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Abstract 15 
The distribution of fitness effects (DFE) defines how new mutations spread through an 16 
evolving population. The ratio of non-synonymous to synonymous mutations (dN/dS) has 17 
become a popular method to detect selection in somatic cells, however the link, in somatic 18 
evolution, between dN/dS values and fitness coefficients is missing. Here we present a 19 
quantitative model of somatic evolutionary dynamics that yields the selective coefficients 20 
from individual driver mutations from dN/dS estimates, and then measure the DFE for 21 
somatic mutant clones in ostensibly normal oesophagus and skin. We reveal a broad 22 
distribution of fitness effects, with the largest fitness increases found for TP53 and NOTCH1 23 
mutants (proliferative bias 1-5%). Accurate measurement of the per-gene DFE in cancer 24 
evolution is precluded by the quality of currently available sequencing data. This study 25 
provides the theoretical link between dN/dS values and selective coefficients in somatic 26 
evolution, and reveals the DFE for mutations in human tissues. 27 
 28 
 29 
Introduction 30 
 31 
One of the principal goals of large-scale somatic genome sequencing is to uncover genetic loci 32 
under positive selection, so-called “driver” genes, that lead to clonal expansions. 33 
Enumeration of the selective advantage of each driver mutation enables prediction of future 34 
evolutionary dynamics1. In evolutionary biology, the distribution of fitness effects (DFE) is a 35 
fundamental entity that describes the selective consequences of a (large) number of 36 
individual mutations of an ancestral genome2.  In somatic evolution, particularly cancer 37 
genomes, we have an extensive knowledge of the catalogue of recurrent, and likely positively 38 
selected, somatic mutations3, but the fitness changes associated with each mutation remain 39 
largely unquantified.  40 
 41 
Extensive experimental effort is ongoing to determine the fitness effects of mutations. Most 42 
prominently is lineage tracing of mutations in mouse models4,5, but these methods are not 43 
sufficiently high-throughput to produce the DFE for all somatic mutations. Other studies have 44 
estimated the selective coefficient of somatic mutations by measuring the frequency of such 45 
mutations over time in the same individual using longitudinal sampling6,7 however this 46 
method is broadly limited to somatic evolution in the blood (where it is feasible to take 47 
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samples from healthy individuals over time) and in rare cases of patients under active 48 
surveillance. 49 
 50 
An alternative approach is to infer selective coefficients directly from somatic genome 51 
sequencing data. Methods to identify positively-selected (driver) mutations rely on finding 52 
genes that have significantly more mutational ‘hits’ (typically hits are non-synonymous 53 
mutations) than would be expected by chance, after correction for factors known to influence 54 
the mutation rate across the genome8. Conversely, negatively selected genes are expected to 55 
show a paucity of mutations9,10.  This idea is formalised in the calculation of the dN/dS ratio 56 
– a method originally developed in molecular species evolution – that has recently been 57 
adapted for use to study somatic evolution (both cancer and normal tissue)3,9-15. The intuitive 58 
idea behind dN/dS is to measure the rate of non-synonymous (dN) mutations (possibly under 59 
selection) and compare that to the rate of synonymous (dS) mutations (presumed neutral). 60 
The ratio of these two numbers, each normalised for the local sequence-specific biases in the 61 
mutation rate, putatively identifies a signature of selection: dN/dS > 1 indicating positive 62 
selection, dN/dS = 1 indicating neutral evolution and dN/dS < 1 indicating negative selection.  63 
 64 
Transforming dN/dS values to selective coefficients in somatic evolution is an unaddressed 65 
problem.  dN/dS was originally developed in the context of species evolution using the 66 
Wright-Fisher process, a classical population genetics model that assumes that evolution 67 
occurs over very long timescales, which permits new mutations to fix within lineages, and also 68 
that the population size is constant, with all individuals having equal potency and non-69 
overlapping generations. Under the Wright-Fisher model, the dN/dS of a locus is related to its 70 
selective coefficient by the relation16: 71 

𝑑𝑁
𝑑𝑆 =

2𝑁𝑠
1 − 𝑒*+,-  72 

 73 
Where 𝑁 is the effective population size and 𝑠 the selection coefficient. 74 
 75 
However, in somatic evolution the assumptions of the Fisher-Wright model are violated.  76 
Somatic evolution is rapid and new mutations are infrequently fixed in the population17, 77 
clonal dynamics are complex and population sizes unlikely to be constant18. Further, the lack 78 
of recombination in somatic evolution can result in strong hitchhiking effects. In addition, 79 
since in somatic evolution the ancestral genome is known it circumvents the need to measure 80 
dN/dS across a phylogeny (a necessary step for dN/dS analysis in species evolution). 81 
Violations of some of these assumptions was previously recognised to make the 82 
interpretation of dN/dS problematic19,20, and consequently the relationship between 83 
selective coefficients and dN/dS values is uncertain. 84 
 85 
The size distribution of clones (called the site frequency spectrum in population genetics 86 
nomenclature) also contains information on the selective coefficients of newly arising 87 
mutations. Mathematical descriptions of the dynamics of populations of cells can make 88 
predictions on the shape of the clone size distribution under different demographic and 89 
evolutionary models21,22, and this approach has been used to quantify the dynamics and cell 90 
fate properties of stem cells across many tissues23-25. We and others have also used similar 91 
approaches to infer the evolutionary dynamics of tumours in deep sequencing data26-29.  92 
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To date, dN/dS analysis and the analysis of the clone size distribution have been performed 93 
independently, with conflictual results30,31. Here we develop the mathematical population 94 
genetics theory necessary to combine these approaches and explore how the inter-95 
individual measure of selection at a locus as provided by dN/dS values is related to the 96 
underlying cell population dynamics that generate intra-individual clone size distributions. 97 
This approach naturally accounts for the nuances in somatic evolution that can make the 98 
interpretation of dN/dS difficult. We show how this unified approach allows for greater 99 
insight into patterns of selection than either method in isolation, and importantly reveal the 100 
precise mathematical relationship between dN/dS values and selective coefficients in 101 
somatic evolution. We use this approach to infer the selective advantage of mutations in 102 
normal tissue and examine the evolutionary dynamics of cancer subclones. 103 
 104 
Results 105 
 106 
A general approach to integrate dN/dS and clone size distributions 107 
We present a general mathematical framework for the interpretation of frequency-108 
dependent dN/dS values in somatic evolution. First, we construct null models of the 109 
evolutionary dynamics in the absence of selection, and then augment these models to 110 
incorporate the consequences of selection. Evolutionary dynamics differ between normal 111 
tissues and cancer cells: in normal tissues maintained by stem cells, the long-term 112 
population dynamics is controlled by an approximately fixed-size set of equipotent stem 113 
cells undergoing a process of neutral competition32, whereas in tumour growth the overall 114 
population increases over time. In each scenario, we develop a null model to predict the 115 
expected genetic diversity in the population in the absence of selection. Positive selection 116 
causes selected variants to rise to higher frequency than expected under neutral evolution 117 
(Figure 1a), and negative selection has the opposite effect. This insight guides how we 118 
model the effects of selection (i.e diversity of non-synonymous mutations). 119 
 120 
Specifically, we defined the function 𝑔(𝜃, 𝜇, 𝑠, 𝑓) as the expected distribution of mutations 121 
with selective (dis)advantage 𝑠 found at a frequency	𝑓, for a given evolutionary dynamics 122 
scenario, where mutations accumulate at a rate 𝜇. For the remainder of the paper we use 123 
passenger mutations to refer to those mutations that have no functional effect (s=0) and 124 
driver mutations those that have s>0 . When comparing to data, driver mutations are taken 125 
as equivalent to non-synonymous mutations and passengers equivalent to synonymous 126 
mutations.  127 
 128 
The functional form of 𝑔(𝜃, 𝜇, 𝑠, 𝑓) encapsulates the population dynamics of the system 129 
with parameter vector 𝜃, which may, for example, include the growth rate of a tumour, or 130 
loss replacement rate of stem cells in normal tissue. The direct interpretation of 𝑠 depends 131 
on the system under question. Following the logic of the effect of selection above, for 𝑠6 >132 
𝑠 we have that: 133 
 134 

𝑔(𝜃, 𝜇, 𝑠6, 𝑓)>	𝑔(𝜃, 𝜇, 𝑠, 𝑓). 135 
 136 
 137 
 138 
 139 
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 140 
 141 
 142 
 143 
 144 
 145 
Since dN/dS measures the excess or deficiency of mutations due to selection, taking the 146 
ratio of 𝑔(𝜃, 𝑠,𝑚) when	𝑠 ≠ 0 to 𝑠 = 0 and normalizing for the mutation rates, which may 147 
differ for passenger (𝜇;) and driver (𝜇<) mutations respectively, informs how dN/dS is 148 
expected to change as a function of the frequency 𝑓 of mutations in the population 149 
(equation 1). 150 
 151 

<,
<=
= >?

>@

A(B,>@,-,C)
A(B,>?,-DE,C)

     [1] 152 

 153 
We discuss the general properties of this model. Firstly, when 𝑠 = 0 (neutral evolution), the 154 
numerator and denominator are equal resulting in <,

<=
= 1, as expected. Secondly, dN/dS 155 

increases as a function of frequency 𝑓 (clone size) for positive selection, and decreases as a 156 
function of 𝑓 for negative selection (Figure 1b), for all 𝑔(𝜃, 𝜇, 𝑠, 𝑓) that we consider. Thirdly, 157 
the shape of the curves predicted by the underlying population model encodes the value of 158 
the selection coefficient; for example the steepness of the increase is proportional to the 159 
selection coefficient 𝑠 (Figure 1C). These observations are a natural consequence of positive 160 
selection driving selected mutations to higher frequency (Figure 1a). 161 
 162 
Unfortunately, directly using equation [1] to measure selective coefficients from the slope 163 
of the dN/dS curve as function of frequency is often impractical. Real sequencing data often 164 
suffers from a limited number of mutations detected at any particular frequency and 165 
measurement uncertainties in these frequencies. To circumvent these issues, we introduce 166 
“interval dN/dS” (i-dN/dS) that aggregates over a frequency range to reduce the influence of 167 
these sources of noise. Interval dN/dS is defined as:  168 
 169 

𝑖- <,
<=
= >?

>@

∫ A(B,>@,-,C)
IJKL
IJMN

<C

∫ A(B,>?,-DE,C)<C
IJKL
IJMN

    [2] 170 

 171 
Fixing the integration range [𝑓PQR, 𝑓PST] allows for robust inference of 𝑠 in potentially 172 
sparse and noisy sequencing data using maximum likelihood methods (see Methods). 173 
 174 
Frequency-dependent dN/dS values in stem cell populations 175 
In healthy tissue, only mutations that are acquired in the stem cells will persist over long 176 
times, and so we restrict our attention to these cells. Quantitative analysis of lineage tracing 177 
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Figure 1 
A Variants under positive selection are enriched at high frequency, this means dN/dS estimates are dependent 
on the frequency of mutation, b. The strength of selection influences the degree to which positively selected 
variants are enriched at high frequencies c. 
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data has shown that the stem cell dynamics of many tissues conform to a process of 178 
population asymmetry32. In this paradigm, under homeostasis, the loss of stem cells through 179 
differentiation is compensated by the replication of a neighbouring stem cell, thus 180 
maintaining an approximately constant number of stem cells. These dynamics are 181 
represented by the rate equations: 182 
 183 

𝑆𝐶				
WX
→	𝑆𝐶 + 𝑆𝐶𝐷 + 𝐷 				 \𝑝 = 	 (1 + Δ)/2𝑝 = 	 (1 − Δ)/2        [3] 184 

 185 
where SC refers to a single stem cell which divides symmetrically to produce either two 186 
stem cells or two differentiated cells (denoted as D above), 𝜆 is the rate of cell division per 187 
unit time, and 𝑟 is the probability of a symmetric divisions. The product 𝑟𝜆 is referred to as 188 
the loss/replacement rate. Differentiated cells will ultimately be lost from the population 189 
over long time scales. Under homeostasis, these processes should be exactly balanced with 190 
∆= 0. With ∆≠ 0, the fate of a stem cell is ‘biased’, introducing positive or negative 191 
selection into the model. Previous mathematical analysis shows that this model is a good 192 
description of the clonal dynamics in the oesophagus and skin23,33,34. Using the previous 193 
analytical results describing the temporal evolution of the clone distribution (see 194 
supplementary methods for detailed discussion) we derive the frequency distribution 195 
𝑔(𝜃, 𝜇, 𝑠, 𝑓) for oesophagus and skin as 21,23,35: 196 
 197 

𝑔(𝜃, 𝜇T, 𝑠, 𝑓) =
𝑛0𝜇𝑥
𝑓
𝑒−

𝑓
𝑁(𝑡)     [4] 198 

 199 
Where 𝑛E is the starting population size and 𝜇T the mutation rate, which may be different 200 
for drivers (𝑠 ≠ 0) and passenger mutations (𝑠 = 0). 𝑁(𝑡) is a scaling factor that depends 201 
on ∆, the bias toward self-renewal, which we interpret as our selection coefficient in this 202 
system. Specifically: 203 
 204 

𝑁fDE(𝑡) = 1 + 𝑟𝜆𝑡      [5] 205 
𝑁f(𝑡) =

(ghf)ijklmn*(g*f)
+f

     [6] 206 
 207 

We note that at long times (large 𝑁(𝑡)) equation [4] converges to a 1/𝑓 distribution for the 208 
site frequency spectrum of a fixed size population36. 𝑁(𝑡) can be interpreted as the average 209 
size of a labelled clone after time 𝑡, which even under homeostasis grows over time and 210 
compensates for some clones being lost due to drift. From these expressions, we can then 211 
write down a closed-form expression for i-dN/dS as a function of clone frequency (see 212 
methods) that allows for maximum likelihood estimation of parameter values (∆, 𝑟𝜆). We 213 
confirmed the accuracy of our derivation using simulations (Figure 2a), and performed 214 
power calculations to determine the minimum number of mutations required to correctly 215 
infer the underlying population dynamics. We determined that 8 mutations per gene was 216 
sufficient to accurately recover ∆ (Figure 2b) with accuracy increasing for higher mutation 217 
burdens (Figure 2c). 218 
 219 
 220 
  221 
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 222 
 223 
 224 
 225 
 226 
 227 
 228 
 229 
 230 
Selection advantages in histopathologically normal human oesophagus 231 
We inferred the selective advantage of driver mutations in human oesophagus using 232 
published deep sequencing data from Martincorena and colleagues14,37 that documents the 233 
clonal expansion of a panel of putative driver mutations in histopathologically-normal 234 
oesophageal biopsies.  235 
 236 
We used the dndscv bioinformatics tool3 to calculate frequency-dependent dN/dS values 237 
from these data (clone size measured in fraction of mutant reads multiplied by 2mm2 – the 238 
area of the biopsy – and assuming 5,000 stem cells per mm2 tissue). dN/dS values varied 239 
considerably as a function of mutation frequency (Figure S1).  240 
 241 
We considered the average frequency-dependent dN/dS values across all genes in the 242 
panel, on a patient-by-patient basis. Our theoretical model of i-dN/dS calculated from these 243 
data fitted strikingly well (Figure S2). Estimates of the loss/replacement rate 𝑟𝜆 of the stem 244 
cell population were in the range 1.2-5.0 per year (Figure S2&S3). Inference of the selective 245 
advantage 𝑠 (measured in terms of the bias towards self renewal ∆) revealed an average 246 
bias of 0.004 (0.002 – 0.005 95% CI) per missense mutation (Figure S2).  Nonsense 247 
mutations caused a five-fold greater bias towards self-renewal of 0.021 (0.008 – 0.032 95% 248 
CI) (Figure S3).  After removal of all genes that are strongly selected, global dN/dS values on 249 
the remaining 48 genes show dN/dS of approximately 1 across the frequency range (Figure 250 
2d), and i-dN/dS analysis revealed somatic mutation does not associate with a proliferative 251 
bias (D=0). 252 
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Figure 2 
a Interval dN/dS as a function of clone area for 2 simulated cohorts where driver mutations induce different 
biases, theoretical model captures the dynamics well and enables us to recover the bias ∆, accurately. As 
the number of mutations increases ability to recover the correct  ∆ and the model fit (measured using R2) 
improves b and c. d Data and model fit for all neutral genes, shows i-dN/dS = 1 across the frequency range 
and inferred bias of 0. Data and model fit for e NOTCH1 missense mutations in patient PD31182, f missense 
TP53 mutations in PD30273 and NOTCH1 nonsense mutations in PD31182. Data are black points and model 
fits are solid lines with shaded areas denoting 95% CI. 
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 253 
 254 
 255 
 256 
 257 
 258 
 259 
We then fitted the data on a gene-by-gene and patient-by-patient basis for cases where 260 
sufficient mutations were available to perform the fit (Figure 2e-g; Figure S4). A broad range 261 
of selective advantages were inferred (Figure S4&S5). Mutations in TP53 showed large 262 
biases across all patients for both missense, D=0.057 (0.05-0.068 95% CI) and nonsense 263 
mutations, D=0.094 (0.091-0.097 95% CI)  (Figure 3a-b). This was also true for mutations in 264 
NOTCH1 with D=0.029 (0.019-0.036 95% CI) for missense and D=0.072 (0.034-0.089 95% CI) 265 
for nonsense mutations. NOTCH2, PIK3CA, CREBBP and FAT1 also showed a bias toward self-266 
proliferation in multiple patients (Figures 3a-b), though most had a small effect on fitness 267 
(range 0.003 – 0.029 for missense mutations and 0.030 – 0.041 for nonsense mutations) . 268 
Together these data suggest a distribution of fitness effects (DFE) characterized by many 269 
small effect mutations with few large effect mutations (Figures 3c-d), as in seen in 270 
organismal evolution2.  271 
 272 
Driver mutation selective advantage in normal skin 273 
Martincorena and colleagues have also published data on the expansion of driver mutations 274 
in ostensibly normal human skin18. Analyses of these data with interval dN/dS revealed a 275 
per-patient average selective advantage per mutation (again measured in terms of the bias 276 
towards self renewal ∆) of ∆=0.001 for missense mutations and four-fold higher for 277 
∆=0.004 for nonsense mutations (Figures S6a-c). Performing the analysis on a gene-by-gene 278 

TP53
NOTCH1
NOTCH2
NOTCH3
CREBBP
SPHKAP

SALL1
FAT1

0.00 0.02 0.04 0.06
∆

Missensea

TP53

NOTCH1

NOTCH3

FAT1

0.000 0.025 0.050 0.075 0.100
∆

Nonsenseb

0

2

4

6

8

0.000 0.025 0.050 0.075 0.100
∆

Co
un

ts

TP53
NOTCH1
Other genes

Missensec

0

1

2

3

0.000 0.025 0.050 0.075 0.100
∆

Co
un

ts

Nonsensed

Figure 3 
Summary of model fits across all patients for normal oesophagus data. Inferred biases ∆ for genes where at least 2 
patients had good model fits (R2 > 0.6 & >7 mutations) for missense mutations a, and  nonsense mutations b. 
Inferred distribution of fitness effects for all genes across all patients for missense mutations c, and nonsense 
mutations d. 
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basis was limited by the low detected number of mutations, and the limited frequency 279 
range (clone size range). Good fits to the data were obtainable for NOTCH1 missense 280 
mutations in patient PD18003 with fitness estimated to be ∆=0.0149 (0.0148-0.0150 95% 281 
CI), and TP53 missense mutations also in patient PD18003, ∆=0.0054 (0.0051-0.0058 95% 282 
CI) Figure S6.  These fitness coefficients were similar to the oesophagus data. For missense 283 
mutations we were also able to produce the distribution of fitness effects across the skin 284 
cohort, which showed similar characteristics to the oesophagus data of a small number of 285 
high effect mutations and a larger number of smaller effect mutations, Figure S6f. 286 
 287 
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Clonal mutations have greater dN/dS than subclonal mutations in cancers 291 
We next investigated the selective advantage of driver mutations in cancer. We first 292 
investigated whether or not differences existed between dN/dS values for clonal mutations 293 
(ie truncal, present in all cells in a cancer) and subclonal mutations (present in a subset of 294 
cells in a cancer) were apparent. Using sequencing data from 2,619 cancers from TCGA that 295 
had sufficient cellularity and depth (see Methods) we calculated the mutation copy number 296 
(MCN) for each mutation and grouped mutations into subclonal, clonal and amplified across 297 
the cohort, where mutations with MCN < 1 were subclonal, MCN == 1 were clonal and MCN 298 
> 1 were amplified (Figure 4a). We than calculated global dN/dS ratios for a panel of 198 299 
high confidence driver genes (Methods). 300 
 301 
Across all cancers, the signal of positive selection was more pronounced for clonal 302 
mutations (Figures 4b-e), with the highest dN/dS values found in amplified mutations38. 303 
Subclonal mutations on the other hand demonstrated much lower dN/dS values. The same 304 
pattern was also evident in individual cancer types (Figure 4e,d & S7). In many cancer types 305 
(colorectal, ovarian, glioblastoma) subclonal mutations showed no evidence of subclonal 306 
selection (neutral evolution; dN/dS = 1), Figure 4e,d & Figure S7. 307 
 308 
Interval dN/dS for cancer 309 
We applied our mathematical approach above to calculate i-dN/dS in cancer evolution. In 310 
cancer evolution 𝑔(𝜃, 𝜇, 𝑠, 𝑓) must account for tumour growth dynamics and subclonal 311 
mutations which may rise and fall in frequency due to selection and drift. The well-studied 312 
Luria-Delbrück distribution and its extensions describes these dynamics39. Specifically, the 313 
Luria-Delbrück distribution describes the expected number of mutational lineages at a 314 
particular frequency assuming an underlying birth-death process for individuals in the 315 
population. For neutral mutations the site frequency spectrum has a characteristic g

Cj
 316 

dependence, where 𝑓 is the frequency of the mutations  35,40. Hence:  317 
 318 

𝑔(𝜃, 𝜇;, 𝑠 = 0, 𝑓) = >?
o?

g
Cj

     [7] 319 

 320 
where 𝜇; is the passenger mutation rate and 𝛽; is the survival probability of a lineage at 321 
division. We previously showed that in many cancers across types (approx. 30% of cases), 322 
subclonal mutations closely follow the prediction of this neutral model26.  323 
 324 
Extensions to the classic Luria-Delbruck distribution describe the differential fitness of 325 
mutants. We defined the relative fitness advantage 𝑠 as the ratio of net growth rates between 326 
wildtype ‘passenger’ mutations (𝜆;) and driver mutations (𝜆<) : 327 
 328 

𝑠 = X@
X?
− 1      [8] 329 

 330 
s > 0 indicated positive selection while s < 0 indicated negative selection. We also defined 331 
the birth and death rates of the respective wildtype (passengers) and mutants (drivers) as 332 
𝑏;, 𝑑;, 𝑏<  and 𝑑<. Here, the site-frequency distribution again follows a power law but with 333 
exponent dependent on the relative fitness advantage of the mutant 35,40: 334 
 335 
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𝑔(𝜃, 𝜇<, 𝑠 ≠ 0, 𝑓) = ,>@

o@

r
rst

u?
u@

vwjstrstx

,
jst
rst

g

C
jst
rst

    [9] 336 

 337 
Here, N is the tumour population size at the time of sampling. Using these expressions 338 
(equations 7&9), we derive i-dN/dS (see Methods). The equation exhibits the same 339 
qualitative behaviour as for the stem cell model, in that dN/dS increases as a function of 340 
frequency for positive selection and decreases for negative selection (Figure 5a). Using a 341 
simulation-based model to generate synthetic data, we confirmed the accuracy of the 342 
model by accurately recovering the inputted selection coefficient by application of the 343 
theoretical model and maximum likelihood inference (Figure 5a).  344 
 345 
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Figure 5 
Interval dN/dS as a function of frequency for 4 simulated cohorts where driver mutations induce different 
selective advantages, a. Points are simulated data and lines are model fits, under each line is the inferred 
selective advantage and the true selective advantage in brackets. Power to correctly infer the selection 
coefficient depends on the number of mutations in the cohort, b. We generated a cohort of 1000 tumours 
and then subsamplesd the mutations (50 times) and inferred the selection coefficient. For TCGA we are 
limited by a small number of subclonal drivers to accurately perform the inference. The ratio of the driver 
mutation rate to passenger mutation rate has a strong influence on dN/dS, c. Here we generated synthetic 
cohorts where the strength of selection of driver mutations was 0.5, and different ratio of driver mutation 
rate to passenger mutation rate. When drivers are rare, dN/dS > 1 and we can accurately apply our model. 
When drivers are frequent compared to passengers we observe strong hitchhiking effects which results in 
dN/dS~1.  
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Subclonal dN/dS is strongly influenced by the ability to resolve low frequency variants. We 347 
generated synthetic tumour cohorts that modelled subclonal selection, and simulated 348 
‘perfect sensitivity’ for mutation detection. In these cases, where all mutations were 349 
resolved, we measured dN/dS»1 (and hence infer a selection coefficient of 0), despite some 350 
lineages being positively selected (Figure S9). If only higher frequency variants were 351 
analysed, then the measured dN/dS > 1 and the correct selective coefficient is inferred 352 
(Figure S9). We note that at very low frequencies the detected mutations are newly arisen 353 
in the population, and so are as yet ‘unfiltered’ by selection. Consequently the ratio of non-354 
synonymous to synonymous mutations is expected to be proportional to the respective 355 
mutation rates of the two mutation types.  The abundance of low frequency mutations also 356 
increases exponentially with decreasing clone frequency, and so including very low-357 
frequency variants ‘drowns out’ the effects of selection (Figure S9C).  We note that the 358 
limited sequencing data of the majority of currently available cancer genomic data means 359 
that typically only high frequency variants are detected. 360 
 361 
Currently available cancer sequencing data is insufficient to infer selective advantages 362 
Limitations in the quality of currently available sequencing data meant that the theoretically 363 
predicted frequency dependence of dN/dS values could not be assessed in cancer genomics 364 
data (Figure S8).  Limited sequencing depth introduces uncertainty into the determination 365 
of variant allele frequencies (“sequencing noise”) which can result in incorrect classification 366 
of mutation clonality. Visual inspection of the mutation copy number histogram for TCGA 367 
data (Figure 4a) showed a very broad dispersion of MCNs, and the resolution at lower 368 
(subclonal) frequencies was particularly poor. Issues arising due to sequencing noise are 369 
exacerbated in the setting of dN/dS analysis where pooling the data from multiple patients 370 
with different sequencing depth and purities is required. Consequently, the range of 371 
subclonal frequencies where interval dN/dS could be calculated was severely restricted.  372 
 373 
We tested whether or not looking at individual genes (rather than individual mutations) 374 
allowed for measurement of the DFE.  However, the lack of recurrent subclonal mutations 375 
on a gene-by-gene basis precluded this approach. Power calculations predicted that a 376 
minimum of 30 subclonal mutations in a given gene were required to accurately fit the 377 
interval dN/dS model (Figure 5b). This level of subclonal recurrence of individual mutations 378 
was not seen in the data: for example, the average number of subclonal mutations in TP53 379 
per cancer type, as well as the number of subclonal VHL mutations (which has been 380 
reported to occur subclonally at an appreciable frequency 41) were both well below this 381 
cutoff (Figure 5B).   Consequently, large cohorts of tumours sequenced to higher depth are 382 
required to apply this approach. 383 
 384 
Aside, we note that the traditional dN/dS approach, and also our modelling framework, 385 
assumes that mutations are independent, and consequently the possibility of hitchhiking of 386 
mutations (e.g. nested driver mutations within clones) is neglected. In simulated data, we 387 
observed high mutation rates for both driver and passenger mutations led to hitchhiking 388 
being common, and subsequent obscuring of the signal of selection (Figure 5c). In extreme 389 
cases this led to dN/dS = 1 (apparent neutral evolution) even in the presence of multiple 390 
selected lineages. For most cancers, the number of driver mutations per cancer is thought 391 
to be low (<10)3, but nevertheless in hypermutator cancers the hitchhiking effect is likely to 392 
be common.  Thus, despite hypermutator tumours tending to have fewer copy-number 393 
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alterations and hence less problematic estimation of MCNs, the prevalence of hitchhiking 394 
precludes analysis of these tumours. 395 
 396 
Discussion 397 
 398 
Here we have shown that the combination of dN/dS values with mutation frequency-based 399 
information provides additional quantitative insight into dynamics of somatic evolution than 400 
either method alone. Specifically, the combined approach enables direct inference of the 401 
selection coefficients of mutations in somatic tissues.  402 
 403 
Using this methodology we have begun the construction of the distribution of fitness effects 404 
(DFE) in somatic evolution (Figure 3c,d & Figure S6f). In histologically normal epithelium, 405 
mutations of most genes considered showed minimal effects on fitness (near-neutral 406 
evolution), though selection coefficients for some loci, foremost NOTCH1 and TP53 were 407 
considerable (>1% and >5% respectively), and consequently the DFE has most mass close to 408 
s=0 with a long right-tail of highly-selected variants.  We observed that values of selective 409 
coefficients of individual genes varies between patients, likely because of inter-patient 410 
difference in the precise location of point mutations, but potentially also because of inter-411 
patient variation in selective pressure from the microenvironment. Nevertheless, the 412 
comparative rank of per-gene fitness coefficients was broadly consistent across patients.  413 
This consistency in selective coefficients is in agreement with the observation highly 414 
recurrent gene mutations in cancer42 and evidence of repeatability in cancer evolution43. 415 
 416 
We have previously measured fitness effects in individual cancers (but were unable to 417 
ascribe fitness changes to individual genes) finding increases in growth rate in a selected 418 
clone approaching 100% in some cases27.  Care must be taken when comparing selective 419 
coefficients between normal and cancer populations, because in the former we quantify 420 
selection as tilt away from homeostasis and towards net growth of a lineage, whereas in 421 
cancer we infer the relative growth rate of a clone within the tumour as a whole. With this 422 
important caveat in mind, nevertheless the fitness increases observed in cancer appear to 423 
be much larger than for normal tissues. We hypothesise that this is because the effect of 424 
selection is weaker in expanding populations like cancer, wherein the generation of a 425 
subclonal expansion requires very large increases in fitness44. 426 
 427 
On a cautionary note, our theoretical work shows that the clonality of mutations strongly 428 
determine the observed value of dN/dS, and so a misleading picture of the selective forces 429 
operating in a tumour (or healthy tissue) will be produced if dN/dS frequency-dependent 430 
effects are not corrected for. The accuracy of any estimate of evolutionary dynamics from 431 
dN/dS values is of course dependent of the underlying accuracy of the dN/dS measure itself, 432 
which is compromised by uncharacterised variability in the mutation rate across the 433 
genome45 and in the uncertain pathogenicity of individual single nucleotide variants 434 
(extensions to estimate site level selection coefficients may circumvent some of these 435 
issues46,47). Finally, we note that dN/dS measures cannot elucidate evolutionary pressures in 436 
individual samples as insufficient (subclonal) mutations will be found at any individual locus. 437 
dN/dS cohort measurements are sensitive to outliers, where a few patients with high 438 
selection can drive the results 48. Other approaches, such as using the site frequency 439 
spectrum, are likely more powerful for these types of questions.  440 
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 441 
Combining population genetics methods with comparative genomics is a powerful way to 442 
infer selection pressures in human somatic evolution, giving new insight into the 443 
fundamental parameters that determine evolutionary dynamics in health and disease. 444 
 445 
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Methods 454 
 455 
TCGA Data Processing 456 
MAF (Mutation Annotation Format) files from the Mutect2 mutation calling algorithm and 457 
copy number segmentation data for 9950 cancers from 26 cancer types were downloaded 458 
from the genomic data commons portal using the TCGAbiolinks R package 49. Cellularity and 459 
ploidy estimates derived from ASCAT were obtained from COSMIC 460 
(https://cancer.sanger.ac.uk/cosmic/download). We then filtered for >2 reads reporting the 461 
variant and >9 reads coverage at each locus in both the tumour and normal sample. We 462 
removed samples where the effective depth (defined as cellularity times depth) was < 50X 463 
and those that had likely undergone genome doubling (ploidy > 2.5). This left 2619 samples 464 
from 17 cancer types which we deemed suitable for analysis. 465 
 466 
Copy number (CN) segmentations together with cellularity estimates were used to correct 467 
the variant allele frequency and produce mutation copy number estimates. We assume that 468 
the observed CN state (𝐶𝑁yyyy) was a combination of signals from the tumour sample and 469 
contamination from normal cells (with two copies) assuming tumour purity c. 470 
 471 

𝐶𝑁yyyy = 𝑐 × 𝐶𝑁 + 2(1 − 𝑐) 472 
 473 
With this, log(R) ratios were transformed into copy number states using the following 474 
formula: 475 

𝐶𝑁 =
2|2}~�(�) − 1 + 𝑐�

𝑐  476 

 477 
Using these corrected copy number states, mutation copy number (MCN) values were 478 
calculated. Given mutation 𝑖 with variant allele frequency 𝑉𝐴𝐹Q, copy number 𝐶𝑁Q at the 479 
locus and cellularity estimate of the tumour c, the MCN was calculated as follows: 480 

𝑀𝐶𝑁Q =
𝐶𝑁Q × 𝑉𝐴𝐹Q

𝑐  481 

 482 
Visual inspection of the MCN histograms (Figure 4a) show a dominant peak at MCN = 1 483 
representing clonal mutations present in a single copy, confirming that the corrections we 484 
applied work as intended. 485 
 486 
Oesophagus and skin data 487 
For the oesophagus and skin data we used mutation calls provided by the original studies. In 488 
the oesophagus data when a mutation was present in multiple adjacent biopsies we used 489 
the sum of the mutation frequency times the area of the biopsies (2mm2) as our readout of 490 
clone size and performed the dN/dS analysis on a patient by patient basis.  491 
 492 
dN/dS calculations 493 
For calculating dN/dS ratios the dndscv R package was used which calculates both global 494 
dN/dS ratios across the whole exome or a panel of genes as well as per gene dN/dS ratios 495 
using a covariate based model to infer dN/dS values with a limited number of mutations  3. 496 
In an attempt to enrich for positive selection in some of our analysis we calculated dN/dS 497 
for a subset of 198 high confidence driver genes 50.  498 
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 499 
Over or under filtering of possible germline SNPs is known to influence dN/dS values in 500 
somatic genomes3. We previously found that mutation calls provided by TCGA are likely 501 
over stringent on filtering germline SNPs resulting in inflated dN/dS values 48. To circumvent 502 
this issue, we calculated a baseline dN/dS value by randomly selecting 1,000 genes 503 
(excluding drivers) and then running dndscv across the whole TCGA cohort, reasoning that 504 
this should on average return dN/dS = 1, and any deviation from this would be due to 505 
under/over filtering of SNPs . Repeating this procedure 50 times and then taking the mean 506 
value gave us our baseline value which we could then subtract from further dN/dS values 507 
we calculate in our analysis.  To confirm this procedure produces the expected result of 508 
dN/dS = 1 in the absence of selection, we repeated the procedure and again, randomly 509 
selected 1,000 genes 100 times and then applied the correction (subtracting the calculated 510 
deviation from 1). As would be expected the mean of this distribution was dN/dS = 1, 511 
validating our approach, Figure S10. 512 
 513 
To calculate the interval dN/dS measure we took our corrected mutation frequency data 514 
and determined a low cutoff 𝑓PQR  based on the minimum mutation frequency. We then 515 
created a vector of frequencies 𝑓PST  that covered the total range of mutation frequencies 516 
and calculated dN/dS between 𝑓PQR  and all values of 𝑓PST . This allowed us to plot dN/dS as 517 
a function of 𝑓PST  and fit our interval dN/dS models.  518 
 519 
Model fitting 520 
We used a maximum likelihood approach to fit our models to the data. Defining the 521 

observed interval dN/dS as 𝑦 and the model dN/dS as 𝑦�(𝜃) = >?
>@

∫ A(B,>@,-,C)
IJKL
IJMN

<C

∫ A(B,>?,-DE,C)<C
IJKL
IJMN

 . First 522 

of all we define the residuals between the data and the model as 𝑅 = 𝑦 − 𝑦�.  Assuming that 523 
the residuals are normally distributed with mean 0 we can write down the negative log 524 
likelihood (NLL) as 525 

𝑁𝐿𝐿(𝜃) = −� log	(𝑁(𝑦 − 𝑦�(𝜃), 𝜇 = 0, 𝜎))
�*��(B)

 526 

where N denotes the normal probability density function. We can then find the parameters 527 
𝜃 that minimize the NLL and calculate confidence intervals on these estimates using the 528 
Fisher information matrix. 529 
 530 
Interval dN/dS models 531 
For the stem cell model, using equations [2]-[6] in the main text, interval dN/dS is given by: 532 

𝑖- <,
<=
= g

gh∆

��M�*
��JKL
�∆(n)

�*�M�*
��JMN
�∆(n)

�hrj�
�
���JKL
�∆(n)

��JKL
h�

�
��JMN
�∆(n)

��JMN
��

��Mw*
��JKL
�(n) x*�Mw*

��JKL
�(n) xhrj�

�
���JKL

�(n)

��JKL
h�

�
��JMN
�(n)

��JMN
��

    533 

 534 
Where 𝐸Q   is the exponential integral 𝐸Q(𝑥) = −∫ i�N

R
�
T 𝑑𝑛. Given that the data is in terms of 535 

area, A we made the transformation 𝑓 = 𝜌𝐴, where 𝜌 is density of stem cells per mm2, 536 
which we set to 5,000 cells /mm2 for fitting.  537 
 538 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 5, 2019. ; https://doi.org/10.1101/661264doi: bioRxiv preprint 

https://doi.org/10.1101/661264
http://creativecommons.org/licenses/by/4.0/


 16 

For the cancer model, interval dN/dS is given by: 539 

𝑖-
𝑑𝑁
𝑑𝑆 =

𝜇;
𝜇<

∫ 𝐶-i�i ¡Q¢R𝑑𝑓
CJKL
CJMN

∫ 𝐶Ri£¡WS�𝑑𝑓
CJKL
CJMN

= 𝑁
-
gh-(1 + 𝑠)

𝛽;

𝛽<
g
gh-

𝑏;
𝑏<
Γ �
2 + 𝑠
1 + 𝑠�

𝑓PQR
*g
gh- − 𝑓PST

*g
gh-

1
𝑓PQR

− 1
𝑓PST

 540 

 541 
We note that in the cancer setting because the final population size N is generally unknown 542 

we fit the model 𝑦�(𝜃 = {𝐴, 𝑠}) = 𝐴 ×
CJMN

�r
rst*CJKL

�r
rst

r
IJMN

* r
IJKL

. 543 

 544 
For a detailed description of the mathematical background of the clone size distribution in 545 
these models and comparison with simulation see the supplementary Jupyter notebooks. 546 
 547 
Simulations 548 
 549 
To confirm our analytical models and investigate the influence of uncertainty in mutation 550 
frequencies due to sequencing noise and to challenge some of the underlying assumptions 551 
of our theoretical approach, we developed 2 simulation based models. The first one models 552 
cancer evolution and the second models stem cell evolution under homeostasis. For the 553 
cancer evolution model, we adapted our previously described model27 so that mutations 554 
can be one of two types, neutral passengers or mutations that have an effect on fitness of 555 
cells (either positive or negative). We model cancer growth as a continuous time branching 556 
process. At each division, daughter cells acquire mutations with a fitness effect s at rate 𝜇<  557 
and passenger mutations (which are neutral) at rate 𝜇;. This is implemented by drawing a 558 
Poisson random variable with mean given by 𝜇<  or 𝜇;. Fitness of passenger mutations is 0, 559 
while driver mutations have fitness advantage s, where s is defined by equation [8]. We also 560 
implemented a model where fitness was a random exponentially distributed variable with 561 
mean s.  562 
 563 
For the stem cell model we seed a population of 𝑁- stem cells that then undergo 564 
loss/replacement as described by the following rate equations  565 
 566 

𝑆𝐶				
WX
→	𝑆𝐶 + 𝑆𝐶𝐷 + 𝐷 				 \𝑝 = 	 (1 + Δ)/2𝑝 = 	 (1 − Δ)/2 567 

 568 
As only the stem cells are long lived the differentiated cells are not explicitly modelled such 569 
that when a stem cell “differentiates” it is effectively lost from the population. As in the 570 
cancer model, during division, daughter cells acquire mutations with a fitness effect at rate 571 
𝜇<  and passenger mutations at rate 𝜇;. Fitness increases the bias toward self-proliferation Δ 572 
of a stem cell lineage. Additional driver mutations do not further increase the fitness of 573 
stem cells. 574 
 575 
To calculate dN/dS across a cohort of simulated tumours or tissue biopsies we count the 576 
number of driver mutations 𝑁< and the number of passenger mutations, 𝑁; and then 577 
normalize by their respective mutation rates. In our model drivers = non-synonymous and 578 
thus every driver has an effect on fitness. Then the ratio of these two numbers gives us the 579 
excess or deficit of mutations due to selection – ie the dN/dS ratio. 580 
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 581 
𝑑𝑁
𝑑𝑆 =

𝑁</𝜇<
𝑁;/𝜇;

 582 

 583 
For the interval dN/dS we simply calculate the 𝑁T between 𝑓PQR  and 𝑓PST . 584 
 585 
To introduce uncertainty into mutation frequencies we perform a process of empirically 586 
motivated sampling to the true underlying frequency 𝑓. Firstly, we specify the average 587 
depth of sequencing D, then the depth of sequencing for mutation i is given by 588 

𝐷Q = 𝑃𝑜(𝐷) 589 
The sampled number of read counts is then 590 

𝑛- = 𝐵𝑜(𝑛 = 𝐷Q, 𝑝 = 𝑓) 591 
And the sampled variant frequency is then 𝑓- = 𝑛-/𝐷Q 592 
 593 
Code and data availability 594 
Code used for the analysis are included as a snakemake pipeline which will reproduce all the 595 
analysis and generate all the figures. Julia 51 was used for the majority the simulations and R 596 
52 was used to analyse the data and generate the figures. Some of the analysis rely in 597 
bespoke packages written for this which are freely available under and open source licence. 598 
Code is available at github.com/marcjwilliams1/dnds-clonesize. 599 
 600 
 601 
  602 
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Figure S1 
Global dN/dS values in different frequency bins for patient PD31182 showing that the values depend on the 
frequency of mutations. 
 
 

 
 
Figure S2 
Model fits for all patients in the oesophagus data set. Purple points are data and red lines model fits. Fits were 
performed separately for missense, a and nonsense mutations, b. Each plot is annotated with the inferred bias 
∆ and the R2 value. 
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Figure S3 
Inferred biases for for each patient in the oesophagus dataset based on missense , a and nonsense mutations, 
b. Inferred loss replacement rates, 𝜆 for each patient based on missense, a and nonsense mutations, b. 
 
 

R2 = 0.958

R2 = 0.983

R2 = 0.98

R2 = 0.948

R2 = 0.627

R2 = 0.869

R2 = 0.935

PD36806 (20−23)

PD36712 (24−27)

PD30986 (44−47)

PD30987 (48−51)

PD30274 (52−55)

PD30988 (56−59)

PD31182 (72−75)

0.0000 0.0025 0.0050 0.0075 0.0100
∆

Missensea

R2 = 0.982

R2 = 0.936

R2 = 0.954

R2 = 0.945

R2 = 0.822

R2 = 0.972

R2 = 0.839

R2 = 0.898

PD36806 (20−23)

PD36712 (24−27)

PD30272 (36−39)

PD30986 (44−47)

PD30987 (48−51)

PD30988 (56−59)

PD30273 (68−71)

PD31182 (72−75)

0.00 0.01 0.02 0.03 0.04 0.05
∆

Nonsenseb

R2 = 0.958

R2 = 0.983

R2 = 0.98

R2 = 0.948

R2 = 0.869

R2 = 0.935

PD36806 (20−23)

PD36712 (24−27)

PD30986 (44−47)

PD30987 (48−51)

PD30988 (56−59)

PD31182 (72−75)

0 10 20 30
λ

Missensec

R2 = 0.982

R2 = 0.936

R2 = 0.954

R2 = 0.945

R2 = 0.822

R2 = 0.972

R2 = 0.839

R2 = 0.898

PD36806 (20−23)

PD36712 (24−27)

PD30272 (36−39)

PD30986 (44−47)

PD30987 (48−51)

PD30988 (56−59)

PD30273 (68−71)

PD31182 (72−75)

0 5 10 15
λ

Nonsensed

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 5, 2019. ; https://doi.org/10.1101/661264doi: bioRxiv preprint 

https://doi.org/10.1101/661264
http://creativecommons.org/licenses/by/4.0/


 
Figure S4 
Individual fits for each gene in each patient in the oesophagus dataset. Points are data and lines are model fits. 
Analysis performed separately for nonsense, a and missense, b. 
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Figure S5 Inferred parameters for each gene in each patient in the oesophagus dataset where there were 
sufficient mutations to perform the analysis. Left hand plot shows inferred loss replacement rates 𝜆 and right 
hand plot inferred biases ∆. 
 

 
 
Figure S6 
Model fits per patient and per gene per patient when there were sufficient mutations in the skin dataset. 
Points are data and lines are model fits, a-e. f  shows the distributions of fitness effects for missense mutations 
across the cohort. There were insufficient nonsense mutations in the majority of genes to draw the equivalent 
plot for nonsense mutations. 
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Figure S7 
Mutation copy number histograms and dN/dS values for different cancer types with >100 samples (post 
filtering) in TCGA. Histograms and dN/dS plots coloured by mutation clonality. 
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Figure S8 
Interval dN/dS for 192 high confidence  driver mutations. We observe no patterns that are predicted by our 
theoretical model.  
 
 
 

 
 
 
Figure S9 
Generating a synthetic cohort with selection and using all mutations to infer dN/dS values shows that in this 
case dN/dS~1, while if we restrict our attention to high frequency variants dN/dS>1, a. Inferred selection 
coefficients are accurate only when using high frequency variants, b. Using our theoretical interval model 
equation we see that fixing 𝑓$%& = 1 and taking the limit 𝑓$%& → 0 results in dN/dS = 1. 
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Figure S10 
Corrected dN/dS values from 100 sets of 1000 randomly samples genes. Average dN/dS ~ 1 as would be 
expected. 
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