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Abstract 

Patient derived organoids resemble the biology of tissues and tumors, enabling ex vivo modeling 

of human diseases from primary patient samples. Organoids can be used as models for drug 

discovery and are being explored to guide clinical decision making. Patient derived organoids can 

have heterogeneous morphologies with unclear biological causes and relationship to treatment 

response. Here, we used high-throughput, image-based profiling to quantify phenotypes of over 

5 million individual colorectal cancer organoids after treatment with more than 500 small 

molecules. Integration of data using a joint multi-omics modelling framework identified organoid 

size and cystic vs. solid organoid architecture as axes of morphological variation across 

organoids. Mechanistically, we found that organoid size was linked to IGF1 receptor signaling, 

while a cystic organoid architecture was associated with an LGR5+ stemness program. 

Treatment-induced organoid morphology reflected organoid viability, drug mechanism of action, 

and was biologically interpretable using joint modelling. Inhibition of MEK led to cystic 

reorganization of organoids and increased expression of LGR5, while inhibition of mTOR induced 

IGF1 receptor signaling. In conclusion, we identified shared axes of variation for colorectal cancer 

organoid morphology, their underlying biological mechanisms, and pharmacological interventions 

with the ability to move organoids along them. Image-based profiling of patient derived organoids 

coupled with multi-omics integration facilitates drug discovery by linking drug responses with 

underlying biological mechanisms. 

Keywords:  organoids, drug profiling, high-throughput screening, cancer signaling, functional 

genomics, computer vision, machine learning  
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Introduction 

Colorectal cancer is globally the third most common cancer and the second leading cause of 

cancer related death.1 Patients with advanced and metastatic disease are usually treated with 

chemotherapy and antibody therapies, however, with current treatment, tumors may continue to 

progress and prognosis remains poor.2 Tumor plasticity, as well as the stemness of neoplastic 

cells have been proposed as major factors in treatment resistance and tumor progression under 

antineoplastic therapies.3,4 However, mechanisms behind these tumor cell states and drugs 

modulating or targeting them are not well understood. 

Patient derived organoids (PDOs) are stem cell derived 3D tumor models that can be efficiently 

established from (colorectal-) cancer and normal tissues.5–7 Organoid isolation from human 

primary tumors and metastases5,8 has enabled the establishment of living biobanks.6,7,9 Notably, 

patient derived organoids have been shown to represent their origin’s molecular features and 

morphology,6–8,10 enabling functional experiments such as drug testing ex vivo.7,9,11–16 As a 

consequence, organoids are an attractive model system, as they combine the modeling capacity 

of patient derived xenografts with the scalability of adherent in vitro cell lines. 

Image-based profiling is a high-throughput microscopy-based methodology to systematically 

measure phenotypes of in vitro models. When combined with chemical or genetic perturbations, 

image-based profiling is a powerful approach to gain systematic insights into biological processes, 

for instance in drug discovery and functional genomics research17–19. Image-based assays have 

been used to screen large libraries of small molecules to identify potential drug candidates, to 

analyze a drug’s mode of action, or to classify drug-gene interactions by cell-morphology 20–23. 

Performing large image-based profiling experiments of organoids has been, however, a biological, 

technical and computational challenge24–26. Consequently, the morphological heterogeneity of 

patient-derived cancer organoids between and within patient donors, their diverging behaviors 

upon pharmacological perturbation, as well as the underlying mechanisms of cancer organoid 

morphology are not yet systematically understood. 

Here we report a large-scale image-based phenotyping study of patient derived cancer organoids 

to understand underlying factors governing organoid morphology. Colorectal cancer organoids 

from 11 patients were treated with more than 500 experimental and clinically used small 

molecules at different concentrations. We systematically mapped the morphological 

heterogeneity of patient derived organoids and their response to compound perturbations from 

more than 3,700,000 confocal microscopy images. We found that the resulting landscape of 
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organoid phenotypes was mainly driven by differences in organoid size, viability and cystic vs. 

solid organoid architecture. Using multi-omics factor analysis for integrating organoid morphology, 

size, gene expression, somatic mutations and drug activity, we identified biological programs 

underlying these phenotypes and small molecules that modulate them.  

 

Results 

Image-based profiling captures the morphological diversity of patient-derived cancer 

organoids 

To better understand the diversity of organoid phenotypes, drug-induced phenotypic changes and 

the underlying factors driving them, we generated PDOs from 13 colorectal cancer patients 

representing different clinical stages and genotypes (Supplemental Fig. S1a-d, Supplemental 

Tables 1 and 2). We performed image-based profiling at single organoid resolution with 11 

organoid lines (Fig. 1a) using small molecules targeting developmental pathways, protein kinases 

(464 compounds at a single 7.5µM concentration), as well as small molecules in clinical use (63 

compounds in 5 concentrations, Supplemental Fig. S2a-c). After three days of culture and four 

days of pharmacological perturbation in 384-well plates, organoids were subsequently stained 

with fluorescent markers for actin (Phalloidin), DNA (DAPI), and cell permeability (DeadGreen) to 

capture their morphology with high-throughput confocal microscopy. We projected the 3D image 

data onto a 2D plane, segmented organoids and calculated morphological profiles for each 

organoid spanning 528 phenotypic features (such as dye intensity, texture, and shape) that were 

subsequently reduced into 25 principal components representing 81% of morphological variance 

(Supplemental Fig. S2c). 

To visualize the heterogeneity of colorectal cancer organoids and treatment induced changes 

across and within PDO lines, we embedded features of approximately 5.5 mil lion profiled 

organoids using uniform manifold approximation and projection (UMAP, Fig. 1b, Supplemental 

Fig. 2d-f). Organoids showed a characteristic two-component log-normal mixture distribution of 

organoid size within most lines, with one component containing small organoids and another 

component containing larger organoids with varying, organoid line specific, reproducible average 

size (Fig. 1c, Supplemental Fig. S2g-h). This size distribution likely resulted from intrinsic 

differences in cellular size and growth rate accumulating throughout the course of the experiment 

in multicellular organoids. Next, we performed graph-based clustering on this embedding to 

describe the landscape, resulting in 12 clusters (Fig. 1d). Organoid lines within the embedding 
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were located in characteristic clusters, with organoid size and organoid architecture as primary 

organizing factors (Fig. 1e). For example, organoid line D018T had the largest median organoid 

size within the dataset and a cystic organoid architecture with a single central hollow lumen and 

monolayer of surrounding cells. In contrast, D020T organoids had a solid architecture and smaller 

median size. In most cases, organoid lines had two areas of main density, with one of them in 

clusters 2, 3 or 4, reflecting the previously mentioned bimodal size distribution. When comparing 

drug-treated organoids to baseline organoids treated with the solvent control (DMSO), no clear 

separation of groups was apparent, suggesting that organoid morphology was distributed on a 

continuum of phenotypes spanning perturbed and unperturbed conditions of our experiment 

(Supplemental Fig. S2i). In summary, image-based profiling of patient derived colorectal cancer 

organoids showed strong morphological heterogeneity with donor dependent differences in size 

and organoid architecture.  
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Fig. 1: Image-based profiling captures the phenotype diversity of patient derived cancer organoids. 
a, Schematic overview of experiments: Organoids were isolated from endoscopic biopsies from patients 
with colorectal cancer. Organoids were dissociated and evenly seeded in 384-well plates before 
perturbation with an experimental (464 compounds) and a clinical compound library (63 compounds at 5 
concentrations each, 842 perturbations across both libraries). After treatment, high-throughput 
fluorescence microscopy was used to capture the morphology of organoids.  The multi-channel (DNA, beta-
actin, cell permeability) 3D imaging data was projected, segmented, and phenotype features were extracted 
to quantify potential drug-induced phenotypes. Untreated organoid morphology, organoid size and drug 
activity scores were integrated with mRNA expression and mutation data in a Multi-Omics Factor Analysis 
(MOFA). b, Uniform Manifold Approximation and Projection (UMAP) of organoid-level features for a random 
5% sample out of approximately 5.5 million organoids. The same sample is used for visualizations 
throughout the figure. Color corresponds to the log-scaled organoid area (dark blue: minimum size, yellow: 
maximum size). c, organoid size distribution across organoid lines d, UMAP representation of DMSO 
treated and drug treated organoids. Graph-based clustering of organoids by morphology with 12 resulting 
clusters. e, UMAP embeddings of selected organoid lines (baseline state = 0.1% DMSO control-treated 
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organoids) representing different morphological subsets, grey background consists of randomly sampled 
points. Depicted are representative example images for each organoid line (right, cyan = DNA, magenta = 
actin, scale-bar: 200µm). 

 

Organoid phenotype profiles capture organoid viability 

Drug-induced changes in cell viability are a fundamental readout in cancer drug discovery. 

Prompted by the observation that organoid size was a major factor determining the phenotype 

embedding, we hypothesized that small organoid size, which was seen across all donors, was at 

least partially the result of cell death within organoids and, more broadly, that phenotype data 

could be used to estimate organoid viability. To test this hypothesis, we chose bortezomib, a small 

molecule proteasome inhibitor with high in vitro toxicity, as well as SN-38 (active metabolite of 

irinotecan). Both small molecules led to dose dependent organoid death in all organoid lines (Fig. 

2a). Analogous to pseudotime in single-cell gene expression analysis,27 we fitted dose-dependent 

trajectories of bortezomib (Fig. 2b) and SN-38 (Supplemental Fig. 3a). Starting from diverse 

baseline morphologies, increasing doses of these compounds led to a stepwise convergence on 

a final death-related phenotype, which corresponded to the areas with enrichment of small objects 

(clusters 2, 3 and 4 shown in Fig. 1d). Similarly, paclitaxel, a microtubule disassembly inhibitor, 

shifted the bimodal size distribution of organoids in a dose-dependent fashion (Supplemental Fig. 

S3b), while organoid count remained largely unchanged (Supplemental Fig. S3c). This effect, 

however, was organoid line-specific, as we observed a dose-dependent decrease in median 

organoid size in paclitaxel “responder” lines (e.g. D022T), while the size of other organoids 

remained unaffected (e.g. D046T, Fig. 2c-f). These observations suggested a link between 

organoid morphology, especially organoid size, with a loss of cell viability. To test the ability of 

organoid morphology to predict cell viability, we performed a luminescence-based, ATP 

dependent, cell viability assay (CTG) in parallel with imaging as a benchmark for drugs within the 

clinical cancer panel. We saw a strong association of CTG viability with organoid size (Fig. 2g), 

prompting us to test whether a more accurate prediction of organoid viability was possible by 

using all available imaging information (including organoid size). To this end, we trained random 

forest classifiers (live/dead classifiers, LDC) on individual organoid phenotype profiles to 

distinguish between negative and positive control treatments (DMSO, bortezomib and SN-38, 

Supplemental Fig. S3d-e). We observed robust classification performance when applied to sets 

of the same or unseen organoid lines (Supplemental Fig. S3f). As expected, when applying the 

classifier to the whole imaging dataset and visualizing predictions via UMAP, small organoids 

within previously identified clusters 2, 3 and 4 had the highest probabilities for death (Fig. 2h). 
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The LDC predictions had the highest correlation with CTG based viability data (Fig. 2i), however, 

the association with organoid size was almost as strong in the majority of organoid lines (Fig. 2i, 

Supplemental Fig. S3g), while other simple features, such as DNA (DAPI), actin (phalloidin), and 

especially permeability (DeadGreen) intensity in isolation were less suitable to predict viability of 

organoids (Fig. 2i). We also noticed in ablation experiments that LDCs with incomplete access to 

channel information (i.e. only DAPI and phalloidin staining derived features were available for 

training and inference) showed, in some instances, classification accuracies almost as high as 

classifiers with access to complete data (Supplemental Fig. S3h). Finally, we observed examples 

of diverging results between LDC predictions and CTG read-outs. These included (1) the 

antifolate drug methotrexate and (2) a doxorubicin-induced artifact due to the strong red color of 

the compound. Methotrexate showed strong toxicity in almost all organoid lines in CTG based 

experiments but had no visible effect on organoid viability based on the LDC (Supplemental Fig. 

S2i-l). This discordance may be explained by non-lethal metabolic effects of methotrexate. In 

conclusion, basic features, such as median organoid size, as well as classification of texture and 

shape information from basic DNA and actin staining could predict organoid viability.  
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Fig. 2: Organoid phenotype-profiles capture organoid viability. a, Representative example images of 
negative (0.1% DMSO) and positive control treated organoids (2.5µM bortezomib, cyan = DNA, magenta = 
actin, yellow = cell permeability; representative images were selected and embedded in black background; 
scale bar: 50µm). b, Dose-dependent-trajectory of bortezomib drug effect. UMAP of organoid morphology 
at different bortezomib doses and (right panel) dose-dependent trajectory for three representative organoid 
lines. During the principal curve fitting, trajectory inference excluded cluster 4, a set of measurements 
representing mostly dead organoid particles comprising ca. 5% of all imaging data. c, Dose-response 
relationship of organoid size and paclitaxel dose. D022T and D046T are highlighted as examples for 
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responder/non-responder lines. d, UMAP of organoid morphology highlighting D022T organoids treated at 
different concentrations of paclitaxel. e, D046T organoids treated at different concentrations of paclitaxel. 
f, Example images of D022T organoids treated with paclitaxel. g, Association of organoid size of selected 
example organoid lines with viability determined by luminescence-based, ATP-dependent viability profiling 
with CellTiter-Glo (CTG), which was performed in parallel with imaging on a subset of drug treatments for 
benchmarking. h, UMAP visualization of viability predictions for organoids within our dataset, based on 
supervised machine learning of organoid viability using classifiers trained on positive (high-dose bortezomib 
and SN-38) and negative (DMSO) controls (live-dead classifiers, LDC). i, Association of LDC and example 
organoid features (size, DAPI, actin and permeability dye intensities) with benchmark CTG viability read 
out.  

 

Drug-induced organoid phenotypes correspond to drug mechanism of action  

An advantage of image-based profiling over cell viability measurements in drug discovery is the 

ability to use the high dimensional drug-induced phenotype profiles to identify active but not 

necessarily lethal small molecules and estimate their mechanism of action by similarity-based 

clustering. To test whether this approach could be used in patient derived cancer organoids, we 

used a supervised learning approach for drugs within the KiStem library to identify drug effect 

profiles and group them by similarity. First, we trained logistic regression models to distinguish 

individual compound-treated organoids from unperturbed controls and defined the resulting 

normal vector between control- and treated organoid phenotypes as the drug effect profile. Next, 

we scored every logistic regression model’s ability to separate treated and untreated organoids 

to identify active treatments that induced a robust change in organoid morphology (area under 

the receiver operating characteristic, AUROC, ranging from 0.5 to 1). We considered treatments 

active when their classifiers’ performance exceeded an AUROC of 0.85 (Fig. 3a, 3b). Based on 

our observations, drug activity was necessary but not sufficient for a viability effect (Fig. 3c) as a 

fraction of drugs led to identifiable changes in organoid morphology (they were considered active 

drugs) but were not classified as lethal by our live/dead classifier (LDC) models.  

To test whether active drugs systematically induced organoid phenotypes that were informative 

of mechanism of action, we assessed similarity by two different methods, (1) the cosine distance 

between concatenated drug effect profiles and (2) the Euclidean distance of averaged treatment-

induced phenotypes (Fig. 3d-h, Supplemental Fig. S4a-c, S5a-c). While both methods were 

similar in terms of their ability to cluster drugs by mechanism of action, we proceeded with cosine 

distance clustering, as drug effect profiles did not only capture the direction of phenotype change, 

but were also linked to AUROC as a metric of drug activity that was scaled between 0.5 and 1. 

We observed a clustering of drugs by their specific mode-of-action, including inhibitors of MEK, 

aurora kinase, CDK, mTOR, AKT, EGFR or GSK3 (Fig. 3d). Small molecules with targets within 

the same signaling pathway also induced related morphologies, for example MEK inhibitors 
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clustered with specific RAF- and ERK inhibitors (Fig. 3e) and AKT/ PI3K inhibitors were part of a 

cluster mainly containing mTOR targeting small molecules (part of the cluster is shown in Fig. 3f, 

whole cluster in supplemental Fig. S5a). The clustering also suggested additional mode-of-actions 

or off-target effects for well-described small molecules (Fig. 3g-h). For example, the PKC inhibitor 

enzastaurin was clustered with GSK3 inhibitors, substantiating a previously described interaction 

of enzastaurin with the alpha and beta subunits of GSK328,29 (Fig. 3h). Of note, several drug-

induced phenotypes were observable across most, or all tested organoid lines, but the majority 

of compound classes led to significant enrichments in drug profile vector clustering only in subsets 

or individual organoid lines (Supplemental Fig. S5d). 

To assess whether morphological profiles of active drug treatments were primarily driven by 

differences in organoid viability, we compared LDC predictions with the phenotypic clustering (Fig. 

3i). We observed a larger cluster of lethal treatments (including molecules targeting ATM, JAK, 

PLK, CDK). However, most clusters were caused by non-lethal phenotypes, including those 

induced by inhibitors of AKT, mTOR, EGFR or GSK3. Visual inspection of several phenotypes 

(Fig. 3j) revealed recurring drug target dependent morphologies. Most notably, MEK inhibitors led 

to reorganization towards a more cystic organoid architecture. Altogether, drug-induced 

phenotypes were capturing drug mode of action and were visible across most tested organoid 

lines. 
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Fig. 3: Drug-induced organoid phenotypes correspond to drug mechanism of action.  a, Histogram 

of average model performance for each tested drug. For every tested drug and organoid line, logistic 

regression models were trained to distinguish negative control-treated organoids from drug treated 

organoids. A drug was considered “active” when it induced a phenotype that could be separated from 

DMSO control-phenotypes with a mean classification performance of >0.85 area under the receiver 

operating characteristic curve (AUROC). b, Number of active drugs per organoid line. c, Relationship 

between drug-induced viability change (predicted by LDC, compare Fig. 2) and general compound activity. 

d, Unsupervised clustering of drug effect profiles for active drugs. Distance between drug effect profiles 

was calculated using cosine similarity. Drug effect profiles were determined by fitting logistic regression 

models between treated and untreated organoids for each drug and line. PCA transformed morphology 

information was used as input features. Fisher’s exact test was used to identify enrichments of drugs 

annotated with the same drug target within the hierarchical clustering. Tested clusters had a minimum 

cluster size of 3 and were evaluated iteratively from the tree bottom to top. Colors on the side of the heatmap 

represent drug mechanisms of action. e-h, Zoom-ins of (d) showing clusters enriched for MEK (e), 

PI3K/mTOR (f), EGFR (g) and GSK-3 (h). i, Viability of drug-induced phenotypes in individual organoid 

lines as determined by supervised machine learning. The drugs were arranged on the x-axis in the same 

order as in (d). j, Organoids representative of selected drug-induced phenotypes. Images from organoid 

lines D004T and D030T were selected for each organoid phenotype, automatically cropped and embedded 

in black background. Cyan = DNA, magenta = actin; scale bar: 50µm. 

 

Multi-omics factor analysis identifies shared factors linking morphology, genomic data 

and drug activity  

A limitation of image-based profiling experiments is that both unperturbed and drug-induced 

morphologies are challenging to interpret in terms of their underlying biology. Theoretically, in the 

presence of multiple in vitro models with both phenotype and genomic measurements, links 

between the two data modalities can be learned. Based on the observation that organoid 

morphology was distributed in a continuous space, we hypothesized that variation in organoid 

baseline morphology could be associated with differences in gene expression, mutations, as well 

as drug activity for the 11 cancer organoid lines in our sample (2 biological replicates each, 22 

observations in total). To factorize the joint distribution of unperturbed organoid morphology, 

unperturbed organoid size, gene expression, selected somatic mutations, and drug activity, we 

performed multi-omics factor analysis (MOFA).30 MOFA is a matrix factorization method that 

decomposes a set of different measurements into a shared table of factors scoring each observed 

sample and a set of corresponding loading tables linking each factor to features in the set of 

original measurements.30. When trained with k = 3 factors, MOFA recovered factors explaining 

approximately 24-41% of variance across the different data modalities (Fig. 4a-b, Supplemental 

Fig. S6a-c). While gene expression, mutations and drug activity profiles for organoid lines 

contributed to all factors, factor 1 captured most variation in median organoid size (ca. 39%). In 

contrast, factor 2 was primarily capturing variation within untreated organoid morphology (ca. 
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16%) (Fig. 4a). Organoid lines D046T and D004T stood out as lines with the strongest score for 

factor 1, while organoid lines D018T and D013T had the strongest score in factor 2 (Fig. 4c). 

Organoids with high factor scores were in characteristic regions of the previously defined UMAP 

embedding (Supplemental Fig. S6d). Visual inspection of organoids revealed that organoid lines 

with a higher factor 1 score tended to be larger in size and organoids with high factor 2 score 

tended to have a more cystic organoid architecture based on manual classification. Analysis of 

gene expression data alone recovered patterns analogous to factor 1 and factor 2 (Fig. S6e-f). 

We could not identify interpretable morphological differences between factor 3 low and high 

organoids and focused our subsequent analysis on the first two interpretable factors generated 

by MOFA. In summary, MOFA identified factors within the dataset that explained variation 

between organoid lines across different data modalities, including organoid morphology and 

median size.    

 

Fig. 4: Multi-omics factor analysis identifies shared factors linking morphology, gene expression 
and drug activity. a-b, Variance decomposition of the MOFA model. Untreated organoid morphology, 
organoid size and drug activity scores were integrated with DNA sequencing and mRNA expression data. 
a, Percentage of variance explained by each factor in each data modality. b, Cumulative proportion of total 
variance explained by each experimental data modality within the MOFA model. c, Visualization of samples 
in factor space showing factors 1 and 2. Shown are two independent replicates for each organoid line. 
Organoid morphology (cystic vs. solid) as determined by visual inspection of DMSO phenotypes and 
organoid size (log-scaled organoid area) are represented by symbol shape and color, respectively.  

 

An LGR5+ stemness program is associated with cystic organoid architecture and can be 

induced by inhibition of MEK 

A particularly strong recurring organoid phenotype was the presence of a cystic organoid 

architecture, seen in untreated D018T or D013T organoids and organoids treated with MEK 

inhibitors (Fig. 1e, 3f, 5a). MOFA showed that factor 2 represented this cystic organoid state. In 

the cystic state, organoids consisted of a monolayer of uniform cells lining a central spherical 
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lumen with a pronounced actin cytoskeleton (Fig. 5b). We considered this phenotype related to 

organoid morphologies previously described in genetically engineered APC-/- or Wnt ligand 

treated intestinal organoids.31–33 To test if factor 2 in fact captured Wnt signaling and intestinal 

stem cell identity related gene expression programs, we performed gene set enrichment analyses 

(GSEA) for cell identity signatures previously identified in intestinal crypts and colorectal cancer.34 

GSEA revealed an enrichment of Lgr5+ stem cell signature-related genes for the factor 2 loadings 

(Fig. 5c) (FDR=0.002, NES=1.74) among other biological processes (Supplemental Fig. S7a). In 

terms of genetic mutations, ERBB2 mutation status had the strongest positive contribution to 

factor 2 loadings (Supplemental Fig. 6c). 

Next, we asked if factor 2 was associated with particular drug activity or inactivity patterns. As 

previously described, we used the performance of a logistic regression model as drug activity 

score (AUROC) (Fig. 3a). Activity of Wnt signaling inhibitors and EGFR inhibitors were the 

strongest average contributors to a positive factor 2 score (t statistic = 3.02, FDR = 0.046 and t 

statistic = 3.08, FDR = 0.046, respectively), while activity of ERK and MEK inhibitors were 

associated with a low factor 2 score (Fig. 5d), albeit not significantly. To summarize, factor 2 high 

organoid lines showed an increased expression of LGR5 and were more sensitive to Wnt 

signaling inhibitors, such as the CBP/beta-catenin inhibitor PRI-724 (Fig. 5e and Supplemental 

Fig. S7b) overall suggesting increased dependency on Wnt signaling in the factor 2 high organoid 

state.  

Prompted by the visual observation that MEK inhibitor treatment led to a related cystic architecture 

in organoids (Fig. 3j), we hypothesized that compound treatments could influence the plasticity 

between the observed organoid states. Thus, we tested whether drug treatments shifted organoid 

phenotype profiles in the previously defined factor space. To test for shifts in factor space, we 

used the previously estimated factor loading matrix for unperturbed organoid morphology, which 

was generated during MOFA training, as a starting point. By projecting the average phenotypic 

profiles of drug-treated organoids onto the factors learnt by MOFA, we were able to approximate 

the influence various drug treatments had on biological programs previously identified in 

unperturbed organoids. We observed MEK and focal adhesion kinase inhibitors significantly 

shifted tested organoid lines towards higher factor 2 scores (Fig. 5f and Supplemental Fig. S7c). 

This change in factor 2 scores was concentration dependent for MEK inhibitors (Fig. 5g and 

Supplemental Fig. S7d-e) and corresponded to a visual shift in organoid morphology (Fig. 5h), 

which was most noticeable at concentrations of 100nM (p=0.017, Fig. 5h, Supplemental Fig. S7e). 

Given the observation that factor 2 was enriched for an LGR5+ stem cell signature (Fig. 5c), we 
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measured the expression of LGR5 transcripts at different concentrations of MEK inhibitor 

treatment for two organoid lines with representative factor scores (D019T and D027T). We 

observed analogous dose-dependent increases in transcript abundance (Fig. 5i). These findings 

were in concordance with the observation that MEK inhibitor activity had a negative contribution 

to factor 2 (Fig. 5d): While organoids are shifted to a factor 2 high state via MEK inhibition, within 

the factor 2 high state itself, organoids are relatively insensitive to this class of inhibitors. In 

summary, we observed an organoid state with cystic architecture, increased expression of LGR5+ 

stem cell related genes and increased sensitivity to Wnt signaling inhibitors that could be induced 

by MEK inhibition. 
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Fig. 5: An LGR5+ stemness program is associated with cystic organoid architecture and can be 
induced by inhibition of MEK. a, UMAP visualization of cystic and solid organoid morphology in baseline 
state (DMSO-treated) as defined by factor 2 scores. b, Example images of cystic (right) and solid organoid 
lines. Images were automatically cropped and embedded in black background. Cyan = DNA, magenta = 
actin; scale bar: 50µm. c, Gene set enrichment analysis of the LGR5+ intestinal stem cell signature34 over 
ranked factor 2 gene expression loadings (ranking from high factor 2 loading to low factor 2 loading, NES 
= normalized enrichment score). d, Distributions of drug activity loadings for factor 2 grouped by drug 
targets. e, Relationship of representative drugs’ activity with factor 2 score. Further samples can be found 
in Fig. S7. f, Projection of factor 2 scores for drug-induced phenotypes. Highlighted are drug targets leading 
to a significant change in projected factor scores across all organoid lines (ANOVA). g, Projected dose-
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dependent changes in factor 2 scores after treatment with the MEK inhibitor binimetinib across organoid 
lines. h, Dose-dependent changes in organoid morphology after treatment with the MEK inhibitor trametinib. 
Shown are images of organoid lines D019T and D027T (cyan = DNA, magenta = actin; sampled images 
were cropped and embedded in black background; scale bar: 50µm)  i, Dose-dependent changes in LGR5 
transcript abundance after treatment with the MEK inhibitor trametinib, as assessed by qPCR, data from 3 
(D027T) and 4 (D019T) independent replicates are presented as mean + s.e.m. * p<0.05, ** p<0.005, NS 
= not significant, two-sided Student’s t-test.  

 

An IGF1R signaling program is associated with increased organoid size, decreased 

EGFR inhibitor activity, and can be induced by mTOR inhibition 

Next, we set out to identify the mechanisms underlying and modulating factor 1. We had 

previously observed that organoid size was influenced by both organoid line and drug treatments 

and was associated with factor 1 scores (Fig. 6a). An unsupervised gene set enrichment analysis 

(GSEA) for Reactome pathways across factor 1 loadings showed an enrichment for IGF1R 

signaling and mitogen-activated protein kinase signaling related genes. In fact, transcripts 

belonging to the IGF imprinting control region, H19 (rank 1) and IGF2 (rank 13), were among the 

strongest contributors to factor 1. This increase in proliferative signaling was confirmed by GSEA 

of a previously identified intestinal proliferation signature.34 To better understand clinical 

correlates to the identified gene expression patterns, we tested for molecular subtypes stemming 

from an analysis of cancer-cell intrinsic gene expression profiles.35 Factor 1 showed an 

enrichment for CRIS D, a molecular subtype linked to IGF2 overexpressing tumors with resistance 

to EGFR inhibitor therapy (Fig. 6c), and a depletion for CRIS C, which has been linked to EGFR 

dependency (Supplemental Fig. S8a). In fact, activity of EGFR inhibitors was the strongest 

contributor to a negative factor 1 score while IGF1R and MEK inhibitor activity contributed to a 

positive factor 1 score (Fig. 6d-e, Supplemental Fig. 8b-d). When assessing the contribution of 

somatic mutations, activating mutations of NRAS had the strongest contribution to a high factor 1 

score (Supplemental Fig. S6c). 

Next, we again used phenotype profiles of drug treated organoids and approximated how drug 

treatment shifted organoids along the factor 1 program. We observed a group of cell cycle related 

kinase inhibitors targeting polo like kinases, Aurora kinases and cyclin dependent kinases that 

shifted organoids to a low factor 1 score. In contrast, mTOR inhibitor treatment increased factor 

1 scores in cancer organoids (Fig. 6f and Supplemental Fig. S8e). Given the observation that 

factor 1 was associated with IGF1R signaling and mTOR inhibitor treatment led to an increase in 

factor 1 scores, we hypothesized that mTOR inhibition leads to a reactive upregulation of IGF1R 

signaling in cancer organoids. In fact, inhibition of mTOR signaling had previously been linked to 
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transcriptional disinhibition of IRS-1 in a negative feedback loop36 and  reactive induction of IGF1R 

signaling had previously been described as a resistance mechanism to small molecule mTOR 

inhibitors in cancer.37 When testing this hypothesis in patient derived organoids, we observed a 

dose-dependent increase of IRS-1 protein abundance in organoids treated with the ATP 

competitive mTOR inhibitor WYE-132 (Fig. 6g). To summarize our findings, we observed an 

organoid state marked by large organoid size, elevated IGF1R dependent mitogenic signaling 

and relative inactivity of EGFR inhibitors. This state was inducible by inhibition of a mTOR 

dependent negative feedback loop in patient derived cancer organoids.  

 

 

Fig. 6: An IGF1R signaling program is associated with increased organoid size, EGFR inhibitor 

resistance and can be induced by mTOR inhibition. a, Association of factor 1 with organoid size. b, 
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Gene-set enrichment network of factor 1 gene expression loadings. An edge connects Reactome pathways 

with more than 20% overlap. c, Gene set enrichment results of the “proliferation” intestinal signature34 and 

the colorectal cancer CRIS-D subtype35 over ranked factor 1 gene expression loadings (ranking from high 

factor 1 loading to low factor 1 loading, NES = normalized enrichment score). d, Distributions of drug activity 

loadings grouped by drug targets for factor 1. e, Relationship of selected drugs’ activity (AUROC) with factor 

1 score. Further examples can be found in Fig. S8. f, Projection of factor 1 scores for drug-induced 

phenotypes. Highlighted are drug targets leading to a significant change in projected factor scores across 

all organoid lines (ANOVA). g, Western blot of IRS-1 protein abundance under ATP-competitive mTOR 

inhibition. A representative blot of three biological replicates with organoid line D013T is shown.  h, 

Illustration of IGF1R signaling pathway with highlighted drug targets. Shown is the disinhibition of mTOR 

mediated IRS-1 repression by ATP competitive mTOR inhibitors. 

 

Discussion 

Organoids are currently the most complex in vitro cancer models with high morphological and 

molecular similarity to their origin and can be established from a wide variety of tumors and normal 

tissue.6,7,10,14,38–40. Given the benefits in culture efficiency and high model representativeness in 

comparison to conventional cell lines, it is likely that the next generation of in vitro cancer model 

cohorts are organoid based.41,42 Previous studies have successfully used PDOs to perform small- 

and medium-scale drug testing with ATP-based cell viability readouts.7,9–15,43–45 Additionally, 

imaging studies with organoids have been used to characterize developmental processes such 

as the self-organization of intestinal cells25,46 or the morphological response to individual 

drugs.24,47  

While image-based profiling of in vitro models has become an important tool for the analysis of 

biological processes, particularly in drug discovery and functional genomics17–19,  performing such 

high-content experiments in ex vivo disease models, which cannot be cultured and perturbed in 

2D, has been a technological challenge. In this study, we used image-based profiling to 

systematically map heterogenous phenotypes of patient derived cancer organoids and their 

response to small-molecule perturbations. We collected data on approximately 5.5 million single 

organoids from 11 different colon cancer patients with >500 different small molecule 

perturbations. The morphology of untreated patient derived cancer organoids varied extensively 

within and between organoid donors. Despite the heterogeneity, organoids from different patients 

and perturbations showed overlapping morphological distributions, which shifted as a response 

to perturbation. Organoid morphology revealed compound mode-of-action and when integrated 

with additional biological measurements gave insight into the first set of principles governing 

cancer organoid architecture and plasticity. As a result, we identified two shared axes of variation 
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for colorectal cancer organoid morphology (organoid size and cystic vs. solid architecture), their 

underlying biological mechanisms (IGF1R signaling and Wnt signaling), and pharmacological 

interventions able to move organoids along them (mTOR inhibition and MEK inhibition).  

Cancer stem cells play a central role in cancer recurrence and metastasis.48 In colorectal cancer, 

cells with cancer stem cell identity are LGR5 positive.49 Organoid models enriched for an LGR5+ 

stem cell signature presented with a characteristic cystic architecture and were sensitive to 

inhibitors of Wnt signaling. This LGR5+ organoid state was also linked to a reduced sensitivity 

towards MEK inhibitors, a potential consequence of the already suppressed ERK signaling activity 

that has been linked to Wnt signaling in colorectal cancer.50 In fact, pharmacological MEK 

inhibition led to a shift in organoids towards a LGR5+ state, an effect that we have previously 

described.33 The use of MEK inhibitors together with Wnt signaling activating GSK3 inhibitors is 

an established method to maintain embryonic stem cells in vitro.51 A related MEK inhibitor 

dependent modulation of stemness in Wnt signaling dependent colon tissue may in part explain 

the limited success of using MEK inhibitors as monotherapy in colorectal cancer.  

Insulin-like growth factors are central and conserved regulators promoting cell size, organ size 

and organism growth.52,53 The IGF1 receptor (IGF1R) signaling cascade is activated in around 

20% of colorectal cancer patients and leads to downstream mitotic stimuli via mitogen activated 

kinase signaling and mTOR.54 In patient derived cancer organoids, we observed that organoid 

size was positively correlated with elevated IGF1R signaling activity. In accordance with clinical 

observations,35 colorectal cancer organoids in a high IGF1R signaling state were less responsive 

to EGFR inhibitors and more responsive to IGF1R and MEK blockade, demonstrating the central 

role of IGF1R mediated mitogen activated protein kinase (IGFR1-MAPK) signaling. In fact, 

combined blockade of MEK and IGF1R has recently been demonstrated to be a synergistic drug 

combination across colorectal cancer cell lines 55 and reciprocal resistance between IGF1R and 

EGFR signaling inhibitors has been described in multiple cancer types.56 Also, organoids could 

be moved into a state of increased IGF1R-MAPK signaling by inhibition of mTOR, a downstream 

mediator of IGF1R activity. In line with this observation, a reactive induction of IGF1R signaling 

has been previously described as a resistance mechanism to small molecule mTOR inhibitors in 

cancer.37,57 The emerging role of IGF1R signaling in organoid culture was recently emphasized 

by the observation that addition of the IGF1 ligand, relative to EGF, increased culture efficiency 

of organoids from healthy human small intestinal tissue.58  
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Statistical representation learning methods such as MOFA factorize a distribution of observations 

spanning multiple data modalities. In other words, MOFA learns factors that capture correlations 

between diverse biological features and scores observations along these factors. Learning factors 

helped identify relationships between biological processes, such as the link between organoid 

size, IGF1R signaling and sensitivity to IGF1R inhibitors. In search for treatments that led to drug-

induced phenotype change along factors, we extended the application of factor-learning to factor-

projection. This enabled us to identify mTOR and MEK inhibitors as modulators of factor 1 and 

factor 2, respectively. Given the fact that observations during factor-learning were sampled from 

a distribution of unperturbed organoids while factor-projection was done on observations from a 

overlapping, but distinct, distribution of perturbed organoids, our projections of perturbed organoid 

profiles are limited to the axes of variation defined during factor-learning. As a consequence, we 

are unable to observe causal relationships between factors and interventions, but only generate 

hypotheses based on observational data. For example, CDK inhibitor treatment reduced the score 

of factor 1 across all organoid models. It is, however, unlikely the reduction in factor 1 was due to 

CDK being an upstream regulator of IGF1R signaling. Instead CDK might serve as the dependent, 

mediating variable (IGFR1 signaling -> CDK signaling -> organoid size) or an independent 

contributor to organoid size (IGFR1 signaling-> organoid size and CDK signaling -> organoid 

size). Despite limitations, we believe that the approach of interpreting drug-induced phenotypes 

using a multi-omics representation of untreated in-vitro models is applicable to other large image-

based profiling data of multiple heterogeneous in vitro models. This approach could potentially be 

further extended using causal representation learning methods that increase the understanding 

of cellular signaling mechanisms, the way they shape cellular morphology and how they change 

under various treatments during drug discovery. 

While our image-based profiling study is limited by the number of studied organoid lines and 

organoid-level imaging resolution, our work is, to our knowledge, a first comprehensive mapping 

of patient derived cancer organoid morphologies across 11 organoid donors and >500 small 

molecule perturbations at single organoid resolution. We identified two key axes of morphological 

variation in cancer organoids, their underlying biological processes and pharmacological 

perturbations that move organoids along these axes. Previously, primary cells of monogenic 

diseases have been intensively studied using image based profiling for drug discovery.59 Our work 

opens up new directions for image-based profiling of complex in vitro disease models, as we 

believe this work could be expanded to search for therapeutics in somatic multigenic disease 

models, for example stepwise genetically edited organoid models of early colorectal cancer31,32, 
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or larger cohorts of patient derived cancer organoids. In addition, more complex cellular 

interactions such as the interaction of the immune system with solid tumors could be explored.60,61 

A better understanding of organoid phenotypes and the ability to use multi-omics data to annotate 

organoid states and their plasticity have the potential to further accelerate image-based drug 

discovery for complex multigenic diseases such as colorectal cancer. 

Methods  

Patients 

All patients were recruited at University Hospital Mannheim, Heidelberg University, Mannheim, 

Germany. We included untreated patients with a new diagnosis of colon or rectal cancer in this 

study and obtained biopsies from their primary tumors via endoscopy. Exclusion criteria were 

active HIV, HBV or HCV infections. Biopsies were transported in phosphate buffered saline (PBS) 

on ice for subsequent organoid extraction. Clinical data, tumor characteristics and molecular 

tumor data were pseudonymized and collected in a database. The study was approved by the 

Medical Ethics Committee II of the Medical Faculty Mannheim, Heidelberg University (Reference 

no. 2014-633N-MA and 2016-607N-MA). All patients gave written informed consent before tumor 

biopsy was performed. In total, we extracted PDOs from 13 patients with colorectal cancer for this 

study. Patient characteristics including age, sex, tumor location, stage and treatment data can be 

found in Supplementary Table 1. 

Organoid culture 

Organoid cultures were extracted from tumor biopsies as reported by Sato et al.5 with slight 

modifications. In short, tissue fragments were washed in DPBS (Life technologies) and digested 

with Liberase TH (Roche) before embedding into Matrigel (Corning) or BME R1 (Trevigen). 

Advanced DMEM/F12 (Life technologies) medium with Pen/Strep, Glutamax and HEPES (basal 

medium) was supplemented with 100 ng/ml Noggin (Peprotech), 1x B27 (Life technologies), 1,25 

mM n-Acetyl Cysteine (Sigma), 10 mM Nicotinamide (Sigma), 50 ng/ml human EGF (Peprotech), 

10 nM Gastrin (Peprotech), 500 nM A83-01 (Biocat), 10 nM Prostaglandin E2 (Santa Cruz 

Biotechnology), 10 µM Y-27632 (Selleck chemicals) and 100 mg/ml Primocin (Invivogen). Initially, 

cells were kept in 4 conditions including medium as described (ENA), or supplemented with 

additional 3 uM SB202190 (Biomol) (ENAS), 50% Wnt-conditioned medium and 20% R-Spondin 

conditioned medium (WENRA) or both (WENRAS), as described by Fujii et al.6 The tumor niche 

was determined after 7-14 days and cells were subsequently cultured in the condition with best 

visible growth. PDOs were passaged every 7-10 days and medium was refreshed every 2-3 days. 
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13 PDO lines were analyzed within this study, data of all PDO lines including niche and growth 

rate are denoted in Supplementary Table 1.  

Amplicon sequencing 

DNA was isolated with the DNA blood and tissue kit (Qiagen). Sequencing libraries were prepared 

with a custom panel (Tru-Seq custom library kit, Illumina) according to the manufacturer's protocol 

and sequenced on a MiSeq (Illumina) as reported previously.62 Targeted regions included the 

most commonly mutated hot spots in colorectal cancer in 46 genes captured with 157 amplicons 

of approximately 250bp length. After mapping the reads to the GRC38 reference genome using 

Burrows-Wheeler Aligner (BWA), data were analyzed using the Genome Analysis Toolkit 

(GATK).63 Base recalibration was performed and variants were called using the MuTect2 pipeline. 

Variants with a variant frequency below 10%, with less than 10 reads, or with a high strand bias 

(FS<60) were filtered out. Variants were annotated with Ensembl variant effect predictor64 and 

manually checked and curated using integrative genomics viewer, if necessary.65 Only non-

synonymous variants present in COSMIC66 were considered true somatic cancer mutations. Also, 

all variants annotated “benign” according to PolyPhen database and “tolerated” in SIFT database 

were excluded, as well as variants with a high frequency in the general population as determined 

by a GnomAD67 frequency of >0.001. 

Expression profiling 

Organoid RNA was isolated with the RNeasy mini kit after snap freezing organoids on dry ice. 

Samples were hybridized on Affymetrix U133 plus 2.0 arrays. Raw microarray data were 

normalized using the robust multi-array average (RMA) method68 followed by quantile 

normalization as implemented in the ‘affy’69 R/Bioconductor package. In order to exclude the 

presence of batch effects in the data, principal component analysis and hierarchical clustering 

were applied. Consensus molecular subtypes were determined as described previously70 using 

the single sample CMS classification algorithm with default parameters as implemented in the R 

package ‘CMSclassifier’. In all cases, differential gene expression analyses were performed using 

a moderated t-test as implemented in the R/Bioconductor package ‘limma’.71 Gene set enrichment 

analyses were performed using ConsensusPathDB72 for discrete gene sets or GSEA as 

implemented in the ‘fgsea’73,74 R/Bioconductor package for ranked gene lists. Wikipathways75 or 

Reactome76 were used for pathway analysis. Gene expression analysis was done in R version 

4.0.0. When possible, packages were installed via bioconductor. 
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Compound profiling 

Cell seeding 

PDO drug profiling followed a standardized protocol with comprehensive documentation of all 

procedures. Organoids were collected and digested in TrypLE Express (Life technologies). 

Fragments were collected in basal medium with 300 U/ml DNAse (Sigma) and strained through 

a 40µm filter to achieve a homogeneous cell suspension with single cells and small clusters of 

cells, but without large organoid fragments. 384 well µclear assay plates (Greiner) were coated 

with 10µL BME V2 (Trevigen) at a concentration of 6.3 mg/ml in basal medium, centrifuged and 

incubated for >20 min at 37° C to allow solidification of the gel. PDO cell clusters together with 

culture medium (ENA) and 0,8 mg/ml BME V2 were added in a volume of 50µl per well using a 

Multidrop dispenser (Thermo Fisher Scientific). Plates were sealed with a plate-loc (Agilent) and 

centrifuged for an additional 20 min allowing cells to settle on the pre-dispensed gel. Cell number 

was normalized before seeding by measuring ATP levels in a 1:2 dilution series of digested 

organoids with CellTiter-Glo (Promega). The number of cells matching 10,000 photons (Berthold 

Technologies) was seeded in each well. After seeding of organoid fragments, plates were 

incubated for three days at 37°C to allow organoid formation before addition of small molecules. 

Two biological replicates (defined as an independent passage) of each PDO line were profiled. 

Mean passage number of the PDO lines by the time of profiling of the first replicate was 9 (median 

9) and PDOs were passaged up to two more times before the second replicate. In total, 13 PDO 

lines underwent profiling with the clinical cancer library and the KiStem library with high throughput 

imaging. Data from two organoid lines (D015T, D021T) later had to be excluded due to too many 

out-of-focus organoids (more details below). One line, D020T, was profiled twice within different 

experimental batches (D020T01 and D020T02). If not shown otherwise, data from D020T01 was 

used.  

Compound libraries 

Two compound libraries were used for screening: A library containing 63 clinically relevant small 

molecules (clinical cancer library, Supplementary table 3) and a library of 464 compounds 

targeting kinases and stem cell or developmental pathways associated genes (Ki-Stem library, 

Supplementary table 4). The clinical cancer library was manually curated by relevance for current 

(colorectal) cancer therapy, mechanism of action and potential clinical applicability. small 

molecules of this library were mainly in clinical use or in phase I/II clinical trials. Five 

concentrations per compound were screened (five-fold dilutions). The concentrations were 
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determined by analysis of literature data from previous 3D and 2D drug screens and own 

experiments. All small molecules within the KiStem library were used in a concentration of 7.5µM. 

All small molecules were obtained from Selleck chemicals. Libraries were arranged in an 

optimized random layout. We stored compound libraries in DMSO at -80 C. 

Compound treatment 

30µl medium was aspirated from all screening plates and replaced with fresh ENA medium devoid 

of Y-27632, resulting in 45µl volume per well. Drug libraries were diluted in basal medium and 

subsequently 5µl of each small molecule was distributed to screening plates. All liquid handling 

steps were performed using a Biomek FX robotic system (Beckmann Coulter). Plates were sealed 

and incubated with small molecules for four days. 

Luminescence viability read out 

Plates undergoing viability screening were treated with 30µl CellTiter-Glo reagent after medium 

aspiration with a Biomek FX (Beckmann Coulter). After incubation for 30 minutes, luminescence 

levels were measured with a Mithras reader (Berthold technologies). 

Image-based phenotyping 

Image-IT DeadGreen (Thermo Fisher) was added to the cultures with a Multidrop dispenser 

(Thermo Fisher) in 100nM final concentration and incubated for 4 hours. Afterwards, medium was 

removed, and organoid cultures were fixed with 3% PFA in PBS with 1% BSA. Fixed plates were 

stored at 4° C for up to 3 days before permeabilization and staining. On the day of imaging, 

organoids were permeabilized with 0.3% Triton-X-100 and 0.05% Tween in PBS with 1% BSA 

and stained with 0.1µg/ml TRITC-Phalloidin (Sigma) and 2µg/ml DAPI (Sigma). All liquid handling 

steps were performed with a BiomekFX (Beckmann Coulter). Screening plates were imaged with 

an Incell Analyzer 6000 (GE Healthcare) line-scanning confocal fluorescent microscope. We 

acquired 4 fields per well with z-stacks of 16 slices at 10x magnification. The z-steps between the 

16 slices had a distance of 5µm, the depth of field of each slice was 3.9µm. 

Immunohistochemistry 

PDOs were fixed for 20 min in 4% (v/v) Roti Histofix (Carl Roth) followed by embedding into 

MicroTissues 3D Petri Dish micromolds (Sigma Aldrich) using 2 % (w/v) Agarose LE (Sigma) in 

PBS supplemented with 0.5 mM DTT. Thereafter, PDOs were subjected to dehydration steps and 
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embedding in paraffin. Formalin-fixed agarose/paraffin-embedded sections (3-5µm) were 

manually cut from blocks with a microtome (Leica RM 2145) and transferred to glass slides 

(Superfrost, Thermo Fisher Scientific) before H&E staining using automated staining devices. 

Realtime quantitative PCR 

Total RNA was isolated from organoids with the RNeasy Mini kit (Qiagen). cDNA synthesis was 

done with Verso cDNA kit (Thermo Fisher Scientific), and RT-PCR was performed using the 

SYBR Green Mix (Roche, Nutley, NJ, USA) on LightCycler480 system (Roche). The following 

primers for LGR5 were used: 5´-TTC CCA GGG AGT GGA TTC TAT-3` (forward) and 5`-ACC 

AGA CTA TGC CTT TGG AAA C-3` (reverse). Results were normalized to UBC mRNA using 5´-

CTG ATC AGC AGA GGT TGA TCT TT-3´ forward and 5`-TCT GGA TGT TGT AGT CAG ACA 

GG-3` reverse primers. 

Western Blot 

Organoids seeded in 6-well plates were harvested after 3-days incubation with WYE-132 in RIPA 

buffer (Thermo Scientific) supplemented with protease inhibitors (Complete Mini, Roche) and 

phosphatase inhibitors (Phosphatase Inhibitor 1 and 2, Sigma), followed by sonication (Branson 

Sonifier, Heinemann). Protein concentrations of supernatants were measured using a BCA assay 

kit (ThermoFischer Scientific). Lysates were mixed with an SDS-loading buffer and heated to 99°C 

for 5 minutes. Proteins were separated by SDS–PAGE in MOPS running buffer and transferred 

to a nitrocellulose membrane. Membranes were blocked with 5% (w/v) skim milk in PBS 

containing 0.1% (v/v) Triton X-100 (PBS-T). Antibodies against IRS1 (06-248, Sigma-Aldrich) and 

HSP-90 (sc-13119, Santa Cruz) as loading control were used in 1:1000 dilution in 5% milk in 

PBS-T, secondary antibodies (Mouse IgG HRP ECL, Sigma Aldrich) were used in 1:10000. ECL 

Western Blotting W1001 (Promega) was used for visualization of bands. 

Image analysis 

Image processing 

Microscopic image z-stacks were illumination corrected using a prospective method, compressed 

to HDF5 format and underwent maximum contrast projection using the MaxContrastProjection 

package for further processing of the images. This algorithm projects the multi-channel 3D image 

stack onto a plane by retaining the pixel information with the strongest contrast to its neighboring 

pixels. We used a two-step procedure to establish segmentation: First, organoids were 

segmented using a model based on fluorescence channel intensity. The intensity segmentation 
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was then used to perform weakly supervised learning with a deep convolutional neural network 

(CNN) for object identification on the partially correct intensity segmentation, leveraging the 

robustness of CNNs with regard to mislabeled training data and eliminating the need for 

expensive manual annotations. For further analysis, we used a model-free outlier detection to 

remove segmented objects with a particle size of 300 pixels and lower to remove non-organoid 

objects. Standard image features, including shape, moment, intensity, and Haralick texture 

features 77 on multiple scales, were extracted using the R/Bioconductor package EBImage.78. 

Initially, we extracted a total of 1572 features for each individual organoid image. However, texture 

features were meaningless for scales larger than the actual organoid size. To simplify the 

analysis, we thus only retained texture features that were well defined for all organoids and on a 

scale smaller than the smallest organoids in the image dataset. This ensured that the dataset 

contained no NA-values requiring imputation. A feature was considered "well-defined' if the 

median absolute deviation across the entire dataset was strictly greater than 0. In other words, if 

more than half of all organoids exhibited an identical value for a feature, then that feature was 

discarded for further analysis. This resulted in 528 well-defined features. We did not perform 

feature selection based on between-replicate correlation of well-averaged features as we used 

single-organoid features for further analysis and selected downstream methods used (Random-

Forest) did not require pre-selection of features or were based on principal components across 

the complete dataset (logistic regression). To allow comparison between various PDO lines and 

drug perturbations, the distributions of features describing organoids from different batches were 

adjusted by centering. Out-of-focus objects were programmatically removed from the dataset 

using a feature based random forest classifier. Data from two PDO lines (D015T, D021T) had to 

be excluded from image analysis due to too many out of focus objects, resulting in 11 analyzed 

PDO lines. In addition, data from three individual plates (D027T01P906L03, D020T01P906L03, 

D013T01P001L02) were excluded from further analysis due to out-of-focus artefacts. Images were 

processed with R3.6.0 and packages were downloaded from bioconducotr. 

Analysis of unperturbed organoid phenotypes 

Principal components were calculated for the entire dataset using incremental principal 

component analysis. A set of 25 principal components were selected, explaining approx. 81% of 

the total variance within the dataset. Next we embedded the first 25 principal components using 

uniform manifold approximation and projection (UMAP) with min_distance of 0.1, 15 nearest 

neighbors and otherwise default monocle3 parameters.27 Embedded objects were clustered using 

the leiden graph based clustering algorithm with a resolution parameter of 10E-7.79 For the 
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illustration of dose-dependent changes in organoid morphology we fitted principal curves through 

downsampled UMAP observations using the princurve R package.80  

Live-dead classification 

A random forest classifier (scikit-learn v1.0) with 10 trees was trained on the original 1572 single 

organoid features to differentiate living from dead organoids. Organoids treated with DMSO were 

used as negative (i.e. living) controls while organoids treated with Bortezomib and SN-38 at the 

two highest concentrations were used as positive (i.e. dead) controls. Visual inspection of the 

projected images confirmed our choice of positive controls. Models were trained and validated 

using only observations from the clinical cancer panel with a 60-40 train-validation split. Initial 

classification performance metrics were estimated using the validation dataset. A separate 

classifier was trained for each individual line to ensure inter-line independence, however individual 

classifiers were evaluated on validation data from foreign organoid lines to assess generalizability. 

Classifiers relying on less information (i.e. a combination of actin/TRITC or DNA/DAPI staining 

alone, compared to all three fluorescence channels) were tested by masking of input features. 

Binary classification results were averaged within wells to obtain viability scores ranging from 0 

to 1, indicating how lethal a treatment was. This procedure was applied to the complete imaging 

data. 

Analysis of drug activity and drug-induced phenotypes 

A logistic regression model (scikit-learn) was trained per line and treatment (and per concentration 

where applicable) to differentiate treated organoids from negative controls based on the PCA-

transformed features.81 For model training, organoid observations were separated into training 

and validation data with a 50-50 split. A hyperparameter grid search for L2 regularization strength 

was performed on the training set using 5-fold cross validation. Selected models were then trained 

on the validation set and model performance, expressed in the area under the receiver operating 

characteristic curve (AUROC), was estimated using 10-fold cross validation. Next, we selected 

active compound treatments in which robust morphological changes were observed in at least 

one line. Treatments were categorized as either active or inactive based on the performance of 

the logistic regression classifier. We defined a compound treatment as “active” when treated and 

untreated organoids in the validation dataset could be correctly identified by their corresponding 

classifier with an average area under the receiver operating characteristic curve (AUROC) of 0.85 

or greater. The model coefficients, which can be understood as the direction of the normal vector 
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perpendicular to the separating hyperplane in organoid feature space, was interpreted as the 

drug-induced effect. We chose this approach to account for the high intra- and inter-sample 

heterogeneity of primary patient derived organoids. We accepted the strong reference to DMSO 

treated organoids to describe compound treatments. Drugs were clustered based on the cosine 

similarity. We compared this approach to a model-free Pearson correlation-based clustering. We 

then aggregated compound induced phenotypic profiles across all PDO lines and applied 

contingency testing.82 Fisher’s exact test was used to identify enrichments of compounds with the 

same mode-of-action. 

Analysis of dose-response relationships for organoid viability measurements 

Cell Titer Glo raw data of each plate were first normalized using the Loess-fit method83 in order 

to correct for edge effects. Subsequently, each plate was normalized by division with the median 

viability score of the DMSO controls. For drugs tested in multiple concentrations, drug response 

Hill curves (DRC) were fitted and area under the curve values were calculated for each DRC using 

the ‘PharmacoGx’ R/Bioconductor package.84 The same method was used for predictions by the 

Live-dead classifier in cases where multiple concentrations were available. 

Multi-omics factor analysis 

Model training 

A multi-omics factor analysis model was trained based on a set of five modalities describing 

unperturbed organoid lines:  

● organoid size estimated based on log-normal model fit of all DMSO treated organoids [22 

replicates, 1 feature] 

● organoid somatic mutations as determined by amplicon sequencing [20 replicates, 12 

features] 

● organoid gene expression including the top 10% genes with the highest coefficient of 

variance after robust multi-array average normalization [22 replicates, 3222 features] 

● organoid morphology as determined by averaging DMSO treated morphological profiles 

[22 replicates, 25 features] 

● organoid drug activity as determined by AUROC score of logistic regression models for 

drugs that were defined as active in at least one observation [22 replicates, 252 features] 
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Input data was scaled and the MOFA model was trained with default MOFA2 training parameters 

and a number of 3 factors.30 The number of factors was chosen given the limited number of 

observations in our training data. The further analysis focused on the first two factors, which 

correlated with prominent visible organoid phenotypes. Gene set enrichment analysis and 

Reactome pathway enrichment of factor loadings was performed using the clusterprofiler R 

package (v4.2) .85 Enrichment of drug targets within factor loadings was tested using ANOVA by 

fitting a linear model, lm(factor loading ~ target). Drug targets that were represented with at least 

three small molecule inhibitors were included in this analysis. The analysis was run using the 

MOFA docker container available from https://hub.docker.com/r/gtca/mofa2.  

Model projection 

To estimate the factor scores for drug-induced organoid morphologies, the morphology profiles 

of organoids treated with the same drug were averaged. The resulting average profile matrix was 

multipled with the pseudoinverse of the previously learnt model loading matrix for organoid 

morphology data. The resulting projected factor score matrix was used to estimate the drug-

induced biological changes in cancer organoids. Associations between drug targets and projected 

factor scores of drug treated organoids were identified via ANOVA by fitting a linear model, 

lm(projected factor score ~ target). Drug targets that were represented with at least three small 

molecule inhibitors were included in this analysis. 

Software and data availability 

Software for organoid image analysis (including segmentation, feature extraction, analysis of 

drug-induced phenotypes, live-dead-classification), the scripts for analysis of luminescence data, 

dose response relationships, expression data and multi-omics factor analysis, as well as a sample 

of the data are available at: https://github.com/boutroslab/Supp_BetgeRindtorff_2021. Microarray 

data are made available in Gene Expression Omnibus (GEO, https://www.ncbi.nlm.nih.gov/geo/) 

under accession no. GSE117548. Amplicon sequencing data are made available through 

controlled access in the European Genome Phenome Archive (EGA, 

https://www.ebi.ac.uk/ega/home, accession no. EGAD00001004313). Data access requests for 

sequence data will be evaluated and transferred upon completion of a data transfer agreement 

and authorization by the data access committee of DKFZ and Department of Medicine II, Medical 

Faculty Mannheim. 
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