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Abstract 24 

Background 25 

Understanding the effects of environment on livestock provides valuable information on how 26 

farm animals express their production potential, and on their welfare. Ruminants are often 27 

confronted with perturbations that affect their performance. Evaluating the effect of these 28 

perturbations on animal performance could provide metrics to quantify how animals cope 29 

with their environment and therefore better manage them. In dairy systems, milk production 30 

records can be used to evaluate this effect because (1) they are easily accessible, (2) the 31 

overall dynamics throughout the lactation process have been widely described, and (3) 32 

perturbations often occur and cause milk loss. In this study, a lactation curve model with 33 

explicit representation of perturbations was developed. 34 

Methods 35 

The perturbed lactation model is composed of two components. The first one describes a 36 

theoretical unperturbed lactation curve (unperturbed lactation model), and the second 37 

describes deviations from the unperturbed lactation model. The model was fitted on 319 38 

complete lactation data from 181 individual dairy goats allowing the characterization of 39 

individual perturbations in terms of their starting date, intensity, and shape. 40 

Results 41 

The fitting procedure detected a total of 2354 perturbations with an average of 7.40 42 

perturbations per lactation. Loss of production due to perturbations varied between 2 % and 43 

19 %. Results show that it is not the number of perturbations is not the major factor 44 

explaining the loss in milk yield over the lactation, suggesting that there are different types of 45 

animal response to disturbing factors. 46 

Conclusions 47 
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By incorporating explicit representation of perturbations, the model allowed the 48 

characterization of potential milk production, deviations induced by perturbations, and 49 

thereby comparison between animals. These indicators are likely to be useful to move from 50 

raw data to decision solutions in dairy production.  51 
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INTRODUCTION 52 

In the context of precision livestock farming, simple interpretive tools are required to convert 53 

raw time series datasets, now routinely recorded in animals, into useful information for on-54 

farm decision-making. Such tools are not only expected to provide farmers with good 55 

information on performance level of individual animals, but also to detect pathological, 56 

nutritional or environmental problems affecting production traits at individual or herd scales. 57 

In dairy systems, it is well known that milk yield can be affected by problems such as udder 58 

health problems [1], lameness [2], heat stress [3] or nutritional challenges [4]. Such problems 59 

induce perturbations in the course of the lactation process and result in a serrated shape 60 

pattern in the lactation curve. These perturbations can be seen as deviations of the lactation 61 

curve from its typical profile. This typical profile reflects that lactation is a physiological 62 

process common to mammal females and as a result, its expression through time follows a 63 

general pattern [5]. It can be described in 3 phases. The first phase starts after parturition with 64 

the initial milk yield increasing to a maximum or peak yield. The second phase is a plateau-65 

like period in which milk yield is maintained for a more or less long time. The third phase is 66 

the decrease from the peak yield. This last phase can be divided into two parts according to 67 

the speed of decrease, the first one corresponding to an approximately constant declining rate 68 

of milk production after the peak yield and the second corresponding to an acceleration of the 69 

decline as pregnancy progresses before the start of the dry period when lactation stops [6–8]. 70 

Modelling the lactation curve is a long standing issue [9] and numerous authors have 71 

proposed mathematical models allowing the characterization of milk yield dynamics, i.e., the 72 

transformation of a series of temporal data into a vector of estimated parameters via a fitting 73 

procedure. The most famous and most used model is the one of Wood published in 1967 [10]. 74 

The overall objective of lactation models is to reduce the variability or noise in data by 75 

extracting a profile and therefore being able to characterize an average animal milk 76 
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production or to compare the production of different animals. This strategy of using lactation 77 

models as phenotyping tools has been very useful in the past years (for instance, test-day 78 

models for genetic selection) and in a context of scarce raw data. An important limitation of 79 

these modelling approaches is that short-term perturbations are removed during fitting 80 

procedure in order to extract an unperturbed phenotype, corresponding to a typical lactation 81 

curve. However, characterizing perturbations can be highly relevant for better understanding 82 

the resilience of milk production and for making management decisions. Evaluating the effect 83 

of perturbations on animal performance could provide metrics to quantify how animals cope 84 

with their environment, and therefore better manage them. Taking into account this type of 85 

information can provide a proxy to estimate the frequency and severity of disorders such as 86 

clinical mastitis [11]. Studying perturbations in lactation curves also makes it possible to 87 

compare animals facing the same stress and detect the ones with the greatest adaptive 88 

capacities. Finally, the on-farm early detection of perturbations in milk yield can provide 89 

farmers with an alert system on udder health. Recently, Huybrechts et al. [12] tested and 90 

developed the synergistic control concept for early detection of anomalies in dairy cows based 91 

on detection of shifts in milk yield per hour. Of the 49 mastitis cases, 31 cases were detected 92 

using this methodology at the same time or earlier than they were detected by the farmer. 93 

The need for incorporating perturbations into lactation curve models is also driven by the 94 

development of precision livestock farming. Now, we have more frequent and reliable data 95 

and we can move from the logic of reducing variability around average profiles to the logic of 96 

extracting variability to provide information as such. High throughput data has led to the 97 

development and use of statistical methods to understand perturbations (e.g. Codrea et al. 98 

[13]). However, such smoothing methods are limited by their lack of an a priori representation 99 

of the typical "unperturbed" lactation curve. As such, the quantification of perturbations in 100 

such models is underestimated, especially for perturbations of long duration. A final 101 
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limitation of these purely statistical methods is that the model coefficients in themselves do 102 

not have direct biological meaning. There is thus a lack of tools for phenotyping milk 103 

production with a systemic representation of perturbations. 104 

We developed a Perturbed Lactation Model (PLM) that incorporates an explicit representation 105 

of perturbations and that converts individual raw time-series data into biological meaningful 106 

parameters. The fitting procedure of PLM allows the detection and the characterization of 107 

perturbations in milk time-series. The objective of the present paper is (1) to introduce the 108 

PLM model and the explicit representation of perturbations, (2) to describe the use of PLM to 109 

detect and characterize perturbations in milk yield time series with an example in dairy goats, 110 

and (3) to illustrate the role of PLM as a phenotyping tool by analyzing the variability in 111 

perturbed lactation curves on the basis of the fitting results obtained on the dairy goat dataset.  112 
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MATERIALS AND METHODS 113 

The Perturbed Lactation Model (PLM) is composed of a lactation model, denoted 𝑌∗, 114 

describing the theoretical unperturbed dynamics of milk yield along the lactation, and a 115 

perturbation model, denoted𝜋, describing deviations from the lactation model. 116 

The dynamics of daily milk yield (𝑌(𝑡), in kg) during the lactation is thus given by: 117 

𝑌(𝑡) = 𝑌∗(𝑡) ∙ 𝜋(𝑡) 118 

where 𝑡 is the time after parturition in days. 119 

Unperturbed lactation model 120 

Among the numerous mathematical models developed to study lactation curves, the 121 

incomplete Gamma function proposed by Wood [10] has been widely used in different 122 

mammals (e.g. rabbits [14], sheep [15]). This model gives a general expression for the 123 

dynamics of milk yield along the lactation. In this article, we have selected this model as an 124 

example to define the unperturbed lactation curve. Because the structure of PLM is generic, 125 

any other lactation model can be used. 126 

The Wood model is given by: 127 

𝑌∗(𝑡) = 𝑎 ∙ 𝑡𝑏 ∙ 𝑒−𝑐∙𝑡 128 

where 𝑌∗(𝑡) is the unperturbed daily milk yield in kg, 𝑡 is the time in days after parturition 129 

and𝑎, 𝑏, 𝑐 are positive parameters that determine the shape of the lactation curve (𝑎 scales the 130 

general level of the curve, 𝑏controls the type and magnitude of the curvature of the function, 131 

and 𝑐 regulates the rate of decrease in milk yield after the lactation peak). Values of these 132 

parameters can be used to calculate some essential features of the lactation curve such as the 133 

time of peak yield (𝑏 𝑐⁄ , in days), the lactation persistency, i.e., the extent to which peak yield 134 

is maintained (−(𝑏 + 1) ∙ 𝑙𝑛(𝑐) in kg.d-1), or the peak yield (𝑎 ∙ (𝑏 𝑐⁄ )𝑏 ∙ 𝑒−𝑏 in kg)[16]. 135 

Perturbation model 136 
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The perturbation model is based on the idea that each single perturbation I affecting lactation 137 

dynamics can be described as a transient proportional decrease in milk yield, through a 138 

sequence of collapse and recovery. Each perturbation can thus be modelled by way of a 3-139 

compartment model (Figure 1) representing the dynamics of the proportion of milk withdrawn 140 

from the theoretical unperturbed yield. 141 

 142 

Figure 1. Conceptual model of a single perturbation. A: proportion affected by the 143 

perturbation, P: proportion effectively affected by the perturbation, U: proportion unaffected 144 

by the perturbation.a) Model diagram andb) Solution dynamics. 145 

The three compartments of the model are: 𝐴𝑖, the maximal proportion potentially affected by 146 

the ith perturbation, 𝑈𝑖, the proportion unaffected by the ith perturbation, and 𝑃𝑖, the proportion 147 

effectively affected by the ith perturbation. Given the structure of the compartmental model, 148 

forming a path from 𝐴𝑖 to 𝑈𝑖 through 𝑃𝑖, and given that the model is defined such as 𝐴𝑖 + 𝑃𝑖 +149 

𝑈𝑖 = 1, the dynamics of 𝑃𝑖 represents the proportional deviation in milk yield. 150 
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The perturbation model for a single perturbation𝑖 is defined by the following simple 151 

differential system: 152 

𝑖𝑓𝑡 ≥ 𝑡𝑃:

{
 
 

 
 

𝑑𝐴𝑖
𝑑𝑡

= −𝑘1,𝑖 ∙ 𝐴𝑖

𝑑𝑃𝑖
𝑑𝑡

= +𝑘1,𝑖 ∙ 𝐴𝑖 − 𝑘2,𝑖 ∙ 𝑃𝑖

𝑑𝑈𝑖
𝑑𝑡

= +𝑘2,𝑖 ∙ 𝑃𝑖

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒:

{
 
 

 
 
𝑑𝐴𝑖
𝑑𝑡

= 0

𝑑𝑃𝑖
𝑑𝑡

= 0

𝑑𝑈𝑖
𝑑𝑡

= 0

 153 

 154 

with the following initial conditions at parturition time (𝑡 = 0): 155 

{

𝐴𝑖(0) = 𝑘0,𝑖
𝑃𝑖(0) = 0

𝑈𝑖(0) = 1 − 𝑘0,𝑖

 156 

and where 𝑡𝑃𝑖 is the time of start of the ith perturbation, 𝑘0,𝑖 is the parameter of intensity of the 157 

ith perturbation (𝑘0,𝑖 ∈]0; 1]), 𝑘1,𝑖 is the parameter of collapse speed of the ith perturbation and 158 

𝑘2,𝑖 is the parameter of recovery speed of the ith perturbation. 159 

Assuming that 𝑘1,𝑖 ≠ 𝑘2,𝑖, the algebraic solution of this differential system is given by: 160 

{
 
 

 
 

𝐴𝑖(𝑡) = 𝑘0,𝑖 ∙ 𝑒
−𝑘1,𝑖∙𝛥𝑖(𝑡)

𝑃𝑖(𝑡) =
𝑘0,𝑖 ∙ 𝑘1,𝑖
𝑘1,𝑖 − 𝑘2,𝑖

∙ (𝑒−𝑘2,𝑖∙𝛥𝑖(𝑡) − 𝑒−𝑘1,𝑖∙𝛥𝑖(𝑡))

𝑈𝑖(𝑡) = 1 −
𝑘0,𝑖

𝑘1,𝑖 − 𝑘2,𝑖
∙ (𝑘1,𝑖 ∙ 𝑒

−𝑘2,𝑖∙𝛥𝑖(𝑡) − 𝑘2,𝑖 ∙ 𝑒
−𝑘1,𝑖∙𝛥𝑖(𝑡))

 161 

Where 𝛥𝑖(𝑡) is the elapsed time since the beginning of the ith perturbation and is given by: 162 

𝛥𝑖(𝑡) = {
0 𝑖𝑓𝑡 < 𝑡𝑃𝑖

𝑡 − 𝑡𝑃𝑖 𝑖𝑓𝑡 ≥ 𝑡𝑃𝑖
 163 

Finally, the perturbation model, including 𝑛 individual perturbations affecting the lactation 164 

curve is given by: 165 

𝜋(𝑡) =∏(1 − 𝑃𝑖(𝑡))

𝑛

𝑖=1

 166 

 167 
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Model Formalism 168 

The detailed algebraic formula of PLM with 𝑛 individual perturbations is given by: 169 

𝑌(𝑡) = 𝑎 ∙ 𝑡𝑏 ∙ 𝑒−𝑐∙𝑡 ∙∏(1 −
𝑘0,𝑖 ∙ 𝑘1,𝑖
𝑘1,𝑖 − 𝑘2,𝑖

∙ (𝑒−𝑘2,𝑖∙𝛥𝑖(𝑡) − 𝑒−𝑘1,𝑖∙𝛥𝑖(𝑡)))

𝑛

𝑖=1

 170 

The model includes the three parameters of the Wood model (𝑎, 𝑏, and 𝑐) to define the 171 

unperturbed lactation curve, one parameter to define the number of perturbations affecting the 172 

lactation curve (𝑛), and four parameters per individual perturbation i (𝑡𝑃𝑖, 𝑘0,𝑖, 𝑘1,𝑖, and 𝑘2,𝑖) 173 

so that the total number of parameters to define PLM is equal to 4 + 4 ∙ 𝑛. 174 

A simulation of PLM with five perturbations over 300 days of lactation is shown in Figure 2 175 

as an illustration of the model behavior. 176 

 177 

Figure 2. Example of a simulation of the Perturbed Lactation Model (PLM) including five 178 

perturbations with a) individual perturbations dynamics expressed as the proportion of 179 

unperturbed lactation curve (Pi) and b) unperturbed and perturbed milk yield dynamics. 180 
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Perturbations are considered individually, so that a perturbation can occur within another one 181 

(see P3 in Figure 2 at𝑡𝑃3 = 100). Given that individual perturbations are proportional 182 

deviations multiplied between them, when a perturbation is added during another 183 

perturbation, the new perturbation is a proportion of the already perturbed curve. Moreover, 184 

perturbations can be used to simulate the effect of pregnancy (see P5 in Figure 2 at𝑡𝑃5 = 225) 185 

with the recovery parameter 𝑘2,𝑖 set to zero. 186 

Fitting procedure 187 

PLM is aimed at detecting perturbations in milk yield time-series data and thus provide 188 

estimates of (1) a theoretical unperturbed lactation curve and (2) the number, timing and 189 

shape of the perturbations leading to the observed perturbed lactation curve. A dedicated 190 

algorithm was developed in R (R Core Development Team, 2018) with the aim of fitting PLM 191 

on lactation data and deriving parameter estimates 𝑎, 𝑏, and 𝑐 to characterize the unperturbed 192 

lactation curve, 𝑛 to define the number of perturbation and parameter estimates 193 

(𝑡𝑃𝑖, 𝑘0,𝑖, 𝑘1,𝑖, and 𝑘2,𝑖) for each ith detected perturbation. Preliminary tests have shown that 194 

repeated fittings using different starting values can lead to the detection of perturbations 195 

differing in total number and detection order. This raised the question of the theoretical 196 

identifiability of the model parameters (for further details on identifiability see [17]) and of 197 

the use of a stop criterion to estimate𝑛. The structure of the model does not allow a classical 198 

identifiability analysis to be performed if n is unknown. However, by using the software 199 

DAISY (Differential Algebra for Identifiability of Systems[18]), we could assess that for one 200 

perturbation the PLM parameters are locally identifiable. To facilitate the identification of the 201 

model parameters, we adopted a fitting strategy in two steps: first, performing numerous 202 

repeated fittings to estimate the most frequent number of perturbations. In the second step, we 203 

fixed as known the number of perturbations detected in step 1 and proceed to estimate the 204 
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remaining parameters of the model. This strategy ultimately makes it possible to estimate an 205 

optimal number of perturbations and facilitates the estimation of the model parameters. 206 

In the following section, PLMn stands for PLM with 𝑛 perturbations, 𝑘𝑊𝑛
 stands for the 207 

triplet of parameters (𝑎, 𝑏, 𝑐) of Wood’s model estimated with𝑛perturbations (𝑛 ranging from 208 

0 to 𝑛𝑚𝑎𝑥) and 𝑘𝑃𝑖,𝑛 stands for the quadruplet(𝑡𝑃𝑖, 𝑘0,𝑖, 𝑘1,𝑖, 𝑘2,𝑖) of the ith perturbation (𝑛 209 

ranging from 1 to 𝑛𝑚𝑎𝑥). 210 

The nls.multstart package [19] performing non-linear least squares regression with the 211 

Levenberg-Marquardt algorithm and with multiple starting values was used for each single fit. 212 

Two different sampling schemes of starting parameters were used: random sampling of 213 

starting parameters from a uniform distribution within the starting parameter bounds or 214 

selection of combinations of starting parameters at equally spaced intervals across each of the 215 

starting parameter bounds. These two fitting methods are hereafter referred to as ‘shotgun 216 

search’ and ‘gridstart search’ respectively. Starting parameter bounds are defined as follows: 217 

𝑎: [0; 100]; 𝑏: [0; 1]; 𝑐: [0; 1]; 𝑡𝑃𝑖: [𝑡0; 𝑡3](where 𝑡0 and 𝑡3 are the times of first and last 218 

records of the dataset); 𝑘0,𝑖: [0; 1]; 𝑘1,𝑖: [0; 10];𝑘2,𝑖: [0; 10]. For the ‘shotgun search’, the 219 

number of random combinations of starting parameters was set to 100 000. For the ‘gridstart 220 

search’, the number of combinations of starting parameters (i.e., the size of the grid), was set 221 

to five for parameters 𝑎, 𝑏, 𝑐, 𝑘0,𝑖, 𝑘1,𝑖, 𝑘2,𝑖 and to 10 for the parameter 𝑡𝑃𝑖.Consequently, for 222 

the fit of one perturbation (i.e., estimating 3 + 4 = 7 parameters) the number of tested 223 

combinations of starting parameters was 76 x 10 = 1176490. For both search methods, the best 224 

model was selected on the basis of the lowest Akaike Information Criterion (AIC) score [20]. 225 

The whole fitting procedure includes repetitions of a fitting sequence that proceeds by 226 

successive addition of perturbations. This fitting sequence is defined in such a way that the 227 

estimate of the parameters of each new perturbation is obtained while the parameters of the 228 

previously added perturbations are kept fixed. Therefore, the fitting of PLMi provides 229 
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parameters estimates for the new added ith perturbation and for a new version of Wood 230 

model’s parameters 𝑘𝑊𝑖
 (i.e., each time a new perturbation is added, a new version of the 231 

unperturbed lactation is refined). For a given lactation dataset composed of daily milk yield 232 

records, the preliminary fitting of PLM0 (i.e., the original Wood’s model without any 233 

perturbation) was first performed to estimate 𝑘𝑊0
. Then, the fitting sequence starts by the 234 

fitting of PLM1 (i.e., PLM with 1 perturbation) thus providing estimates 𝑘𝑊1
and 𝑘𝑃1,1. Then, 235 

the fitting of PLM2 consists in estimating 𝑘𝑊2
 and 𝑘𝑃2,2 with 𝑘𝑃1,2 fixed equal to 𝑘𝑃1,1. Then, 236 

the fitting of PLM3 consists in estimating 𝑘𝑊3
 and 𝑘𝑃3,3 with 𝑘𝑃1,3 and 𝑘𝑃2,3 fixed equal to 237 

𝑘𝑃1,2 and 𝑘𝑃2,2, respectively. The procedure is applied stepwise until the maximum number of 238 

perturbation 𝑛𝑚𝑎𝑥 is reached. This maximum number is an a priori user defined value to fix a 239 

stop criterion. Preliminary tests have shown that setting 𝑛𝑚𝑎𝑥 = 15 was sufficient. The end of 240 

the fitting sequence consists in reordering the 𝑛𝑚𝑎𝑥 detected perturbations in decreasing order 241 

according to the time of perturbation 𝑡𝑃𝑖 (the original obtained order of perturbations is based 242 

on the opportunities found by the fitting procedure to improve the goodness of fit for each 243 

added perturbation). 244 

Finally, the whole fitting procedure is carried out following the 3 following steps: 245 

Step1: Repeat 100 times the fitting sequence with the ‘shotgun search’ and 𝑛𝑚𝑎𝑥 = 15. 246 

Step2: Compare the fitting results of the 100 repetitions obtained in step1 and identify 247 

perturbations systematically detected at 𝑡𝑃𝑖± 3 days. This was performed by counting, for the 248 

15 perturbations over the 100 fitting results, the number of occurrences of the rounded 249 

value 𝑡𝑃𝑖
∗ = 𝑟𝑜𝑢𝑛𝑑(𝑡𝑃𝑖 7⁄ ) ∙ 7. This step provides the optimal number of perturbations 250 

denoted 𝑁 with an estimate of 𝑡𝑃𝑖 for each perturbation (calculated as the median of the 251 

𝑡𝑃𝑖 with the same rounded value 𝑡𝑃𝑖
∗). 252 
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Step3: Perform the fitting sequence with the ‘gridstart search’, with 𝑛𝑚𝑎𝑥 = 𝑁 and with 253 

starting parameters bounds for each 𝑡𝑃𝑖 reset to[𝑡𝑃𝑖 − 10 ; 𝑡𝑃𝑖 + 10]. This last fit provides the 254 

final estimates 𝑘𝑊𝑁
 and (𝑘𝑃1,𝑁 , … , and 𝑘𝑃𝑁,𝑁) characterizing respectively the best fit for the 255 

unperturbed model and the 𝑁 detected perturbations. The Root Mean Square Error was 256 

calculated to indicate the goodness-of-fit of PLMN. Additionally, the percentage of loss ′𝐿′ 257 

was calculated using the formula 𝐿 = 1 − 𝑆0 𝑆𝑁⁄  where 𝑆0 and 𝑆𝑁 are the total milk yield 258 

over [𝑡0; 𝑡3] calculated with Wood’s model without perturbation using parameters a, b and c 259 

from PLMN and PLMN (i.e., Wood’s model with N perturbations). 260 

To provide complementary information on lactation time-series and refine PLM outputs 261 

analysis, the model of Grossman et al. [21] was also fit to lactation data as described in Martin 262 

and Sauvant [22]. This fitting cuts the lactation period into three stages corresponding to 263 

early, middle and late stages (respectively intervals [𝑡0; 𝑡1]: increasing phase, [𝑡1; 𝑡2]: plateau-264 

like phase and [𝑡2; 𝑡3]: decreasing phase). This triphasic model, based on a smoothing logistic 265 

transition between intersecting straight lines, specifies the cut points of the three stages 266 

(instead of a priori number of days in milk). This fit was performed using the ‘gridstart 267 

search’ with [𝑡0; 𝑡3] as starting parameters bounds for the interval terminals 𝑡1and𝑡2. 268 

Dairy goat dataset 269 

In this study we used data from 319 lactations(126 primiparous and 193 multiparous; parity 270 

ranging from 1 to 7) including 80773 milk records from the dairy goat herd of the INRA-271 

AgroParisTech Systemic Modelling Applied to Ruminants research unit (Paris, France) 272 

between 2015 and 2018. Data concerned 181 goats (94 Alpine and 87 Saanen) born between 273 

2009 and 2017. Records are shown in supplementary Figure 1 by breed and parity. All 274 

lactations considered had at least one record in the first 5 days of lactation and a last record 275 

between 150 and 350 days of lactation (no extended lactation included). 276 

 277 
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Statistical analysis 278 

All statistical analyses were performed using R (R Core Development Team, 2018). 279 

Fixed effects of breed (Saanen vs. Alpine) and parity (1 vs.2 and more) were tested on root 280 

mean square error (RMSE), on parameters𝑎, 𝑏, and𝑐, on estimated peak milk yield, peak time 281 

and total milk yield over [𝑡0; 𝑡3] for Wood and PLM models, and on the estimated number of 282 

perturbation and percentage loss for PLM model, with a mixed analysis of variance model 283 

with goat as a random factor. Fixed effect of lactation stage (early vs. middle vs. late) was 284 

tested on RMSE and on PLM parameters 𝑡𝑃, 𝑘0, 𝑘1, 𝑘2with a mixed analysis of variance 285 

model with parity as a random factor. Pearson linear correlations were calculated for PLM 286 

parameters: intra-class of breed and parity for𝑎, 𝑏, 𝑐, 𝑁, and 𝐿 and intra-class of stage of 287 

lactation for 𝑡𝑃, 𝑘0, 𝑘1, and 𝑘2.  288 
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RESULTS 289 

Lactation duration ranged from 𝑡0= 1.21 ± 0.64 to 𝑡3= 270.30 ± 40.77 days in milk. Early, 290 

middle and late lactation stages determined with Grossman’s model were [1.21, 34.45], 291 

[34.45, 171.05] and [171.05, 270.30], respectively. 292 

Fitting 293 

The fitting procedure converged for the 319 lactations and detected a total of 2354 294 

perturbations with an average of 7.40 perturbations per lactation. Figure 3 shows the fitting of 295 

PLM on one lactation dataset. The fitting results on individual lactations exhibiting the 296 

minimum and maximum values for respectively the RMSE (0.11 kg and 0.41 kg) are provided 297 

in supplementary Figure 2. The number of perturbations varied between 4 and 11, the 298 

percentage loss between 2 % and 19 %, the total unperturbed milk yield was between 393.56 299 

kg and 1557 kg and the record interval length 𝑡0 − 𝑡3 was between ([1, 5] to [165, 358] in 300 

days). During the first fitting steps, the Wood's parameters were stabilized on average after 301 

the detection of the first 4 perturbations (supplementary Figure 3). This indicates the 302 

robustness of the unperturbed curve. 303 

Descriptive statistics of the results obtained from the fitting procedure of PLMn are given in 304 

Table 1 by breed and parity and are compared to the results obtained with PLM0, 305 

corresponding to an adjustment of the Wood model without any perturbation. The value for 306 

the parameter a greatly increased between the Wood model and PLMn. The values for 307 

parameters b and c decreased between the Wood model and PLMn. As a consequence, values 308 

for peak milk and peak time increased between the Wood model and PLMn. Both models did 309 

not give a similar level of variance of error according to breed or parity level. Regarding the 310 

quality of fitting, the RMSE values showed a fairly significant decline between the Wood 311 

model and PLMn (0.17 ± 0.08 kg). Considering explicit perturbations in the fitting of the 312 
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Wood model with PLM compare to fitting directly the Wood function to data led to a 313 

decrease in RMSE, reflecting an improvement in the quality of the adjustment procedure.  314 

 315 

Figure3. Example of the perturbed lactation model fitting procedure result on a lactation 316 

dataset. a) frequency of detection of a single perturbation within ± 10 days; b: unperturbed 317 

and perturbed lactation models plotted against data. 318 
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Table 1. Results of the fitting procedure. 319 

 All SAA (143) ALP (176)   

model 1 (126) 2 + (193) 1 (59) 2 + (84) 1 (67) 2 + (109) P-value 

Wood1 Mean sd Mean sd Mean sd Mean sd Mean sd Mean sd Breed Parity 

a 1.884 0.626 2.385 0.793 1.840 0.551 2.443 0.844 1.922 0.686 2.339 0.761 NS *** 

b 0.217 0.111 0.242 0.114 0.215 0.109 0.226 0.107 0.218 0.114 0.254 0.118 NS NS 

c 0.004 0.002 0.004 0.002 0.003 0.002 0.004 0.002 0.003 0.001 0.005 0.002 *** *** 

RMSE3 (kg/d) 0.308 0.082 0.441 0.136 0.319 0.871 0.461 0.153 0.297 0.076 0.425 0.120 * *** 

peak milk4 (kg) 3.543 0.550 4.723 0.715 3.558 0.585 4.686 0.704 3.528 0.521 4.751 0.727 NS *** 

peak time5 (d) 63.850 32.180 56.809 22.007 74.280 39.884 60.232 24.758 54.658 19.504 54.170 19.334 * * 

total milk (kg) 719.601 149.136 972.838 204.343 731.910 150.040 986.850 223.174 708.762 148.614 962.039 188.906 NS *** 

PLM2           

a 2.159 0.599 2.771 0.690 2.137 0.488 2.890 0.712 2.178 0.684 2.679 0.661 NS *** 

b 0.167 0.077 0.185 0.078 0.160 0.065 0.162 0.066 0.174 0.086 0.203 0.081 *** NS 

c 0.003 0.001 0.003 0.002 0.002 0.001 0.003 0.001 0.003 0.001 0.004 0.001 *** *** 

RMSE 3 (kg/d) 0.184 0.040 0.245 0.051 0.193 0.050 0.246 0.042 0.176 0.026 0.244 0.057 NS *** 

peak milk4 (kg) 3.573 0.472 4.812 0.709 3.559 0.442 4.751 0.680 3.586 0.500 4.857 0.725 * *** 

peak time5 (d) 63.505 25.649 69.459 37.333 77.73 45.065 67.810 32.259 57.795 24.106 60.564 33.258 *** NS 

SN
6(kg) 712.252 147.601 962.423 201.667 723.989 148.533 976.645 220.736 701.917 147.123 951.362 185.470 NS *** 

S0
7 (kg) 766.280 164.168 1053.915 232.294 780.748 165.600 1069.684 255.555 753.540 163.072 1041.654 212.872 NS *** 

N 7.587 1.304 7.380 1.471 7.525 1.278 7.440 1.508 7.642 1.333 7.333 1.447 NS NS 

L (%) 6.016 2.383 7.427 3.502 6.186 2.751 7.512 3.655 5.865 2.014 7.361 3.394 NS *** 

Signification codes: 0.001: ‘***’, 0.01: ‘**’, 0.05: '*', NS : not significant. 320 

Number of lactation curves 321 
1 

Wood model (1967): a, b, and c: estimated Wood parameters, 2Perturbated Lactation Model based on Wood,3RMSE: root mean square error of model fit, 4peak 322 

milk=𝑎 . (
𝑏

𝑐
)𝑏 . 𝑒−𝑏, 5peak time = 

a

b
 , 6total milk based on the PLM perturbed lactation curve: SN= ∑ y(t)

t1
t0

, 7total milk based on the PLM unperturbed lactation curve: S0=323 

∑ 𝑦∗(𝑡)
𝑡1
𝑡0

, N: number of perturbation detected, L :rate of loss milk yield 324 

 325 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted June 6, 2019. ; https://doi.org/10.1101/661249doi: bioRxiv preprint 

https://doi.org/10.1101/661249


Unperturbed lactation curve 326 

Descriptive statistics of the parameters a, b and c for the unperturbed lactation curves are 327 

presented in Table 1 for the overall dataset, breed and parity. The parameter a, which drives 328 

the general scaling of the curve, was not significantly different for the two breeds (2.52 ± 329 

0.71). Consequently, no significant breed effect was found for the peak milk or for the total 330 

unperturbed milk production. The same statistical effects were found with the Wood 331 

adjustment without perturbation. The parameter a was significantly affected by the parity of 332 

the lactation, with first lactations having a lower value for parameter a than the two and more 333 

parities. Consequently, there was a significant parity effect on the peak milk and on the total 334 

milk production. The parameter b, which drives the curvature of the lactation curve, was 335 

significantly affected by breed. Alpine goats exhibited higher values of b compared to Saanen 336 

goats (Alpine: 0.19 ± 0.08; Saanen: 0.16 ± 0.06). Parity also had a significant effect on the 337 

parameter b, with first lactations having a lower value for parameter b than two and more 338 

lactations. Regarding the parameter c, which drives the rate of decrease of milk production 339 

after the peak, both parity and breed effects were highly significant. Alpine goats exhibited a 340 

higher value for the parameter c than the Saanen goats (Alpine: 0.003 ± 0.001; Saanen: 0.002 341 

± 0.001). For this parameter, first lactations had a lower value than two and more lactations 342 

(Primiparous: 0.002 ± 0.001; Multiparous: 0.003 ± 0.001). The peak time of the unperturbed 343 

curve, resulting from both b and c parameters, was significantly affected by breed, with 344 

Saanen goats exhibiting a peak 14 days later in lactation than the Alpine goats. The statistical 345 

effects found for PLMn parameters were consistent with the effects found for the Wood model 346 

(PLM0), except for the peak time. Regarding peak time, the Wood model peak time was 347 

slightly affected by both breed and parity, while for the PLMn peak time, breed had a very 348 

significant effect and parity was not significant.  349 
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Individual unperturbed lactation curves obtained with PLMn for increasing parities are shown 350 

in Figure 4. Some of these individual adjusted curves were considered as atypical, in the sense 351 

they were not similar to conventional definition of lactation curves. An individual lactation 352 

was considered “atypical” if the persistence estimated by PLM, i.e. the value of parameter c, 353 

was an outlier, defined as a value either 3 times above the inter-quartile range (IQR) (above 354 

the third quartile of the distribution for the c parameter) or 3 times below the IQR (below the 355 

first quartile of the distribution for the c parameter). A total of 18 curves were classified as 356 

atypical. Generally, these atypical curves come from the same goat in different parities or for 357 

primiparous that have not started the second parity. The peaks milk of the unperturbed 358 

lactation curve were increased by 27.47 % between the first parity and the second parity, by 359 

9.46 % between the second parity and the third parity and by -0.29 % between the third parity 360 

and the fourth parity (Figure 4). The total milk production for the unperturbed curve was 361 

increased by 32.55 % between the first parity and the second parity, 5.20 % between the 362 

second parity and the third parity and by 1.01 % between the third parity and the fourth parity. 363 

These results are consistent with Arnal et al. [23].  364 

 365 

Figure 4: Individual unperturbed PLM-based lactation curves for increasing parity number (fit 366 

on 319 lactation data; atypical curves correspond to outlying estimates of the parameter c 367 

governing milk persistency). 368 

 369 
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The Pearson linear correlation matrix by breed and parity between the PLM-based 370 

unperturbed parameters is shown in Figure 5 (panels a and b). A strong negative correlation 371 

was found between a and b (-0.65), indicating that high values of a (scaling of the lactation 372 

curve), were associated with low values of b (shaping the curve). A positive correlation was 373 

found between the parameters c and b (0.64) indicating a positive association between the 374 

shape of the curve and the rate of decrease of lactation. Finally, a low negative correlation 375 

between c and a (-0.11) was found. These results are consistent with the well-known features 376 

of lactation curves: higher milk at peak yield being associated with higher speed of decline 377 

after peak [24]. 378 

 379 

Figure 5. Pearson linear correlation matrix on the PLM-based parameters estimates: panels (a) 380 

and (b): the a, b, c parameters defining the unperturbed curve (a: by parity and b: by breed). 381 

(c) and (d) : the number of perturbations N, milk loss and RMSE (c: by parity and d: by 382 

breed). 383 
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Number of perturbations and milk loss 384 

The effects of parity and breed on the total number of perturbations were not significant (7.59 385 

for the primiparous 7.38 for the multiparous and 7.45 for the Alpine and 7.47 for the Saanen). 386 

By contrast, the rate of milk yield loss was significantly affected by the parity. A Pearson 387 

linear correlation matrix by breed and parity between PLM-based estimates of the number of 388 

perturbations (𝑁), percentage loss of milk yield (𝐿) and goodness of fit RMSE was also 389 

carried out (Figure 5, panels c and d). A positive correlation was noted between RMSE and 390 

milk loss (0.38). However, weak negative correlations between the number of detected 391 

perturbations and RMSE (-0.16), and the number of perturbations and the milk loss (-0.20) 392 

were also noted. Distributions of𝑁, 𝐿 and RMSE showed an even larger difference according 393 

to the parity than to the breeds. These results show that it is not the number of perturbations 394 

that contribute the most to the loss in milk yield over the lactation. 395 

Perturbation timing and shape 396 

Table 2 gives descriptive statistics on the parameters of PLM characterizing the 2354 397 

perturbations detected during the fitting procedure: time𝑡𝑃, intensity𝑘0, collapse speed𝑘1 and 398 

recovery speed𝑘2according to the lactation stage determined with Grossman’s model. Most of 399 

the perturbations were detected during the late stage of lactation (n = 1063). The number of 400 

perturbations tended to decrease in middle stage (n = 1054) and for early stage (n = 237). The 401 

parameter 𝑘0 increased from early, middle and late lactation stage. These results suggest that 402 

throughout the lactation process, perturbations become more intense. The parameter 𝑘1 403 

decreased from early to late stages of lactation. This suggests that perturbations tended to be 404 

sharper at the beginning of lactation, with a high speed of collapse and recovery, while they 405 

tended to be more smooth as lactation progressed. Several factors (e.g., breed, parity, 406 

seasonality and season of kidding) can affect characteristics of the lactation curve. The 407 

differences found in this study between primiparous and multiparous goats are consistent with 408 
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previous studies [23,24] with primiparous goats being less productive, with a lower peak yield 409 

and a greater persistency. Despite the lack of a significant effect of parity, our results are 410 

consistent with previous studies [24] where primiparous goats had a peak later than 411 

multiparous (see Table 1). The strong breed effect we observed on peak time is consistent 412 

with previous studies [24] with Saanen goats having a peak yield later than Alpine goats.  413 

Table 2. Descriptive statistics of perturbation parameters for the 2354 perturbations detected 414 

by the perturbed lactation model in the dairy goat lactation dataset. 415 

 Stage of lactation (2354) 

 Early (237) Middle(1054) Late (1063) 

Perturbations Mean sd Mean sd Mean sd 

tp : time 33.767 34.000 107.183 62.996 202.182 59.584 

k0 : intensity 0.450 0.331 0.506 0.349 0.672 0.359 

k1 : collapse 4.013 4.170 3.407 3.870 2.760 3.694 

k2 : recovery 1.128 1.961 1.181 1.794 0.954 1.714 

 416 

The PLM parameter 𝑘0, which drives the intensity of the perturbation, varied considerably 417 

between 0.001 and 1 (set as a boundary). The parameter𝑘1, which drives the collapse speed of 418 

the perturbation varied between 0 and10. The parameter 𝑘2, which drives the speed of 419 

recovery, varied between 0 and 10. A gradient according to the stage lactation was noted for 420 

these parameters with a gradual increase in 𝑘0 and a gradual decrease in 𝑘1 and 𝑘2 according 421 

to early, middle and late lactation stages. In the late stage, 30.20 % of the perturbations were 422 

detected with a parameter 𝑘2 equal to 0, which implied a perturbation without any recovery 423 

period. Among these perturbations, 85.39 % had a 𝑘0 value equal to 1. On the other hand, in 424 

the early and middle stages, the perturbations detected with an 𝑘2 equal to 0 were 1.70 % and 425 

7.07 %, respectively. 426 

 427 

 428 
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Discussion 429 

1) Combining two types of models 430 

In this study, we described the PLM model, a tool for extracting simultaneously perturbed and 431 

unperturbed lactation curves from daily milk time-series. The key original feature of PLM is 432 

to combine an explicit representation of perturbations with a mathematical representation of 433 

the lactation curve. 434 

Regarding the mathematical representation of the lactation curve, the structure of PLM is 435 

generic and any equation can be used to describe the general pattern of milk production 436 

throughout lactation (see appendix including Figure 4 showing illustrating results with other 437 

lactation models). The Wood model was chosen in this study as it is one of the most well-438 

known and commonly used mathematical model of lactation curve. Behind the choice of 439 

considering a general pattern of lactation that is distorted by perturbations, the biological 440 

assumption is that the dairy female has a theoretical production potential (the unperturbed 441 

curve) corresponding to the expression of its genetics. This genetic potential may be not fully 442 

expressed in the farm environment because of perturbations (the perturbed curve).  443 

Regarding the representation of perturbations, we chose an explicit formalism with a 444 

compartmental structure. Developing models that are able to capture perturbations in lactation 445 

curve is a longstanding issue in animal sciences. Historically, perturbations in milk production 446 

data were considered as impairing the quality of fitting of the mathematical equation of the 447 

lactation curve. Therefore, authors have developed approaches to take into account external 448 

factors that alter the lactation curve. Wood [25] himself was the first to modify his model in 449 

order to consider external factors affecting the shape of the lactation curve with a depressed 450 

production during the winter months (18-8 % in January) and an increased production in 451 

spring (14-7 % in May) regardless of the stage of lactation. With the same idea of altering the 452 

general model of the lactation curve to increase the goodness of fit, models were developed to 453 
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be more representative of the variability in the lactation curve. For example, Dhanoa [26] 454 

showed that by considering the time required to achieve maximum milk yield in the Wood 455 

model, the correlations between non-linear parameters were reduced. After this, Dhanoa and 456 

Le Du [27] introduced the autocorrelation notion between milk yield in a given stage of 457 

lactation and yield in the preceding stage. Another example is provided by Goodall and 458 

Sprevak [28] that, based on the Wood model, developed a stochastic model for milk yield to 459 

improve the fit of the lactation curve. The relationship between the maximum milk yield and 460 

Wood's parameter a is linear, but all three parameters affect maximum milk yield. Thus, any 461 

model attempting to explicitly represent alterations in milk yield and under-achievement 462 

relative to a theoretical potential should not be conceptually applied to parameter a but to the 463 

whole function. 464 

With the development of on-farm data acquisition, allowing more frequent milk production 465 

measurements, and the development of more sophisticated statistical methods, modelling 466 

approaches have moved toward an explicit consideration of perturbations, instead of just 467 

eliminating them to improve the overall fitting of the lactation curve. Codrea et al. [13] 468 

studied the effect of nutritional challenge on the lactation curve using differential smoothing 469 

procedures for quantifying biological perturbations in animal performance. Results of this 470 

experience highlighted the decline in milk yield during the challenge period for each cow, and 471 

showed the presence of other deviations with unknown causes or unrelated to the "off-feed" 472 

experiment. Friggens et al. [4] used a clustering procedure linked to a piecewise mixed model 473 

to characterize different responses between lactation stages and types of response for the 474 

nutritional challenges. Other studies have highlighted the large differences in milk production 475 

in goats that are subject to the same dietary and environmental conditions [29]. There are few 476 

other approaches to describe the shape of the lactation curves from animals faced to health 477 

problems. Lescourret and Coulon [30] had shown the huge variability of milk production 478 
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response to mastitis in both form and intensity. Adriaens et al. [1] developed a novel 479 

methodology to predict quarter milk yield during clinical mastitis. The main shortcoming of 480 

these approaches is the lack of an explicit representation of perturbations which are only 481 

captured through statistical objects. To overcome this limit, models have been developed with 482 

a more explicit representation of perturbations. In the work of Revilla et al. [31] on growing 483 

piglets, a classical Gompertz equation, used to capture the unperturbed growth curve, is 484 

combined to an equation of the perturbation, used to capture the perturbation in body weight 485 

change induced by the weaning event. Sadoul et al. [32] used a model based on a spring and a 486 

damper to capture perturbations in physiological responses to challenges. This formalism 487 

allows to characterize perturbations with stiffness and resistance to the change of the system. 488 

The same concept has been applied to dry matter intake data [33]. These recent developments 489 

exhibit limits for capturing perturbations in the lactation curve. They were not extended to 490 

make it possible to capture multiple perturbations that may be imbricated. PLM overcomes 491 

these limitations as it allows the capture of multiple perturbations with contrasted features: 492 

from a sharp and short drop (for instance due to a diarrhoea episode) to a long and slow 493 

decrease (for instance due the gestation status). PLM also allows to determine the time at 494 

which the perturbations occur. This last point is of great interest to add value to on-farm data 495 

where challenge imposed to animals are not controlled and arise from the farm environment.  496 

Like all lactation models, the good functioning of PLM depends on several factors. The most 497 

important factor is the quality of datasets. If there is an inconsistency in the data, PLM loses 498 

its relevance. 499 

By combining a general model of lactation curve with an explicit model of perturbations, 500 

PLM provides two key outputs: first, the unperturbed curve of the female which reflects its 501 

production potential in a non-perturbed environment and second the perturbed curve which 502 

reflects the production permitted by the farm environment. The PLM parameters (𝑘0,𝑖, 503 
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𝑘1,𝑖 and 𝑘2,𝑖) provides the most useful information on characteristics of the perturbed lactation 504 

curve including scale and shape for each perturbation. Indeed, by providing a perturbed curve, 505 

we give an estimate of the number of perturbations and for each perturbation an estimate of 506 

intensity (𝑘0,𝑖, the collapse 𝑘1,𝑖 and recovery 𝑘2,𝑖 speed with a good capture of the time of the 507 

perturbation. This not only allows PLM to be flexible in capturing different types of 508 

perturbations (e.g. gestation, drying), but also to produce metrics to compare the effect of 509 

these perturbations on milk yield. In such cases, and by introducing the information 510 

concerning these perturbations as an explicit component in the Wood model, we force the 511 

model to take into account these perturbations to build the unperturbed curve. 512 

With the development of on-farm technology measurements, an interesting perspective for 513 

PLM is to be used on other biological time-series data (e.g. body weight, dry matter intake, 514 

hormones).  515 

2) Fitting algorithm 516 

Beyond the original concepts behind PLM, a key methodological development has been the 517 

fitting algorithm. The number of parameters to be determined is substantial, between on the 518 

one hand the Wood parameters of the unperturbed curve, and on the other the PLM 519 

parameters (time of perturbation and 3 parameters for each perturbation). To overcome the 520 

difficulty of estimating a high number of parameters, a 2-step algorithm was implemented. 521 

The first step of the procedure is to determine Wood parameters and the time when the 522 

perturbation starts. The second step of the procedure is to determine PLM parameters. 523 

Another difficulty in PLM development has been the choice of a maximum number of 524 

perturbations. After several attempts, this 2-step algorithm was selected for three main 525 

reasons. The first one was related to the visual quality of the fitting results itself. Indeed, the 526 

obtained fitted curve is always very close to what the human hand would have drawn after 527 

simply looking at the raw data and wondering what could be the curve without perturbations. 528 
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This proximity to what the human eye could have inferred was considered decisive, although 529 

subjective. The second reason was related to the issue of finding the number of perturbations. 530 

The procedure allows an automated determination of an optimal number of perturbations, 531 

without a priori or use of an arbitrarily chosen stopping criterion. Preliminary results have 532 

shown that allowing a maximal number of 15 perturbations to be detected in the first step of 533 

the algorithm was enough for the considered dataset. The third reason pertained to the model 534 

identifiability issue [17]. Since the fitting is based on a huge number of repeated fittings from 535 

which the systematically detected times of perturbations are retained, the 2-step fitting 536 

algorithm facilitates the practical identifiability of the model parameters. Indeed, the overall 537 

fitting algorithm was applied several times to the same dataset. That the parameter estimates 538 

were the same between the different runs strengthen the convergence properties of the 539 

algorithm. 540 

Fitting results (see Figure 6) have shown that, in some cases, parameter estimates 541 

characterizing an individual perturbation reached their initial upper boundaries (1 for 542 

parameter 𝑘0,𝑖 and 10 for parameters 𝑘1,𝑖 and 𝑘2,𝑖). This situation concerns perturbations with 543 

a narrow and deep peak-shape. By construction, as a percentage, the value of the parameter 544 

 𝑘0 is not supposed to exceed 1. For the parameters 𝑘1 and 𝑘2, a value of 10 already represents 545 

a very abrupt collapse or recovery, respectively. These results are therefore considered 546 

relevant. However, a next step may be to test the model on a larger dataset to assess the need 547 

to broaden these boundaries. Furthermore, another working step will consist in developing an 548 

application where the settings of the PLM algorithm can be user-defined (for instance, the 549 

maximal number of detectable perturbations or the size of the search grid in step one, 550 

boundaries of parameters, etc) 551 
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 552 

Figure 6: Pearson liear correlation matrix on the PLM parameters by stage of lactation: (tp : 553 

perturbations times detected; 𝑘0 : intenstity, 𝑘1: collapse and  𝑘2 : recovery of perturbation.) 554 

3) Phenotyping tool 555 

PLM has been developed to improve our ability to phenotype animals by extracting biological 556 

meaningful information from raw data. The unperturbed curve fitted by PLM makes it 557 

possible to compare animals based on their potential of production. With this information, 558 

animals can be ranked based on the production level they would have achieved in a non-559 

perturbed environment, instead of being ranked based on the measured production level. This 560 

ranking may be of interest for the famer’s breeding strategy, avoiding to cull animals that 561 

have faced a challenge and decreased their production while still having high genetic merit. 562 

The perturbed curve and the characteristics of each perturbation (time, intensity, collapse and 563 

recovery) open the perspective of working on perturbations as such and using this information 564 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted June 6, 2019. ; https://doi.org/10.1101/661249doi: bioRxiv preprint 

https://doi.org/10.1101/661249


for breeding and management. As a phenotyping tool, PLM can be useful for genetic 565 

selection. Studying characteristics of perturbations throughout many lactations of a large 566 

number of individuals and linking them to genetic or genomic information opens perspectives 567 

to evaluate their heritability and their potential genetic basis. PLM can also be a valuable tool 568 

for on-farm management. Linking perturbations with other information on the animals (such 569 

as lactation stage, parity, gestation stage…) can help to detect sensitive periods where 570 

perturbations are more likely to occur. By cross-checking information on perturbations from 571 

all animals with information on the farm environment (for instance temperature, diet quality), 572 

it would be possible to detect synchronous occurrences of perturbations and link them to farm 573 

environment. With this better understanding of environmental effects on animal production, 574 

preventive measures at farm scale could be undertaken. 575 

Understanding the effects of the environment on farm animals and how they cope with 576 

perturbations is crucial to gain insights on resilience and robustness. These complex dynamic 577 

properties are highly desirable to face the changes occurring in the livestock sector [34]. 578 

While the conceptual framework to work on resilience and robustness is now well defined in 579 

animal sciences, we still need operational metrics [35]. Such metrics have been proposed for a 580 

single perturbation (e.g., Revilla et al., [31]; Sadoul et al. [32]).To our knowledge, existing 581 

metrics for the lactation curve, as proposed by Elgersma et al. [36], are based on a variance 582 

approach applied to the whole curve. Fluctuations in milk yield are summarized with a single 583 

statistical measure. Complementary to this type of approach, PLM can decompose the whole 584 

curve and characterize each perturbation, with metrics that are consistent with the concept of 585 

resilience (intensity, collapse, recovery). It offers a way of quantifying the consequences of 586 

external factors and exploring hypotheses about the biological types of response. By giving a 587 

biological meaning to these parameters, we reconcile a phenotyping tool with the opportunity 588 

of an explanatory approach.  589 
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Conclusion  590 

By combining a general description of the lactation curve with an explicit representation of 591 

perturbations, the PLM model allows the characterization of the potential milk production, 592 

reflecting animal genetics, and the deviations induced by the environment, reflecting how 593 

animals cope with real farm conditions. The translation of raw time series data into 594 

quantitative indicators makes it possible to compare animals and bring insights on their 595 

resilience to external factors. In that sense, PLM is a valuable phenotyping tool and it 596 

contributes to provide decision solutions for dairy production that are grounded in a 597 

biologically meaningful framework. Further modelling studies should strive for integrating 598 

high throughput data analysis with such biological framework. 599 
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