Immunol</i> 176, 75-84 (2006). Zlotoff, D. A. <i>et al.</i> CCR7 and CCR9 together recruit hematopoietic progenitors to the adult
702 703 704 705 706 707 708 709 710 711 712 713 714 715 716	55 56 57 58 59 60	 chromosomal translocation or retroviral insertion. <i>Mol Ther</i> 13, 15-25, doi:10.1016/j.ymthe.2005.09.010 (2006). Yu, Y. <i>et al.</i> Bcl11a is essential for lymphoid development and negatively regulates p53. <i>J Exp Med</i> 209, 2467-2483, doi:10.1084/jem.20121846 (2012). Boutboul, D. <i>et al.</i> Dominant-negative IKZF1 mutations cause a T, B, and myeloid cell combined immunodeficiency. <i>J Clin Invest</i> 128, 3071-3087, doi:10.1172/JCl98164 (2018). Weng, A. P. <i>et al.</i> c-Myc is an important direct target of Notch1 in T-cell acute lymphoblastic leukemia/lymphoma. <i>Genes Dev</i> 20, 2096-2109, doi:10.1101/gad.1450406 (2006). Del Real, M. M. & Rothenberg, E. V. Architecture of a lymphomyeloid developmental switch controlled by PU.1, Notch and Gata3. <i>Development</i> 140, 1207-1219, doi:10.1242/dev.088559 (2013). Uehara, S. <i>et al.</i> Premature expression of chemokine receptor CCR9 impairs T cell development. <i>J Immunol</i> 176, 75-84 (2006). Zlotoff, D. A. <i>et al.</i> CCR7 and CCR9 together recruit hematopoietic progenitors to the adult thymus. <i>Blood</i> 115, 1897-1905, doi:10.1182/blood-2009-08-237784 (2010).
702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717	55 56 57 58 59	 chromosomal translocation or retroviral insertion. <i>Mol Ther</i> 13, 15-25, doi:10.1016/j.ymthe.2005.09.010 (2006). Yu, Y. <i>et al.</i> Bcl11a is essential for lymphoid development and negatively regulates p53. <i>J Exp Med</i> 209, 2467-2483, doi:10.1084/jem.20121846 (2012). Boutboul, D. <i>et al.</i> Dominant-negative IKZF1 mutations cause a T, B, and myeloid cell combined immunodeficiency. <i>J Clin Invest</i> 128, 3071-3087, doi:10.1172/JCI98164 (2018). Weng, A. P. <i>et al.</i> c-Myc is an important direct target of Notch1 in T-cell acute lymphoblastic leukemia/lymphoma. <i>Genes Dev</i> 20, 2096-2109, doi:10.1101/gad.1450406 (2006). Del Real, M. M. & Rothenberg, E. V. Architecture of a lymphomyeloid developmental switch controlled by PU.1, Notch and Gata3. <i>Development</i> 140, 1207-1219, doi:10.1242/dev.088559 (2013). Uehara, S. <i>et al.</i> Premature expression of chemokine receptor CCR9 impairs T cell development. <i>J Immunol</i> 176, 75-84 (2006). Zlotoff, D. A. <i>et al.</i> CCR7 and CCR9 together recruit hematopoietic progenitors to the adult thymus. <i>Blood</i> 115, 1897-1905, doi:10.1182/blood-2009-08-237784 (2010). Tussiwand, R. <i>et al.</i> The preTCR-dependent DN3 to DP transition requires Notch signaling, is
702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718	55 56 57 58 59 60	 chromosomal translocation or retroviral insertion. <i>Mol Ther</i> 13, 15-25, doi:10.1016/j.ymthe.2005.09.010 (2006). Yu, Y. <i>et al.</i> Bcl11a is essential for lymphoid development and negatively regulates p53. <i>J Exp Med</i> 209, 2467-2483, doi:10.1084/jem.20121846 (2012). Boutboul, D. <i>et al.</i> Dominant-negative IKZF1 mutations cause a T, B, and myeloid cell combined immunodeficiency. <i>J Clin Invest</i> 128, 3071-3087, doi:10.1172/JCl98164 (2018). Weng, A. P. <i>et al.</i> c-Myc is an important direct target of Notch1 in T-cell acute lymphoblastic leukemia/lymphoma. <i>Genes Dev</i> 20, 2096-2109, doi:10.1101/gad.1450406 (2006). Del Real, M. M. & Rothenberg, E. V. Architecture of a lymphomyeloid developmental switch controlled by PU.1, Notch and Gata3. <i>Development</i> 140, 1207-1219, doi:10.1242/dev.088559 (2013). Uehara, S. <i>et al.</i> Premature expression of chemokine receptor CCR9 impairs T cell development. <i>J Immunol</i> 176, 75-84 (2006). Zlotoff, D. A. <i>et al.</i> CCR7 and CCR9 together recruit hematopoietic progenitors to the adult thymus. <i>Blood</i> 115, 1897-1905, doi:10.1182/blood-2009-08-237784 (2010). Tussiwand, R. <i>et al.</i> The preTCR-dependent DN3 to DP transition requires Notch signaling, is improved by CXCL12 signaling and is inhibited by IL-7 signaling. <i>Eur J Immunol</i> 41, 3371-3380,
 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 	55 56 57 58 59 60 61	 chromosomal translocation or retroviral insertion. <i>Mol Ther</i> 13, 15-25, doi:10.1016/j.ymthe.2005.09.010 (2006). Yu, Y. <i>et al.</i> Bcl11a is essential for lymphoid development and negatively regulates p53. <i>J Exp Med</i> 209, 2467-2483, doi:10.1084/jem.20121846 (2012). Boutboul, D. <i>et al.</i> Dominant-negative IKZF1 mutations cause a T, B, and myeloid cell combined immunodeficiency. <i>J Clin Invest</i> 128, 3071-3087, doi:10.1172/JCI98164 (2018). Weng, A. P. <i>et al.</i> c-Myc is an important direct target of Notch1 in T-cell acute lymphoblastic leukemia/lymphoma. <i>Genes Dev</i> 20, 2096-2109, doi:10.1101/gad.1450406 (2006). Del Real, M. M. & Rothenberg, E. V. Architecture of a lymphomyeloid developmental switch controlled by PU.1, Notch and Gata3. <i>Development</i> 140, 1207-1219, doi:10.1242/dev.088559 (2013). Uehara, S. <i>et al.</i> Premature expression of chemokine receptor CCR9 impairs T cell development. <i>J Immunol</i> 176, 75-84 (2006). Zlotoff, D. A. <i>et al.</i> CCR7 and CCR9 together recruit hematopoietic progenitors to the adult thymus. <i>Blood</i> 115, 1897-1905, doi:10.1182/blood-2009-08-237784 (2010). Tussiwand, R. <i>et al.</i> The preTCR-dependent DN3 to DP transition requires Notch signaling, is improved by CXCL12 signaling and is inhibited by IL-7 signaling. <i>Eur J Immunol</i> 41, 3371-3380, doi:10.1002/eji.201141824 (2011).
 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 	55 56 57 58 59 60	 chromosomal translocation or retroviral insertion. <i>Mol Ther</i> 13, 15-25, doi:10.1016/j.ymthe.2005.09.010 (2006). Yu, Y. <i>et al.</i> Bcl11a is essential for lymphoid development and negatively regulates p53. <i>J Exp Med</i> 209, 2467-2483, doi:10.1084/jem.20121846 (2012). Boutboul, D. <i>et al.</i> Dominant-negative IKZF1 mutations cause a T, B, and myeloid cell combined immunodeficiency. <i>J Clin Invest</i> 128, 3071-3087, doi:10.1172/JCl98164 (2018). Weng, A. P. <i>et al.</i> c-Myc is an important direct target of Notch1 in T-cell acute lymphoblastic leukemia/lymphoma. <i>Genes Dev</i> 20, 2096-2109, doi:10.1101/gad.1450406 (2006). Del Real, M. M. & Rothenberg, E. V. Architecture of a lymphomyeloid developmental switch controlled by PU.1, Notch and Gata3. <i>Development</i> 140, 1207-1219, doi:10.1242/dev.088559 (2013). Uehara, S. <i>et al.</i> Premature expression of chemokine receptor CCR9 impairs T cell development. <i>J Immunol</i> 176, 75-84 (2006). Zlotoff, D. A. <i>et al.</i> CCR7 and CCR9 together recruit hematopoietic progenitors to the adult thymus. <i>Blood</i> 115, 1897-1905, doi:10.1182/blood-2009-08-237784 (2010). Tussiwand, R. <i>et al.</i> The preTCR-dependent DN3 to DP transition requires Notch signaling, is improved by CXCL12 signaling and is inhibited by IL-7 signaling. <i>Eur J Immunol</i> 41, 3371-3380, doi:10.1002/eji.201141824 (2011). Janas, M. L. <i>et al.</i> Thymic development beyond beta-selection requires phosphatidylinositol
 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 	55 56 57 58 59 60 61	 chromosomal translocation or retroviral insertion. <i>Mol Ther</i> 13, 15-25, doi:10.1016/j.ymthe.2005.09.010 (2006). Yu, Y. <i>et al.</i> Bcl11a is essential for lymphoid development and negatively regulates p53. <i>J Exp Med</i> 209, 2467-2483, doi:10.1084/jem.20121846 (2012). Boutboul, D. <i>et al.</i> Dominant-negative IKZF1 mutations cause a T, B, and myeloid cell combined immunodeficiency. <i>J Clin Invest</i> 128, 3071-3087, doi:10.1172/JCI98164 (2018). Weng, A. P. <i>et al.</i> c-Myc is an important direct target of Notch1 in T-cell acute lymphoblastic leukemia/lymphoma. <i>Genes Dev</i> 20, 2096-2109, doi:10.1101/gad.1450406 (2006). Del Real, M. M. & Rothenberg, E. V. Architecture of a lymphomyeloid developmental switch controlled by PU.1, Notch and Gata3. <i>Development</i> 140, 1207-1219, doi:10.1242/dev.088559 (2013). Uehara, S. <i>et al.</i> Premature expression of chemokine receptor CCR9 impairs T cell development. <i>J Immunol</i> 176, 75-84 (2006). Zlotoff, D. A. <i>et al.</i> CCR7 and CCR9 together recruit hematopoietic progenitors to the adult thymus. <i>Blood</i> 115, 1897-1905, doi:10.1182/blood-2009-08-237784 (2010). Tussiwand, R. <i>et al.</i> The preTCR-dependent DN3 to DP transition requires Notch signaling, is improved by CXCL12 signaling and is inhibited by IL-7 signaling. <i>Eur J Immunol</i> 41, 3371-3380, doi:10.1002/eji.201141824 (2011).

723		have defects in myeloid, erythroid, and lymphoid hematopoiesis. Blood 89, 1922-1930
724		(1997).
725	64	Gwin, K. A., Shapiro, M. B., Dolence, J. J., Huang, Z. L. & Medina, K. L. Hoxa9 and Flt3 signaling
726		synergistically regulate an early checkpoint in lymphopoiesis. J Immunol 191, 745-754,
727		doi:10.4049/jimmunol.1203294 (2013).
728	65	Desbaillets, I., Ziegler, U., Groscurth, P. & Gassmann, M. Embryoid bodies: an in vitro model
729		of mouse embryogenesis. Exp Physiol 85, 645-651 (2000).
730	66	Chen, J. et al. Rational optimization of reprogramming culture conditions for the generation
731		of induced pluripotent stem cells with ultra-high efficiency and fast kinetics. Cell Res 21,
732		884-894, doi:10.1038/cr.2011.51 (2011).
733	67	Lan, P., Tonomura, N., Shimizu, A., Wang, S. & Yang, Y. G. Reconstitution of a functional
734		human immune system in immunodeficient mice through combined human fetal
735		thymus/liver and CD34+ cell transplantation. Blood 108, 487-492,
736		doi:10.1182/blood-2005-11-4388 (2006).
737	68	Jiang, X. et al. Skin infection generates non-migratory memory CD8+ T(RM) cells providing
738		global skin immunity. <i>Nature</i> 483 , 227-231, doi:10.1038/nature10851 (2012).
739	69	Kim, D., Langmead, B. & Salzberg, S. L. HISAT: a fast spliced aligner with low memory
740		requirements. Nat Methods 12, 357-360, doi:10.1038/nmeth.3317 (2015).
741	70	Pertea, M. et al. StringTie enables improved reconstruction of a transcriptome from RNA-seq
742		reads. Nat Biotechnol 33, 290-295, doi:10.1038/nbt.3122 (2015).
743	71	Pertea, M., Kim, D., Pertea, G. M., Leek, J. T. & Salzberg, S. L. Transcript-level expression
744		analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nat Protoc 11,
745		1650-1667, doi:10.1038/nprot.2016.095 (2016).
746	72	Shugay, M. et al. VDJtools: Unifying Post-analysis of T Cell Receptor Repertoires. PLoS Comput
747		<i>Biol</i> 11 , e1004503, doi:10.1371/journal.pcbi.1004503 (2015).
748		

750 FIGURE LEGENDS

751 Fig. 1 T cell regeneration *in vivo* from *iRunx1-p2a-Hoxa9*-edited embryonic stem

752 cells

753 **a** The strategy of stepwise T lineage induction by defined transcription factors. iRunx1-ESC, and iRunx1-Xi- ESC lines (C57BL/6 background, CD45.2 strain) were 754 755 used for T cell lineage induction. Xi means one of the eight transcription factors 756 Hoxa5, Hoxa7, Hoxa9, Hoxa10, Hlf, Ikzf1, Nkx2-3, Setbp1. b Heatmaps of the eight 757 transcription factors abundantly expressed in embryonic pre-HSC but rarely expressed 758 in iRunx1-ES derived iHEC. The expression value (TPM) of each gene was converted 759 by log2 and illustrated by pheatmap (R package). One column represents one cell 760 repeat. (iRunx1-iHEC, n=50 single cells, T1-pre-HSC, n=28 single cells). c Sorting 761 gates of iHEC population at day 11 derived from *iRunx1-Hoxa9*-ES line (*iR9*-ESC). 762 Two representative plots from five independent experiments are shown. d 763 Immuno-phenotypes of pre-thymic progenitors in induced hematopoietic progenitor 764 cells from iHEC after ten-day maturation. Two representative plots from five 765 independent experiments. Lin defined was as CD2⁻CD3⁻CD4⁻CD8⁻CD11b⁻Gr1⁻Ter119⁻CD19⁻NK1.1⁻TCRγδ⁻. 766 Pre-thymic 767 progenitors were defined as Lin⁻c-kit⁺CD127⁺/CD135⁺. e Pluripotent stem 768 cell-derived T cells in PB of B-NDG mice were analyzed by flow cytometry 4 weeks 769 after transplantation. One million iHEC-derived hematopoietic cells were transplanted 770 into individual B-NDG mice (CD45.1⁺) irradiated by X-ray (2.25 Gy). Three representative mice from five independent experiments were analyzed. f Summary of 771

pluripotent stem cell-derived T cells in PB of individual B-NDG mice from five
independent experiments. Forty B-NDG mice transplanted with ESC-derived iHPC
were analyzed. The box plot shows the percentage of the CD3⁺ iT cells in PB, the
percentage values were illustrated by ggplot2 (R package). A base-10 logarithmic
scale was used for the Y-axis. One point represents one mouse.

Fig. 2 Tissue distributions, transcriptome characterization, and TCRα/β diversities of ESC-derived T Cells

779 a Flow cytometry analysis of mature iT cells in spleen (SP), lymph node (LN), and 780 peripheral blood (PB) of B-NDG mice transplanted with ESC-derived hematopoietic 781 cells. Each B-NDG mouse was transplanted with one million iHPC collected on day 782 21. Representative mouse was sacrificed and analyzed at 5 and 6 weeks after 783 transplantation. Data from two representative mice are shown. **b** Flow cytometry 784 analysis of iDN cells in the thymus of B-NDG mice transplanted with ESC-derived 785 hematopoietic cells. Each B-NDG mouse was transplanted with one million iHPC at 786 day 21. Representative mouse was sacrificed and analyzed at 4 and 5 weeks after 787 transplantation. Data from four representative mice of two independent experiments are shown. Lin was defined as Ter119⁻CD11b⁻Gr1⁻CD19⁻B220⁻NK1.1⁻TCRγδ⁻. c Flow 788 789 cytometry analysis of iHPC in bone marrow (BM) transplanted with iHPC. Each 790 B-NDG mouse was transplanted with one million iHPC collected at day 10 in the 791 presence of OP9-DL1 feeder cells. Representative mouse was sacrificed and analyzed 792 5 weeks and 6 weeks after transplantation. The BM-derived iHPC (CD45.2⁺Lin⁻c-kit^{mid}Sca1⁺) were sorted for 2nd transplantation. Data from two mice 793

794	are shown. d Flow cytometry analysis of iT and iNK in PB, spleen (SP) and bone
795	marrow (BM) 6 weeks after 2nd transplantation. 500 LSK cells from primary iT mice
796	were used as input for secondary transplantation. The secondary recipients were
797	sacrificed and analyzed 6 weeks after transplantation. Data from one mouse are
798	shown. e Characterization of surface markers on CD4SP and CD8SP iT cells. CD4SP
799	and CD8SP iT cells were sorted from the spleens of B-NDG mice transplanted with
800	ESC derived hematopoietic cells at week-5. One biological replicate per column.
801	Myeloid cells (n = 2 sample repeats): Ter119 ⁻ CD3 ⁻ CD19 ⁻ CD11b ⁺ ; B cells (n = 4
802	sample repeats): Ter119 ⁻ CD11b ⁻ CD3 ⁻ CD19 ⁺ ; CD4 ⁺ cells (n = 3 sample repeats):
803	Ter119 ⁻ CD19 ⁻ CD11b ⁻ CD4 ⁺ ; CD8 ⁺ cells (n = 3 sample repeats): Ter119 ⁻ CD19 ⁻
804	$CD11b^{-}CD8^{+}$ iCD4 ⁺ cells (n = 3 sample repeats): CD45.2 ⁺ Ter119^{-}CD19^{-}CD11b^{-}
805	$CD4^+$; $iCD8^+$ cells (n = 3 sample repeats): $CD45.2^+Ter119^-CD19^-CD11b^-CD8^+$. f
806	Characterization of transcription factors in CD4SP and CD8SP iT cells. g Chord
807	diagram of TCR α diversity in thymus iT cells. h Chord diagram of TCR β diversity in
808	thymus iT cells. i Chord diagram of TCR α diversity in thymus iT cells. j Chord
809	diagram of TCR β diversity in spleen iT cells. Aliquots of sorted 15,000 naïve CD4SP
810	and CD8SP iT cells from either thymus or spleen of iT-B-NDG mice were used as
811	cell inputs for TCRaß sequencing.

Fig. 3 Assessment of T potential of single iHEC from *iR9*-ESC

a The strategy of T cell induction from *iR9*-ESC-derived single iHEC. Single iHEC
were sorted into individual wells (24-well plates) pre-seeded with OP9-DL1 feeder
cells (10000 cells/well) 12 hours prior maturation in EM medium with doxycycline (1

816	$\mu\text{g/ml}).$ Doxycycline was sustained for 10 days during the maturation step. After
817	maturation, the bulk blood cells were assessed for T lineage generation potential. For
818	in vivo T cell regeneration, the single iHEC-derived bulk hematopoietic cells (day 10)
819	were transplanted into individual B-NDG recipients. For in vitro T cell induction, the
820	medium was changed to T cell induction medium (TIM, $\alpha\text{-MEM},$ 20% DFBS, and 1%
821	GlutaMAX) supplemented with 2% conditioned medium derived from supernatants of
822	AFT024-hFlt3L and AFT024-hIL7 cell culture for sustaining 12 days. b Single iHEC
823	efficiently gave rise to T cells. Three hundred and eighty-four single-iHEC at Day 11
824	were sorted into individual wells (24 well plates). Thirty single-iHEC-formed blood
825	colonies were induced for T cell generation in vitro. Cell collections of Twenty-five
826	single-iHEC-formed blood colonies were transplanted into 25 individual B-NDG
827	mice for the assessment of T lymphopoiesis in vivo. c Flow cytometry analysis of
828	induced T cells from in vitro induction of single iHEC. iT cells from single iHEC
829	culture product (day 22) were analyzed. Plots of iT cells induced from one
830	representative colony are shown. d Single iHEC-derived hematopoietic cells gave rise
831	to mature iT cells in PB of B-NDG recipient mice 4 weeks after transplantation. Plots
832	of one representative mouse are shown.

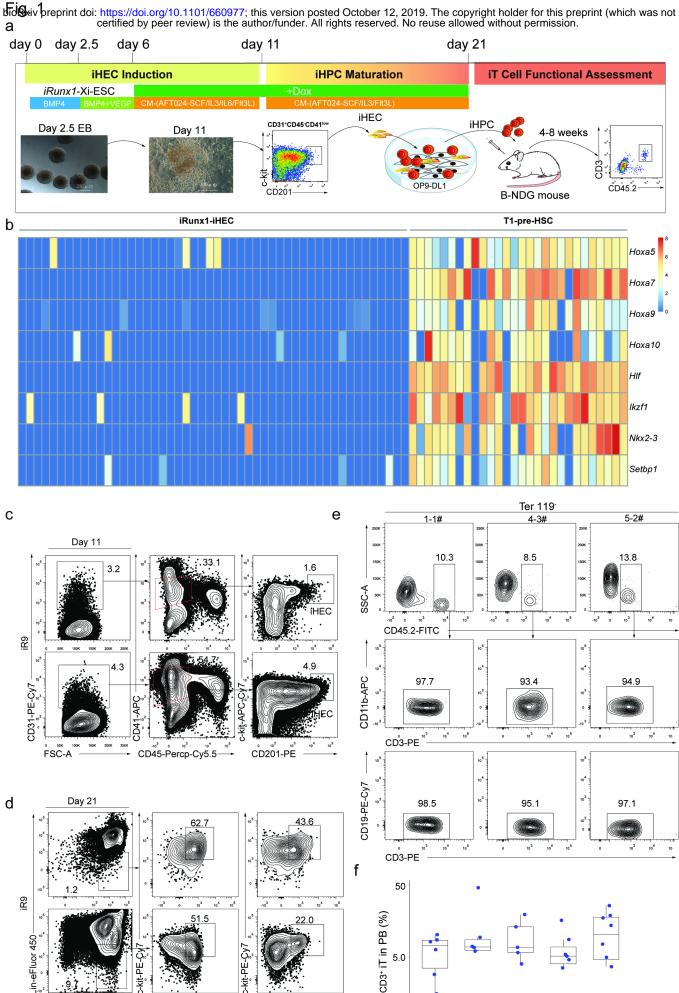
Fig. 4 Single-cell transcriptomic characterization of iHEC and iHPC

a Principal component analysis (PCA) of iHEC and developmental E11 AGM-derived
EC, T1 pre-HSC, T2 pre-HSC, E12 HSC, E14 HSC, and adult HSC. The TPM values
of iHEC (n = 70), natural E11 AGM-derived EC (n = 17), T1 pre-HSC (n = 28), T2
pre-HSC (n = 32), E12 HSC (n = 21), E14 HSC (n = 32) and adult HSC (n = 47)

838	single-cell RNA-Seq data were calculated with Stringtie package. b The expression of
839	the top 100 genes contributing most to PC2 (50 genes for each direction). The
840	expression value (TPM) of each gene was converted by log2 and illustrated by
841	pheatmap (R package). One column represents one cell repeat. c Violin plots show the
842	expression profile of selected artery (A) and vein (V) related genes (A: Nrp1, Efnb2,
843	and Hey1; V: Nrp2, Nr2f2, and Ephb4) in single iHEC. The expression value (TPM)
844	of each gene was converted by log2 and illustrated by ggplot2 (R package). One point
845	represents one cell. d Violin plots show the expression profile of selected surface
846	markers (Cdh5, Esam, Tek, Procr, Cd47, and Cd63) in single iHEC. The expression
847	value (TPM) of each gene was converted by log2 and illustrated by ggplot2 (R
848	package). One point represents one cell. e Violin plots show the expression profile of
849	selected transcription factors (Fli1, Erg1, Lmo2, Lyl1, Tal1, Sox7, Runx1, Mycn,
850	Gata2, Bcl11a, Hoxa9, and Hoxb5) related to hematopoietic development in single
851	iHEC. The expression value (TPM) of each gene was converted by log2 and
852	illustrated by ggplot2 (R package). One point represents one cell. f Two-dimensional
853	tSNE analysis of iHEC and iHPC single-cell RNA-Seq. For single-cell RNA-Seq, the
854	iHEC were collected on day 11, and the iHPC were collected at Day14, 17 and 21.
855	Each dot represents one cell. The TPM values of iHEC ($n = 65$), iHPC at Day14 ($n =$
856	21), Day17 (n = 18) and Day21 (n = 56) from single-cell RNA-Seq data were
857	calculated with Stringtie package. Cell types were defined as: iHEC
858	CD31 ⁺ CD41 ^{low} CD45 ⁻ c-kit ⁺ CD201 ^{high} ; Day14 and Day17 iHPC, CD45 ⁺ Lin
859	(Ter119/Gr1/F4-80/CD2/CD3/CD4/CD8/CD19/FcεRIα) ⁻ ; Day21 iHPC

860	Ter119 ⁻ CD45 ⁺ c-kit ⁺ CD127 ⁺ . g tSNE analysis of the expression pattern of selected
861	endothelia-related transcription factors (Sox7, Sox18, and Ets1) in iHEC and iHPC. h
862	tSNE analysis of the expression pattern of selected hematopoietic-related transcription
863	factors (Lyl1, Etv6, Prdm5, Myb, Sfpi1, and Meis1) in iHEC and iHPC. i tSNE
864	analysis of the expression pattern of selected T cell development-related transcription
865	factors (Lmo2, Bcl11a, Ikzf1, Myc, Gata3, and Tcf7) in iHEC and iHPC at Day14,
866	Day17, and Day21. j tSNE analysis of the expression pattern of selected
867	lymphopoiesis-related surface protein-coding genes (Kit, Flt3, Cd7, Ccr9, Ccr7, and
868	<i>Cxcr4</i>) in iHEC and iHPC at Day14, Day17, and Day21.

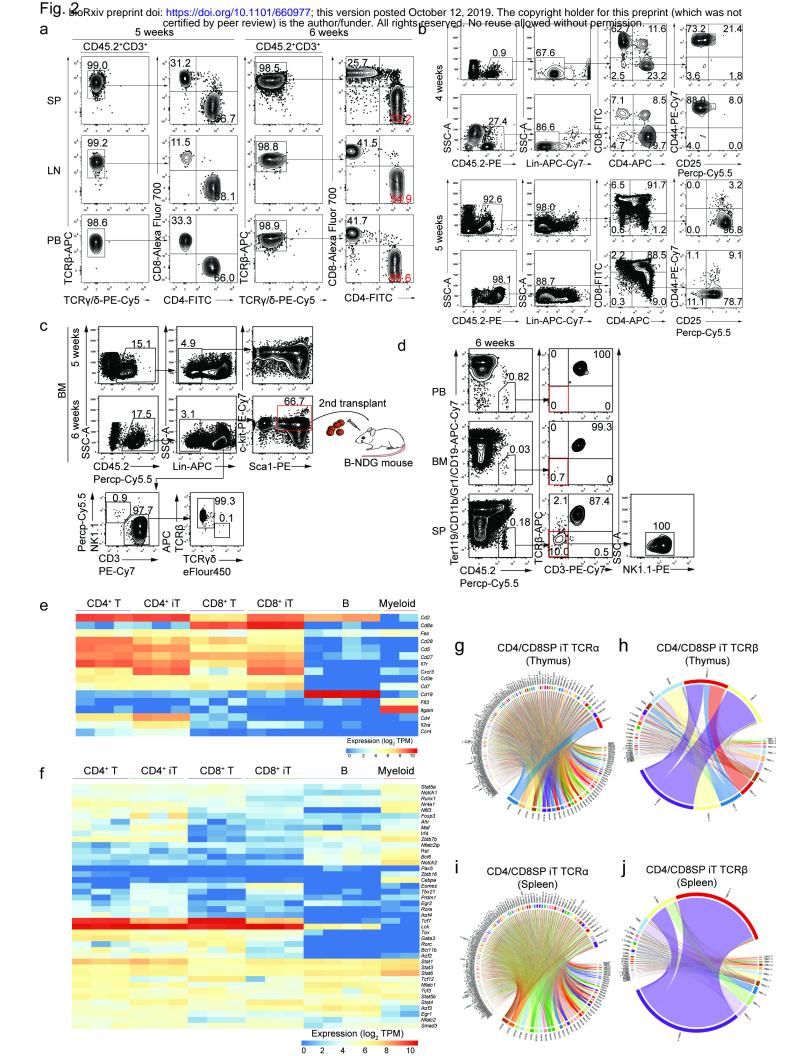
869 Fig. 5 iT cells reject allogeneic skin in adoptively transferred *Rag1^{-/-}* mice


870 **a** The images of allogeneic skin grafts. Representative images of rejected allogeneic skin tissues on ESC-iT-*Rag1*^{-/-} (day 9) mice (n = 2) and grafted skin tissue on control 871 $Rag1^{-/-}$ mice (day 30) were shown. **b** Flow cytometry analysis of the ESC-iT cells in 872 peripheral blood (PB) of adoptively ESC-iT transferred Rag1^{-/-} recipients nine days 873 874 after the allogeneic skin grafted. Plots of two representative mice are shown. c Flow cytometry analysis of the activation status of the ESC-iT cells in the rejected 875 allogeneic skin tissues. The rejected allogeneic skin tissues were from the adoptively 876 ESC-iT transferred $Rag1^{-/-}$ recipients nine days after the allogeneic skin grafted. The 877 activated ESC-iT cells were defined as CD4⁺/CD8⁺ CD44^{high} CD69⁺. Rejected skin 878 tissues from two representative ESC-iT transferred $Rag l^{-/-}$ mice were analyzed. d 879 Flow cytometry analysis of the intracellular cytokine IFNy and IL-17 secreted by the 880 CD4⁺ or CD8⁺ ESC-iT cells in rejected allogeneic skin tissues. 1st allogeneic skin 881

grafts were analyzed at day 9 and 2^{nd} allogeneic skin grafts were analyzed at day 6 after skin transplantation. Data from primary and secondary rejected skin tissues from one representative ESC-iT cells transferred *Rag1^{-/-}* mouse are shown.

Fig. 6 OT1-iT cell therapy suppresses the solid tumor growth in mice transplanted with E.G7-OVA cells

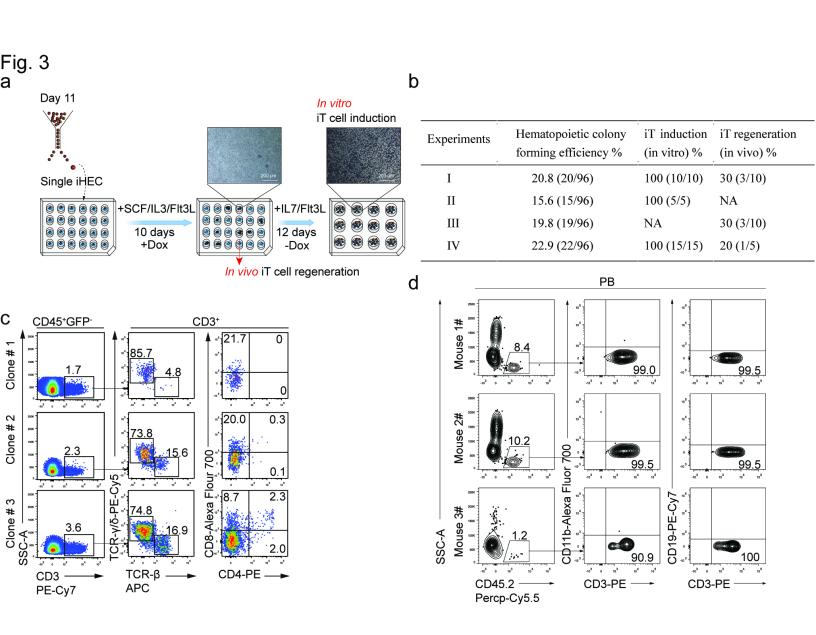
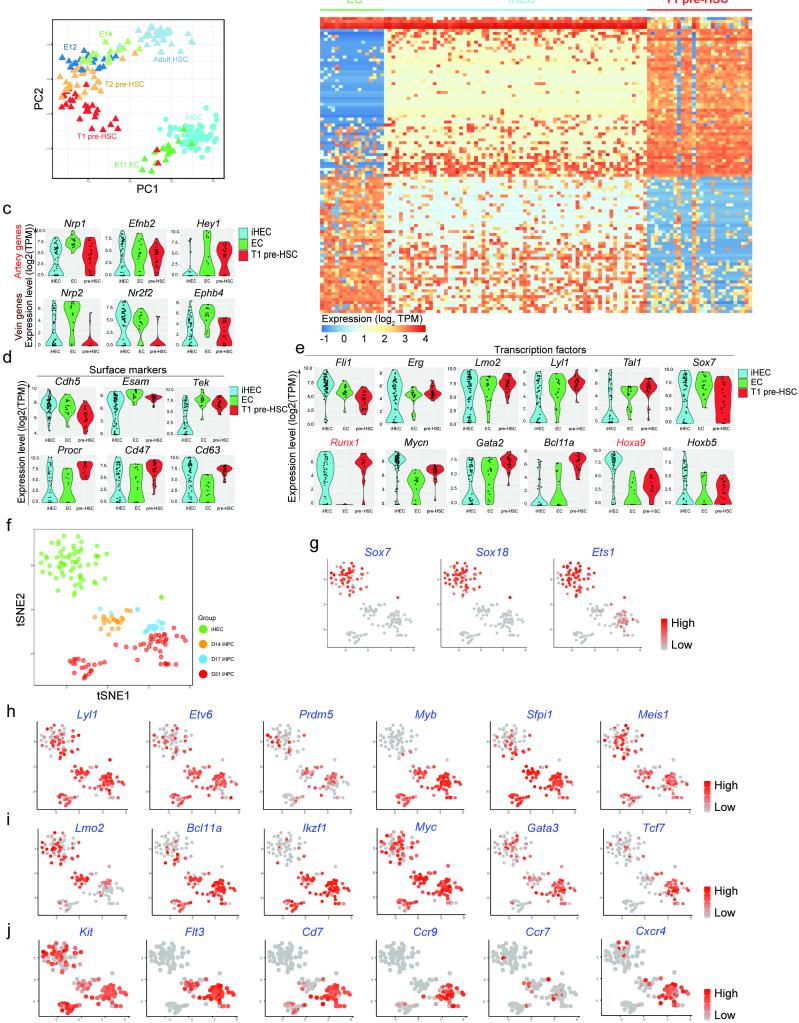
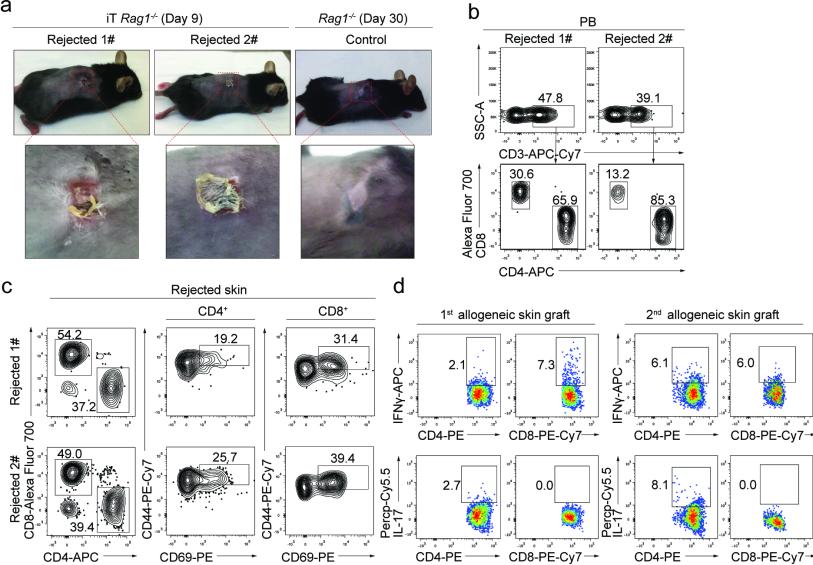
887 a Schematic diagram of OT1 engineered iT cells for anti-tumor therapy. Mouse MEF 888 cells were isolated from CD45.2⁺ C57BL/6 mouse and reprogrammed into iPSC with 889 Oct4, Klf4, and Sox2 retro-viruses. Then a rtTA-TRE-Runx1-Hoxa9-HygroR DNA 890 cassette was inserted into the Rosa26 locus. Next, a CAG-OT1-IRES-GFP-PuroR 891 expression element was inserted into the *Hipp11 locus* of *iR9*-iPSC. OT1-*iR9*-iPSC results in the production of $CD8^+$ T cells carrying TCRV $\alpha 2$ and TCRV $\beta 5$ (MHC class 892 893 I-restricted, ovalbumin-specific TCR). OT1-iR9-iPSC-derived iHEC were induced 894 into iHPC (OT1-iHPC) as described in material and method sections. The iHPC were injected into irradiated (4.5 Gy) Rag1^{-/-} recipient mice (3 million/mouse, 895 896 8-10-week-old C57BL/6 background). E.G7-OVA tumor cell line (C57BL/6 background) were transplanted into the groin of the $Rag1^{-/2}$ (n = 8) or OT1-iT- $Rag1^{-/2}$ 897 (n = 8) by subcutaneous injection (0.2 million/mouse) six weeks after OT1-iHPC 898 899 transplantation. **b** TCRV α 2 and TCRV β 5 expression in OT1-*iR9*-iPSC measured by 900 intracellular staining. The *iR9*-iPSC was used as negative control. c Sorting gates of 901 the OT1-iR9-iPSC-derived iHEC population at day 11. The cells were enriched by 902 streptavidin-beads recognizing biotin-CD31 before sorting. Representative plots from three independent experiments are shown. d Immuno-phenotypes of pre-thymic 903

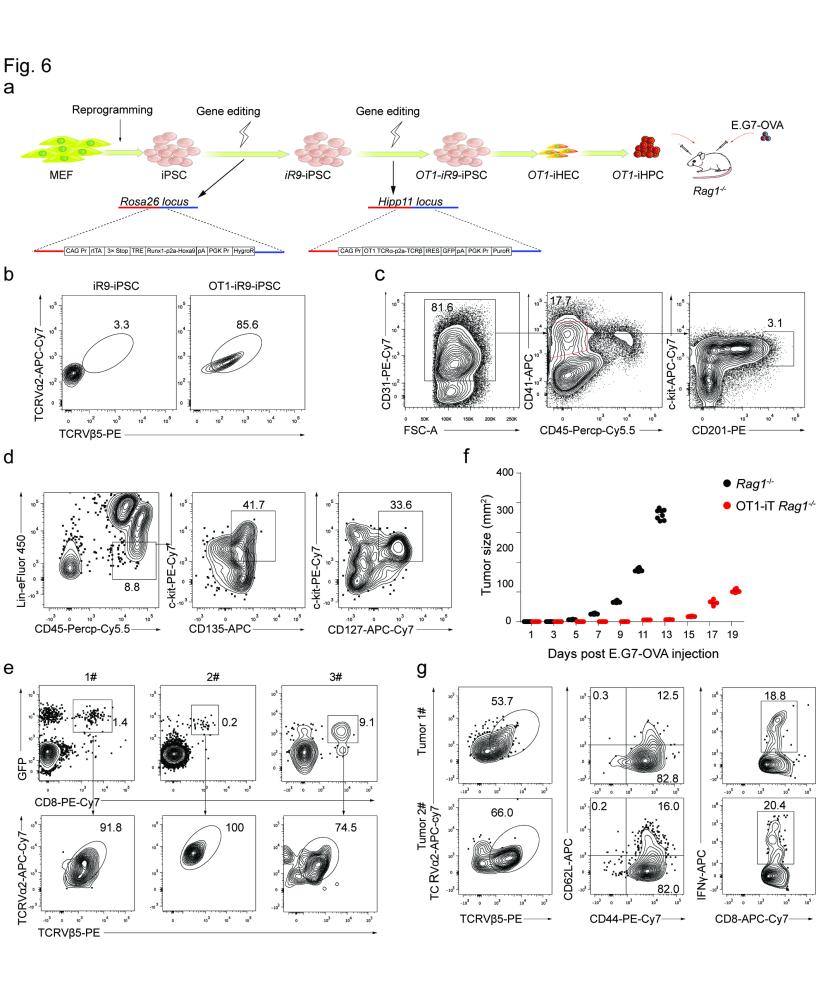

904	progenitors in induced hematopoietic progenitor cells from OT1-iR9-iPSC-derived
905	iHEC after ten-day maturation. Representative plots from three independent
906	experiments are shown. Lin was defined as
907	CD2 ⁻ CD3 ⁻ CD4 ⁻ CD8 ⁻ CD11b ⁻ Gr1 ⁻ Ter119 ⁻ CD19 ⁻ NK1.1 ⁻ TCRγδ ⁻ . pre-thymic
908	progenitors were defined as Lin ⁻ c-kit ⁺ CD127 ⁺ /CD135 ⁺ . e TCRV α 2 and TCRV β 5
909	expression of iT cells in PB of Rag1 ^{-/-} mice 6 weeks after transplantation of
910	OT1-iR9-iPSC-derived iHPC. Three representative mice from three independent
911	experiments were analyzed. f Tumor growth in $Rag I^{-/-}$ and OT1-iT- $Rag I^{-/-}$ mice.
912	E.G7-OVA cells were transplanted into the groin of the $Rag1^{-/-}$ (n = 8) or
913	OT1-iT- $Rag1^{-/-}$ mice (n = 8) by subcutaneous injection (0.2 million/mouse). The
914	length and width of the tumors were measured every other day by a caliper, and each
915	tumor size was calculated as length \times width (mm ²). Mice with tumor size larger than
916	20 mm at the longest axis were euthanized for ethical consideration. *** $P < 0.001$
917	(independent t-test, two-tailed). g Characterization of the OT1-iT cells in the tumors.
918	The tumors were isolated at day 19 after injection and disaggregated by collagenase
919	IV to single cell suspensions. The effector iT cells were defined as CD44 ⁺ CD62L ⁻ .
920	The memory iT cells were defined as $CD44^+CD62L^+$. IFN γ secreted by $CD8^+$ OT1-iT
921	cells in the tumors were intra-cellular stained. Representative plots from two tumors
922	are shown.

105

o-kit-PE-Cv7 7 105 104 CD45-Percp-Cy5.5 CD135-APC --CD127-APC-Cy7 . .

0.5 Exp I Exp II Exp III Exp IV Exp V


Fig. 4 а

bioRxiv preprint doi: https://doi.org/10.1101/660977; this version posted October 12, 2019. The copyright holder for this preprint (which was not certified by peer review) is the autor/funder. All rights reserved. No reuse allowed without permission. T1 pre-HSC

Fig. 5 a

