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Abstract. Stroke is one of the leading causes of disability. Segmenta-
tion of ischemic stroke could help in planning an optimal treatment.
Currently, radiologists use manual segmentation, which can often be
time-consuming, laborious and error-prone. Automatic segmentation of
ischemic stroke in MRI brain images is a challenging problem due to
its small size, multiple occurrences and the need to use multiple image
modalities. In this paper, we propose a new architecture for image seg-
mentation, called Parallel Capsule Net, which uses max pooling in every
parallel pathways along with dense connections between the parallel lay-
ers. We hypothesise that the spatial information lost due to max pooling
in these layers can be retrieved by the use of such dense connections. In
order to combine the information encoded by the parallel layers, outputs
of the layers are concatenated before upsampling. We also propose the
use of a modified loss function which consists of a regional term (Gener-
alized Dice loss + Focal Loss) and a boundary term (Boundary loss) to
address the problem of class imbalance which is prevalent in medical im-
ages. We achieved a competitive Dice score of 0.754, on ISLES SISS data
set, compared to a score of 0.67 reported in earlier studies. We also ob-
tained a Dice score of 0.902 with another popular data set, ATLAS. The
proposed parallel capsule net can be extended to other similar medical
image segmentation problems.

Keywords: Semantic Segmentation · Ischemic Stroke · Medical Imaging
· Deep Learning.

1 Introduction

The ischemic stroke which accounts for 87% of stroke cases is the most com-
mon cerebrovascular disease [1]. Ischemic stroke is caused by the obstruction
of cerebral blood supply resulting in tissue hypoxia which progresses through
several stages such as acute, subacute and chronic [2]. The lesions are quali-
tatively assessed by the use of multiple magnetic resonance imaging sequences
(DWI, FLAIR, T2) as part of the clinical workflow. Currently, in the context of
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treatment decision and stroke research, the lesion is manually segmented by the
radiologists that is often time consuming and error-prone.

There are a few challenges which are currently faced due to automatic seg-
mentation of stroke lesions. Firstly, the lesion appearance changes considerably
over time within a given sub stage of disease progression. Secondly, the lesion
can be very small and can have multiple occurrences in the brain. Thirdly, sev-
eral other common pathologies like small vessel ischemic disease(prevalent in
older hypertensive and diabetic patients) and multiple sclerosis can have similar
morphologic appearance as ischemic stroke on MR [2].

The Ischemic Stroke Lesion Segmentation (ISLES) 2015 challenge [2] had
two sub-challenges: Sub-Acute Stroke Lesion Segmentation Challenge (SISS) and
Stroke Perfusion Estimation (SPES). DeepMedic [3] (Konstantinos Kamnitsas
et al.) used multi-scale 3D CNN with fully connected CRFs achieving the highest
Dice score of 0.59 in SISS. Zhiyang Liu et al. [4] proposed a residual-structured
fully convolutional network (Res FCN) that does 2D slice-based segmentation
using dice coefficient as the loss function. Chen et al. [5] made use of EDD
Net (an ensemble of DeconvNets) and MUSCLE Net (Multiscale Convolutional
Label Evaluation Net) to segment and refine the lesion by removing False posi-
tives. By embedding a residual unit into a U shaped network, Liangliang Liu et
al. [6] achieved an average dice score of 88.43 in SPES. Based on DenseNets, [7]
proposed an architecture that uses 3D CNN, dense connections, deep supervi-
sion together along with Dice objective function. Sub-acute stroke lesions have
complicated features when compared to acute lesions [1]. To accurately segment
both sub-acute and acute stroke lesions we propose Parallel Capsule Net that
uses dense connections between parallel encoding pathways to minimize the in-
formation lost due to max pooling and enhance feature re-use. The proposed
method uses a modified loss function which consists of a regional term (General-
ized Dice loss + Focal Loss [8]) and a boundary term (Boundary loss) to address
the problem of class imbalance.

Fig. 1: Parallel Capsule Net
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2 Methodology

2.1 Proposed Architecture:

In this paper, we propose a new encoder-decoder architecture (Fig. 1) which uti-
lizes 3D convolutions, dense connectivity and parallel max pooling to efficiently
train the model. The network has multiple encoding pathways (top to bottom)
in parallel with dense connections across them (Fig. 3). We define an encod-
ing block as a set of densely connected [7] convolutional layers whose outputs
are concatenated as shown in Fig. 2. As we progress from the top to bottom,
outputs from every convolutional layer in an encoding block are downsampled
and passed on to the next encoding block. The outputs from the final encod-
ing block are concatenated and given to the decoder. Instead of the traditional
skip connections used in Unet [9], our architecture connects the encoder and
the decoder through dense skip pathways [10]. In most of the encoder decoder
architectures [9], downsampling is done by maxpooling. We introduce Parallel
Max Pooling in our architecture to prevent loss of spatial information. Further
details can be found in the Discussion. Table 1 summarizes information about
the filters used in Parallel Capsule Net. After testing with different values for
’number of filters’, we have found 20 filters for the first encoding block to be
optimal (See Fig. 5).

Fig. 2: Dense Connections Fig. 3: Parallel Pathways

2.2 Loss Function

Class imbalance in the field of medical image analysis is a common problem,
where standard losses (cross entropy, Dice loss [12]) differ considerably across
segmentation classes, which in turn affects training performance and stability.
The use of Dice loss for unbalanced data would result in high precision, low
recall segmentations which is undesired in computer aided diagnosis [13].

Focal loss (FL) [8], parametrized by γ, exponentiates the Dice loss(DL), helps
to focus on hard classes which are detected with a lower probability. It reduces
the contribution of background class and gives equal opportunity to the lesion
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Table 1: Details regarding the filters used in the architecture
Block Operation Filter size no. of filters

Encoder Block 1 conv 3x3x3 20
Encoder Block 2 conv 3x3x3 40
Encoder Block 3 conv 3x3x3 80
Encoder Block 4 conv 3x3x3 160
Decoder Block1 1 upsampling 3x3x3 20
Decoder Block2 2 upsampling 3x3x3 40,20
Decoder Block3 3 upsampling 3x3x3 80,40,20
Decoder Block4 4 upsampling 3x3x3 160,80,40,20
fully conv1 conv 1x1x1 10
fully conv2 conv 1x1x1 no. of classes

class to learn efficiently. It is found that when γ >1, focal dice loss concentrates
more on less accurate predictions which are misclassified.

FL = (1 −DL)γ (1)

Fig. 4: Boundary Integral Fig. 5: Comparison of different filters

Boundary loss [15] concentrates on the distance metric which provides in-
formation complementary to the regional term and hence can mitigate the is-
sue related to regional losses. Boundary loss uses the surface information of the
ground truth via the level set function φG(p) (Fig. 4), which encodes the distance
between each point p and ∂G. The equation below summarizes the boundary
loss where sθ(p) represents the softmax probability output of the network.

LB(θ) =

∫
Ω

φG(p)sθ(p)∂p (2)

We propose a modified loss function which consists of a regional term (dice
loss and focal loss) and a boundary term (boundary loss) to leverage the ad-
vantages of the above mentioned losses. During the initial epochs, weights of
the regional term are greater than the boundary term but as the training pro-
gresses, the weights of the regional term decrease polynomially while weights of
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the boundary term increase. The modified loss function is capable of handling
class imbalance problem and balancing precision and recall effectively.

3 Experiment

3.1 Dataset

The architecture was trained on ISLES SISS 2015 [2], ISLES SPES 2015 [2] and
ATLAS datasets [11]. ISLES SISS multi modal dataset contains 28 subjects for
training and 36 subjects for testing. ISLES SPES multi modal dataset contains
30 subjects for training and 20 subjects for testing. ATLAS dataset contains
T1 weighted images of 304 subjects. The manual ground truth labels were pro-
vided for the training samples. For the testing purpose, an expert radiologist was
consulted to manually segment the test images. Detailed information about the
dataset could be found on ISLES and ATLAS website [2] [11]. For preprocessing,
N4 Bias field correction and [-1, 1] normalization was used.

3.2 Training

During the training, 3D volumetric patches of size 32x32x32 with stride 8x8x8
were used. The use of patches reduces the memory requirement of the network
and substantially increases the number of training samples, therefore removing
the need for data augmentation by providing variance to the training input.
Batch size of 8 was used for training. Adam Optimizer with a learning rate of
0.0001 was found to be best suited for training the proposed architecture. The
network was trained for 20 epoch with a decay rate of 0.8 after every 5th epoch to
improve the validation performance of the network. For the implementation pur-
pose, TensorFlow was used and the experiments were run on a machine equipped
with 4 NVIDIA GPUs with 16 GB of memory each.

4 Results

We compare in Table 2, the performance of our architecture with current state
of the art algorithms, for three different datasets. The maximum scores achieved
in each case are highlighted. As it can be seen, Parallel Capsule Net scores better
than the other algorithms in all except one case.

5 Discussion

It can be concluded from Fig. 6 that the algorithm works effectively for large and
small lesions. Though our Dice Score is same as the current state of the art, the
Hausdorff Distance is lower indicating accurate segmentation of boundaries of
the penumbra that is important for clinical decision making. An example can be
seen in Fig. 7. We have tested our model against stroke similar pathologies like
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Table 2: Comparison of Architectures on multiple Dataset.
Dataset Method DSC(mean) HD(mean) Precision(mean) Recall(mean)

DeepMedic [3] 0.59 37.88 0.68 0.60
Nested Unet [10] 0.643 42.335 0.615 0.673

ISLES 2015 SISS Zhang et al. [1] 0.58 38.98 0.60 0.68
Anjali Gautam et al. [14] 0.67 28.09 0.70 0.71
Parallel Capsule Net 0.754 22.871 0.739 0.769

Nested Unet 0.711 5.412 0.785 0.649
ISLES 2015 SPES McKinley et al. [2] 0.82 1.65 - -
(Penumbra) Parallel Capsule Net 0.823 1.274 0.878 0.765

ATLAS 2018 Nested Unet 0.89 12.122 0.924 0.857
Parallel Capsule Net 0.902 11.500 0.935 0.870

* DSC: Dice Similarity Coefficient, HD: Hausdorff Distance

Fig. 6: Case 1: DWI & Flair(with Segmented Label) in SISS.

Fig. 7: Case 2: CBF, DWI, TMax & TTP(with Segmented Label) in SPES

Fig. 8: Case 3: Small Vessel Disease (DWI & Flair(with Segmented Label))
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Fig. 9: Single Max Pooling Fig. 10: Parallel Max Pooling

small vessel ischemic disease and DWI artifacts. It can be seen from Fig. 8 that
our model successfully detects the lesion and avoids segmenting stroke similar
pathologies, which are a major challenge for other state of the art algorithms [2].

One of the novelty of the present algorithm is parallel maxpooling. In most
of the encoder decoder architectures [9], downsampling is done by maxpooling
to lower the memory footprint and enlarge the receptive field of the model. But,
max pooling results in loss of spatial information, which might be detrimental in
training. In Fig. 9&Fig. 10, an input is subjected to two convolutions and then
downsampled. Each convolution feature map when maxpooled independently,
retains a unique downsampled representation. By performing max pooling in
every parallel pathway (Fig. 3), each pathway retains information, which may
be lost in other pathways.

Dense connectivity within an encoding block enhances feature re-use and
promotes model compactness. Direct connections between layers improves the
flow of information, causes a regularizing effect and prevents the problem of
vanishing gradients [7]. Dense skip pathways reduce the semantic gap between
the feature maps of encoder and decoder by introducing convolutional layers
to skip connections. This enables the model to capture fine grained details of
foreground.

Dense connections between the parallel pathways would combine various
downsampled representations and facilitate collective flow of information. By
introducing parallel pathways we also give network the flexibility to learn differ-
ent feature representations independently. An important addition is the bound-
ary term in the loss function. This is responsible for decrease in the Hausdorff
distance in all the cases. Parallel Capsule Net seems to be promising in other
medical segmentation tasks like tumor segmentation.
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