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Abstract  12 

 13 

Personalised medicine requires that treatments adapt to not only the patient, but changing factors 14 

within each individual. In focal epilepsy, brain dynamics change over time and modulate 15 

pathological processes; however, surprisingly little is known about whether and how seizures vary 16 

in the same patient. We quantitatively compared within-subject seizure network dynamics using 17 

intracranial recordings of ~700 seizures from 31 patients with focal epilepsy (mean 16.5 18 

seizures/subject) and three canines with focal-onset seizures (mean 62.3 seizures/subject). In all 19 

subjects, we found variability in seizure paths through the space of possible network dynamics, 20 

producing either a spectrum or clusters of different dynamics. Seizures with similar pathways 21 

tended to occur closer together in time, independent of whether antiepileptic medication reduction 22 

occurred, but did not necessarily have similar durations or circadian profiles. Our results suggest 23 

that slow modulatory processes shape within-subject seizure dynamics, leading to variable seizure 24 

pathways that may require tailored treatment approaches.  25 
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Focal epilepsy is characterised by spontaneous, recurrent seizures that arise from localised cortical 26 

sites1. An unresolved question is how much seizure dynamics can vary in individual patients. Past 27 

studies suggest that seizures within a single patient share common features2–6 and progress through 28 

a similar sequence7, or “characteristic pathway8,” of neural dynamics. However, there is also 29 

evidence that seizure dynamics vary in some patients. Clinically, there may be different types of 30 

seizure dynamics in patients with multiple seizure onset sites9, and long-term 31 

electroencephalographic (EEG) recordings suggest that a subset of patients have multiple seizure 32 

populations with distinct dynamics8,10–12. Ictal onset patterns13,14, the extent of seizure spread15,16, 33 

and seizure recruitment patterns17 can also differ in the same subject. This variability may arise 34 

from fluctuations in the underlying brain state18–22, suggesting that background neural dynamics 35 

affect not only seizure likelihood19,23, but also seizure features. Crucially, a given treatment may only 36 

address a subset of a patient’s seizure dynamics: for example, a single neurostimulation protocol 37 

may not control the complete repertoire of seizures18 and a single prediction algorithm may fail to 38 

forecast all seizures10,24,25. Consequently, seizure variability has important implications for clinical 39 

management in these patients. 40 

 41 

To design optimal and comprehensive treatments, we therefore need to understand the prevalence 42 

and characteristics of within-subject seizure variability. Is seizure variability present in all patients, 43 

and, if so, what form does the variability take? Do within-subject seizures cluster into groups with 44 

distinct dynamics? Can other seizure features, such as duration, distinguish different seizure 45 

populations8,10,24? How are different seizure dynamics distributed in time?  46 

 47 

To answer these questions, we need to objectively quantify seizure similarity. This task is 48 

challenging due to the complexity of seizure dynamics: a variety of spatiotemporal features change 49 

independently during seizure evolution. Although some studies have quantitatively compared 50 

within-subject seizures26–31, the current gold standard remains visual inspection of ictal EEG by 51 

trained clinicians. This latter approach is time-consuming and subjective, and can miss important 52 

features, including functional network interactions, that are difficult to detect visually. These 53 

functional network dynamics, also known as functional connectivity patterns, describe 54 

relationships between the activity recorded by different EEG channels. Temporal changes in 55 

network dynamics play important roles in seizure initiation, propagation, and termination2,22,32–41, 56 

in part due to dynamic changes in the connectivity of the seizure onset zone7,42–44. To fully 57 

understand how functional interactions support ictal processes, we must also determine if multiple 58 

seizure pathways can co-exist in the neural connectivity space of an individual patient. Such 59 
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diversity would reveal that the same neural regions can variably interact to produce a variety of 60 

pathological dynamics.  61 

 62 

Our goal was to quantify and characterise within-subject variability in seizure pathways through 63 

network space. We visualised and compared the within-subject seizure network evolutions of 64 

human patients with focal epilepsy (recorded for 43-382 hrs) and canine subjects with focal-onset 65 

seizures (recorded for 45-475 days). In total, we analysed the network evolutions of 698 seizures 66 

(average 16.5 seizures/human subject, 62.3 seizures/canine subject), making our study the first 67 

large-scale examination of within-subject seizure variability. In both human and canine recordings, 68 

we found variability in seizure network evolution, revealing that within-subject seizures are not 69 

well-represented by a single characteristic pathway. However, seizures can also share parts or all 70 

of the same pathway, with recurring dynamical elements across seizures. Furthermore, we related 71 

variability in seizure network dynamics to seizure duration and the temporal relationships between 72 

seizures, providing novel insight into the characteristics of within-subject seizure variability. Our 73 

analysis revealed that more similar seizures tend to occur closer together in time in most subjects, 74 

suggesting that slow modulatory processes shape seizure pathways.  75 

 76 

 77 

Results  78 

 79 

We analysed seizure network evolution in 31 human subjects (511 seizures total, mean 16.5 80 

seizures/subject) with focal epilepsy who underwent continuous intracranial 81 

electroencephalographic (iEEG) recordings as part of presurgical evaluation. Additionally, we 82 

analysed seizures from three canine subjects (187 seizures total, mean 62.3 seizures/subject) with 83 

naturally occurring epilepsy and focal-onset seizures that underwent chronic (45-475 days) iEEG 84 

recordings as part of a seizure prediction study12,45. Subject details are provided in Supplementary 85 

Tables S1.1 and S1.2. 86 

 87 

We first discuss how we visualise seizure network dynamics and quantify the dissimilarity of 88 

within-subject seizure pathways through network space. Importantly, differences in seizure 89 

network dynamics do not necessarily correspond to anatomical differences in the location and 90 

spread of seizure activity; rather, our analysis captures differences in the neural interactions that 91 

shape ictal processes. We then illustrate key features of this variability using two example subjects 92 

and summarise our findings across the entire cohort. 93 
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 94 

Visualisation and comparison of within-subject seizure network dynamics  95 

 96 

We demonstrate our analysis using seven seizures from an example human subject, P1 (for full 97 

analysis details, see Methods). From the iEEG recordings of each seizure (Fig. 1a), we computed 98 

the sliding-window functional connectivity, defined as band-averaged coherence in six frequency 99 

bands (Fig. 1b). Thus, each seizure time window was described by a set of six connectivity matrices 100 

that captured interactions between iEEG channels across different frequencies. The set of all 101 

possible connectivity patterns creates a high dimensional space, in which each location 102 

corresponds to a specific network configuration. As such, each time window was represented by 103 

a high-dimensional point, and the evolution of a seizure’s network dynamics formed a pathway in 104 

this connectivity space. In summary, rather than comparing the seizure iEEG traces, we first 105 

transformed the seizures into a network space, thus framing our comparison of seizure dynamics 106 

as a comparison of seizure pathways through this feature space.  107 

 108 

To visualise seizure pathways through network space, we extracted recurring patterns of seizure 109 

connectivity using a dimensionality reduction technique46,47 (Fig. 1c). Each point in a seizure 110 

pathway was thus described as a weighted combination of connectivity “building blocks,” each of 111 

which corresponded to a specific, recurring seizure network pattern. In our data, at a given time 112 

point, a single network pattern often contributed to the majority of the observed seizure 113 

connectivity. Therefore, we assigned each time point to the dominant network pattern, resulting 114 

in series of network states that provided a simplified description and visualisation of the seizure 115 

pathway (see Methods) (Fig. 1d).  116 

 117 

In subject P1, we observed four main pathways of network state progressions (Fig. 1d). For the 118 

most part, comparing seizures based on these state progressions agreed with our visual impressions 119 

of the iEEG traces. However, seemingly similar iEEG traces can be associated with different 120 

network structures. This point is illustrated by seizures 1-3: although their dominant ictal activity 121 

was in the same spatial location, seizure three was distinguished by a different network state, 122 

revealing differing underlying patterns of brain interactions. Meanwhile, iEEG traces with 123 

different features can share a common network progression pattern. For example, despite 124 

amplitude differences in the ictal discharges, the initial progressions of seizures 4-7 was described 125 

by the same state (state 5, green), indicating that a common pattern of brain interactions underlay 126 
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early seizure spread in all four seizures. Therefore, these network characterisations of dynamics 127 

can reveal hidden seizure features that are not visually accessible in the iEEG traces.  128 

 129 

While the state progressions helped visualise differences in seizure pathways, we still lacked an 130 

objective quantification of seizure dissimilarity. An ideal measure must compare seizure pathways 131 

across three different scenarios, which are all illustrated by subject P1’s seizures: 132 

1)  Two seizures can progress along the same pathway, but potentially at different rates (e.g., 133 

subject P1 seizures 4 and 5). 134 

2) Two seizures can progress along completely distinct pathways (e.g., subject P1 seizures 4 135 

and 3).  136 

3) Two seizures can share portions of the same pathway, but have divergent dynamics during 137 

other parts of the seizures (e.g., subject P1 seizures 4 and 7).  138 

 139 

We therefore created a measure that recognises similarities in seizure pathways, despite differences 140 

in the rates of seizure evolution. After computing a noise-reduced version of the seizure functional 141 

connectivity, we applied dynamic time warping48 to each pair of seizure functional connectivity 142 

time courses. Dynamic time warping nonlinearly stretches each time series such that similar points 143 

are aligned, thus minimizing the total distance between the two time series. We then defined the 144 

“dissimilarity” between two seizures as the average difference between the seizure pathways across 145 

all warped time points. Crucially, the warping step ensured that seizures following the same 146 

pathway (scenario 1) had a low dissimilarity, regardless of their rates of progression. If two seizures 147 

had completely non-overlapping pathways (scenario 2), their dissimilarity would depend on the 148 

average distance of the seizures in network space. Finally, if seizures shared part of the same 149 

pathway (scenario 3), their dissimilarity was determined by the relative duration of the shared 150 

pathway and the distance of the divergent sections of the pathways.  151 

 152 

Fig. 1e shows subject P1’s seizure dissimilarity matrix, which contains the seizure dissimilarities of 153 

all pairs of the subject’s seizures. In this subject, the visual agreement between the seizure 154 

dissimilarity matrix, the seizure iEEG traces, and the seizure state progressions was striking. Due 155 

to their similar pathways, there was a low dissimilarity between seizures 1 and 2, as well as between 156 

seizures 4, 5, and 6. Seizure 3 was relatively different from seizures 1 and 2, indicating that their 157 

network states occupied distant regions of network space, despite the similarities in their iEEG 158 

traces. The seizure dissimilarity matrix also provides a more detailed comparison of seizure 159 

dynamics than the simplified state progression representation alone. For example, although 160 
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seizures 4-6 all had similar state progressions, seizures 5 and 6 were more similar to each other 161 

than to seizure 4 due to subtle network differences that were not captured by the state progression 162 

visualisations of the seizure pathways (Supplementary Fig. S2.3).  163 

 164 

Therefore, for each subject, the network state progressions provide a simplified description for 165 

visualising the seizure network dynamics, while the seizure dissimilarity matrix gives a precise and 166 

objective comparison of each pair of seizure pathways. Importantly, both seizure dissimilarity 167 

matrices and network state progressions are subject-specific: due to differences in the iEEG 168 

implantation, seizure dissimilarities and network states cannot be readily compared across subjects. 169 

Throughout the rest of the results, we will focus on the within-subject seizure dynamics of two 170 

example subjects, P2 and P3, that highlight important features of within-subject seizure variability, 171 

while also summarising findings across the entire cohort. Fig. 2 shows a selection of the example 172 

subjects’ ictal iEEG traces and the corresponding network state progressions as a reference for 173 

the downstream analysis. The seizure variability analysis of all subjects is available on Zenodo 174 

(http://dx.doi.org/10.5281/zenodo.3240102) and summarised in Supplementary Table 9.  175 

 176 

Seizure dissimilarity matrices quantify differences in within-subject seizure pathways 177 

through network space 178 

 179 

As in subject P1, the seizure dissimilarity matrices and state progressions revealed variability in 180 

seizure pathways in subjects P2 and P3 (Fig. 3a and c). Notably, within each subject there were 181 

commonalities in state progressions across seizures, suggesting that seizure dynamics were 182 

constrained to certain pathways through network space. However, seizure progression was not 183 

always deterministic: in some cases, the same state could lead to seizure termination or further 184 

progression along one or more pathways (e.g., subject P2, state 4). A similar flexibility in seizure 185 

pathways was observed across subjects. 186 

 187 

The seizure dissimilarity matrices quantified these observed differences in the seizure pathways. 188 

As expected from the state progressions, there were groups of seizures with similar network 189 

progressions and near-zero inter-seizure dissimilarities (e.g., P2 seizures 6-8, P3 seizures 2-4). 190 

However, each seizure dissimilarity matrix also revealed lower levels of similarity, such as between 191 

seizures 2 and 3 in subject P2, that would be difficult to establish solely from the iEEG traces or 192 

state progressions.  193 

 194 
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We also examined the distribution of seizure dissimilarities in each subject. Strikingly, the seizure 195 

dissimilarities in subject P3 (Fig. 3d) had a bimodal distribution, indicating that most pairs of 196 

seizures had either relatively similar or different network dynamics, with few intermediate levels 197 

of similarity. Meanwhile, subject P2 (Fig. 3b) had a wide range of dissimilarities, suggesting that 198 

there were varying degrees of similarity between pairs of seizures in this subject. These different 199 

distributions of seizure dissimilarities revealed that seizure variability manifests in different ways 200 

across subjects.  201 

 202 

Seizures cluster into groups or form a spectrum based on their network dynamics 203 

 204 

Given that the distribution of seizure dissimilarities varied across subjects, we asked if within-205 

subject seizures cluster into groups with characteristic network dynamics. Since many subjects, 206 

including P2, had intermediate levels of seizure dissimilarity, we first hierarchically clustered each 207 

subject’s seizures based on their seizure dissimilarity matrix. Rather than assigning seizures to 208 

separate groups with different dynamics, the hierarchical clustering described different levels of 209 

similarity between seizures. Therefore, to determine if we could group seizures based on their 210 

dynamics, we additionally found the optimal number of flat (i.e., non-hierarchical) clusters using 211 

the gap statistic, which compares the observed clusters to reference clusters49 (see Methods). 212 

Crucially, the reference distributions also allowed us to test for the absence of multiple seizure 213 

clusters. A single seizure cluster in a subject would indicate that 1) all seizures follow the same 214 

pathway, forming a single group of seizures with little variability between seizures, or 2) that the 215 

seizures form a spectrum of dynamics that is best described by hierarchical relationships, rather 216 

than distinct groups of seizures. 217 

 218 

The resulting clusters for subjects P2 and P3 are shown in Fig. 4a-b. Although subject P2 had 219 

groups of seizures with similar dynamics, the varying levels of similarity between other pairs of 220 

seizures meant that there was no optimal way to split these seizures into separate clusters. Instead, 221 

the seizures created a spectrum of network dynamics. Meanwhile, the optimal clustering for subject 222 

P3 was three seizure clusters, shown in different colours on the dendrogram in Fig. 4b.  223 

 224 

Fig. 4c shows the number of seizure clusters across all subjects. The majority of subjects (22 225 

subjects, including 2 canines) had one seizure cluster (i.e., no clear groupings of seizures), 11 226 

subjects (1 canine) had two clusters, and one subject had three clusters. We then examined the 227 

distribution of mean seizure dissimilarities in subjects with and without multiple seizure clusters 228 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 6, 2019. ; https://doi.org/10.1101/661371doi: bioRxiv preprint 

https://doi.org/10.1101/661371
http://creativecommons.org/licenses/by/4.0/


 8 

(Fig. 4d). Although seizure dissimilarities must be compared cautiously across subjects, the mean 229 

seizure dissimilarity nonetheless indicates the amount of seizure variability in each subject. We saw 230 

a wide range in variability levels in subjects with a single seizure cluster (top histogram): while some 231 

had a low average dissimilarity, suggesting that most seizures progress along a similar pathway, 232 

others had higher levels of variability, indicating a spectrum of dynamics. However, some seizure 233 

variability was present in all subjects, and there was no clear cut-off to distinguish subjects with 234 

low and high levels of variability. In subjects with multiple seizure clusters, we observed that there 235 

could be variability within a seizure cluster (middle histogram), as well as relatively low dissimilarity 236 

between different seizure clusters (bottom histogram). Thus, the number of seizure clusters does 237 

not indicate the level of seizure variability in a given subject, but rather the form of the variability 238 

(spectrum vs. clusters).  239 

 240 

Differences in seizure temporal duration do not necessarily correspond to differences in 241 

seizure network dynamics 242 

 243 

Past studies have suggested that seizures with different pathways may be differentiated by their 244 

duration; for example, a bimodal distribution of seizure duration would indicate two 245 

corresponding groups of seizures with distinct evolutions8,10,24. To determine if there is an 246 

association between seizure dissimilarities and differences in seizure duration, we created a 247 

“duration distance” matrix in each subject that captured the absolute difference in temporal 248 

duration between each pair of seizures (Fig. 5b and f) (Methods). In subject P2, the differences 249 

between the seizure dissimilarity and duration distance matrices were visually apparent, and there 250 

was no association between them (Spearman’s r = -0.02, p = 0.4866, one-tailed Mantel test) (Fig. 251 

5a-d). Subject P3, however, had seizure dissimilarity and duration distance matrices with similar 252 

structures, and these measures were significantly correlated (Spearman’s r = 0.69, p = 0.0003, one-253 

tailed Mantel test) (Fig. 5e-h).  254 

 255 

Across subjects (Fig. 5i), Spearman’s correlation between seizure dissimilarities and duration 256 

distances ranged from -0.29 to 0.86 (mean: 0.33) and was significant in eighteen subjects (52.9%) 257 

after global correction for multiple comparisons. In the remaining subjects, there were two 258 

possible scenarios that could lower the association between seizure dissimilarity and duration 259 

distance: seizures with the same duration could have different network dynamics, or seizures with 260 

different durations could have similar network dynamics. Subject P2’s seizures demonstrated both 261 

of these cases.  262 
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 263 

We also investigated if the correlation between seizure dissimilarities and duration distances was 264 

stronger in subjects that had a clear delineation between short and long seizures (Supplementary 265 

S4). However, the existence of clusters in seizure duration was neither necessary nor sufficient for 266 

1) a significant association between seizure dissimilarities and duration distances, or 2) the 267 

existence of clusters based on seizure dynamics. As such, seizure duration clusters should be 268 

interpreted cautiously, as they may not be associated with differences in seizure pathways. 269 

 270 

Seizures with more similar network dynamics tend to occur closer together in time 271 

 272 

Many time-varying factors, such as sleep21,23,50–52 and hormones53–56, are thought to influence seizure 273 

likelihood and dynamics. Additionally, during presurgical monitoring, antiepileptic medication is 274 

reduced in many patients, impacting brain dynamics57. We therefore explored how seizure 275 

variability was distributed in time in each subject. Fig. 6 shows the amount of time elapsed between 276 

the seizures of subjects P2 and P3. In both subjects, we saw a shift in the seizure pathways over 277 

time. Notably, although subject P3’s seizures could be divided into groups based on network 278 

dynamics, those seizures were not clustered together in time; instead, there were relatively 279 

consistent interictal intervals.  280 

 281 

Due to the observed temporal changes in seizure dynamics, we first asked if seizures that occur 282 

closer together in time tend to have more similar network dynamics. For each subject, we defined 283 

the “temporal distance matrix” as the amount of time elapsed between the onsets of each pair of 284 

seizures (Fig. 7b and f). In subject P2, more similar seizures tended to cluster together in time, 285 

resulting in a significant correlation between seizure dissimilarities and temporal distances 286 

(Spearman’s r = 0.69, p = 0.001, one-tailed Mantel test) (Fig. 7 a-d). Meanwhile, subject P3 lacked 287 

temporal clusters of similar seizures, and the correlation between seizure dissimilarities and 288 

temporal distances was not significant (Spearman’s r = 0.24, p = 0.0527, one-tailed Mantel test) 289 

(Fig. 7 e-h).  290 

 291 

Fig. 7i summarises the relationship between seizure dissimilarities and temporal distances across 292 

all subjects. In almost all subjects, there was a positive Spearman’s correlation between seizure 293 

dissimilarities and temporal distances (range: -0.10 – 0.83, mean: 0.45). This association was 294 

significant in 24 subjects (71.0%), including all three canine subjects, demonstrating that the 295 

temporal association between similar seizures also exists on longer time-scales. We also explored 296 
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whether antiepileptic medication tapering during the presurgical recording was associated with a 297 

stronger relationship between seizure dissimilarities and temporal distances (Supplementary S5). 298 

Interestingly, there was no association between whether medication tapering was performed and 299 

whether the correlation between seizure dissimilarities and temporal distances was significant (c2 300 

test, p = 0.96), suggesting that other temporal factors also influence seizure dynamics. 301 

 302 

Since circadian rhythms influence seizure dynamics in some patients21,23,50–52, for each subject we 303 

also created a “circadian distance matrix” that captured the difference in the time-of-day of the 304 

seizures. Only five subjects (14.7%) had significant associations between seizure dissimilarities and 305 

circadian distances, indicating that in most subjects, seizure dynamics change on longer time-scales 306 

than circadian rhythms (Supplementary S6).  307 

 308 

Additionally, we explored if the relationships between seizure dissimilarity and these other seizure 309 

features (duration distance, temporal distance, and circadian distance) were highly dependent on 310 

the approach used to quantify seizure dissimilarity through network space. Using two alternative 311 

measures, we found qualitatively similar results at both the cohort and individual level 312 

(Supplementary S10), indicating that the observed associations were robust. 313 

 314 

Relationship between seizure variability and clinical factors 315 

 316 

Finally, we related seizure variability to clinical factors, including the seizure clinical type, patient 317 

surgical outcome, and the pathology of the resected brain tissue. We found that the observed 318 

seizure variability was poorly explained by differences in the coarse categorisation of seizure 319 

clinical type (subclinical, focal, or secondarily generalised) in most subjects (Supplementary S7). In 320 

other words, the observed variability cannot be solely attributed to differences in the symptoms 321 

or extent of spread (as defined by the clinical classification) of the seizures. This finding was 322 

expected given that seizures of different clinical types can share similar dynamics, while seizures 323 

of the same clinical type can have dramatically different features.  324 

 325 

We found no association between postsurgical seizure freedom and a number of measures of 326 

seizure variability, including the number of seizure clusters, the average seizure dissimilarity, and 327 

the number of onset network states (Supplementary S8). These results suggest that the level or 328 

form of seizure variability does not impact seizure freedom following surgical resection, perhaps 329 

because these measures do not capture the extent or location(s) of the tissue responsible for 330 
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generating seizures. Likewise, higher levels of seizure variability were not associated with a 331 

particular seizure onset site (Supplementary S8). These findings demonstrate that seizure variability 332 

is widely present and suggest that slow temporal factors may be more crucial for determining the 333 

extent and form of the variability.  334 

 335 

 336 

Discussion 337 

 338 

We have quantified variability in seizure network dynamics within individual human patients with 339 

focal epilepsy, revealing that within-subject seizures are neither deterministic nor comprehensively 340 

represented by a single dynamical pathway. Notably, however, in each subject we also observe 341 

groups of seizures with shared dynamics, suggesting that seizures are constrained to a subspace of 342 

potential brain dynamics. We also find within-subject seizure variability in chronic recordings of 343 

three canines, demonstrating that seizure dynamics also vary on longer time-scales. Interestingly, 344 

seizure network dynamics change over time in most subjects, with more similar seizures tending 345 

to occur closer together in time, suggesting that slow-changing factors modulate within-subject 346 

seizure dynamics.  347 

 348 

We investigated variability in seizure functional network evolution due to the importance of 349 

network interactions in ictal processes2,7,22,32,34–44 and build on previous work by demonstrating 350 

within-subject variability in these pathological network dynamics. However, the framework we 351 

present could easily be adapted to compare other features that highlight different aspects of seizure 352 

dynamics. For example, a univariate feature that captures the amplitude and frequency of ictal 353 

discharges may be better suited for comparing the involvement of different channels, similar to 354 

how clinicians visually compare EEG traces. Meanwhile, comparisons of parameter time courses, 355 

derived using model inversion8,58,59, could reveal different patterns of changes in the neural 356 

parameters underlying a patient’s seizures. Finally, due to subject-specific recording layouts, we 357 

focused on comparing seizure dynamics within individual subjects. However, seizures could also 358 

be compared across patients to uncover common classes of pathological dynamics8,60.  359 

 360 

To quantify within-subject variability in seizure network evolution, we developed a “seizure 361 

dissimilarity” measure that addresses the challenges of comparing diverse spatiotemporal patterns 362 

across seizures. A few previous studies have attempted to quantitatively compare seizure dynamics 363 

using either univariate27,28,30,31 or network26,29 features computed from scalp or intracranial EEG. 364 
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These earlier dissimilarity measures were based on edit distance, which captures how many 365 

replacements, insertions, and deletions are required to transform one sequence into another. 366 

Importantly, the insertion cost increases the dissimilarity of similar seizures with different rates of 367 

progression. Although previous work suggested lowering seizure dissimilarity in such scenarios31, 368 

to our knowledge, our dynamic time warping approach provides the first measure of seizure 369 

dissimilarity that does not penalise temporal variability between otherwise similar seizures. Despite 370 

this difference, these past studies also reported both common and disparate dynamics across 371 

within-subject seizures; however, this work was limited to a small number of patients and/or 372 

seizures per patient. Our work provides novel insight into the prevalence and characteristics of 373 

seizure variability by analysing almost 700 seizures across thirty-four subjects. Finally, we expand 374 

on previous work by using seizure dissimilarity for downstream analysis, including clustering 375 

seizures and quantifying the relationship between seizure dynamics and other features.  376 

 377 

Previous work has found that within-subject seizures have similar dynamics2–8, although variability 378 

may be introduced through different rates of progression4,61 or early termination in the seizure 379 

pathway6,8. In our cohort, we observed that subsets of within-subject seizures follow approximately 380 

the same dynamical pathway through network space, and such similar groups of seizures likely 381 

underlie these past findings. However, we also found that the complete repertoire of within-subject 382 

seizure network dynamics is poorly characterised by a single, characteristic pathway; additionally, 383 

seizure variability is not fully described by temporal differences or early termination within the 384 

same pathway. We instead propose a model in which various decision points, existing on the 385 

framework of potential seizure pathways, produce a repertoire of seizure progressions (Fig. 8). 386 

While some parts of the progressions appear deterministic, at other times a decision point may 387 

determine 1) the seizure onset state, 2) the next network state, if multiple progressions are possible, 388 

or 3) whether the seizure terminates early in the state progression. This model would also explain 389 

why seizure variability can either manifest as relatively distinct seizure types or as a spectrum of 390 

dynamics. A greater number of decision points, which in turn produce a range of small variations 391 

between seizures, would produce a spectrum of seizure dynamics. Fewer decision points and/or 392 

separate seizure pathways could produce groups of seizures that each have a characteristic state 393 

progression. Importantly, although network states may contain information about pathological 394 

tissue7,43,62,63, the implications of multiple seizure pathways and onset states are uncertain. Further 395 

work is needed to determine whether the region responsible for generating seizures and/or its 396 

network interactions change across different seizure pathways.  397 

 398 
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The crucial question is then how these different seizure pathways arise from the same neural 399 

substrate. In theory, a range of changes before or during the seizure can affect its network 400 

progression. We hypothesise that spatiotemporal changes in the interictal neural state produce 401 

seizures with different characteristics. Past studies suggest that neural excitability19,64,65, inhibition61, 402 

and network interactions22,66 influence certain spatiotemporal seizure features, such as the rate and 403 

extent of seizure propagation. These changes in brain state may be driven by various factors, 404 

including sleep21,50,51, hormones53–56, and medication57. Recently, prolonged recordings of patients 405 

with focal epilepsy have revealed that the rates of epileptiform discharges and seizures fluctuate 406 

according to both circadian and patient-specific multidien (approximately bi-weekly to monthly) 407 

cycles52. An intriguing possibility is that the same factors that rhythmically modulate seizure 408 

likelihood may also influence seizure dynamics. Surprisingly, although circadian and sleep cycles 409 

are known to impact seizure dynamics21,50,51 and seizure likelihood 23,52, few subjects in our study 410 

had seizure variability associated with circadian rhythms, suggesting that factors varying over 411 

longer timescales preferentially alter seizure dynamics. Alternatively, arousal levels and sleep stages 412 

may be more important than time-of-day in shaping seizure dynamics. Notably, we also observed 413 

that seizures with similar state progressions can have different durations in most subjects, 414 

suggesting that seizure duration is modulated independently of the seizure pathway. Ultimately, it 415 

is likely that various factors, with differential effects on seizure dynamics, interact to produce the 416 

observed repertoire of seizure network evolutions. 417 

 418 

Notably, a large number of our human subjects underwent antiepileptic medication reduction as 419 

part of pre-surgical monitoring, making it difficult to disentangle the effects of changing drug levels 420 

from other potential slow-varying modulators of seizure dynamics. Changes in antiepileptic 421 

medication can impact neural excitability67–69, and medication tapering increases seizure likelihood 422 

in most patients16,70; however, it is controversial whether it also affects seizure patterns9,16,70,71. In 423 

some cases, it appears that medication tapering reveals latent seizure pathways that are suppressed 424 

by medication9 or allows existing pathways to further progress (e.g., the secondary generalisation 425 

of typically focal seizures)16. It is possible that the impact of medication reduction on seizure 426 

dynamics is drug-, patient-, and dose-dependent, and may ultimately depend on how well the 427 

medication controls neuronal excitability64. Importantly, medication changes alone cannot account 428 

for the observed seizure variability in our cohort, as we observed temporal associations of seizure 429 

dynamics in patients that did not undergo medication tapering.  430 

 431 
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Contrary to the expectation that high levels of seizure variability may worsen surgical outcomes, 432 

we found no association between these patient features. It may be that only some types of 433 

variability, such as multifocal9 or secondarily generalised72 seizures, impact the likelihood of seizure 434 

freedom following surgery. Importantly, variability in the seizure onset network state does not 435 

indicate that a patient has multifocal seizures, as different network configurations can be associated 436 

with the same apparent ictal onset zone. Additionally, variability in seizure dynamics may not be 437 

inherently deleterious, as long as it is observed and accounted for when planning the surgical 438 

resection. Indeed, due to the short presurgical monitoring time and limited spatial coverage of the 439 

recording electrodes, some potential seizure pathways may not have been captured11,12, leading us 440 

to underestimate the level of variability in some subjects. 441 

 442 

Although seizure variability was not associated with post-surgical seizure freedom, it may have 443 

implications for other clinical treatments. For example, in that same patient, seizures with different 444 

dynamics may have distinct preictal signatures, making seizure prediction more difficult10,24. A 445 

successful seizure prediction algorithm would either need to recognise multiple signatures or find 446 

common features among the disparate preictal dynamics. Additionally, neurostimulation offers a 447 

promising new approach for controlling seizures; however, in rodent models, the effectiveness of 448 

a given stimulation protocol depends on the preictal brain state18. Thus, such interventions may 449 

need to recognise and adapt to the specific characteristics of each seizure type in order to control 450 

all seizure dynamics. Importantly, our human cohort was limited to patients with medication 451 

refractory focal epilepsy who were candidates for surgical resection. The characteristics and clinical 452 

implications of seizure variability may be different in other patient cohorts.  453 

 454 

In summary, we have shown that there is within-subject variation in seizure network dynamics in 455 

subjects with focal epilepsy. This variability is not limited to specific groups of patients, such as 456 

those with multifocal seizures; rather, variability in seizure pathways is common across all subjects. 457 

We propose that this variability arises from a set of decision points built on a framework of 458 

possible seizure progressions. Temporal changes in seizure dynamics suggest that slow-varying 459 

factors shape these seizure pathways, perhaps by modulating the background brain state. Further 460 

research is needed to determine whether preictal dynamics shape seizure pathways by controlling 461 

decisions in the seizure progression. Uncovering these mechanisms could provide novel 462 

approaches for predicting and controlling seizures that are tailored to the complete repertoire of 463 

pathological neural dynamics in each patient.   464 
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Methods  465 

 466 

Subject and seizure selection: This work was a retrospective study that analysed seizures from 467 

13 patients from the Mayo Clinic and the Hospital of the University of Pennsylvania (available at 468 

www.ieeg.org73,74) and 18 patients from the University College London Hospital (UCLH) who 469 

were diagnosed with refractory focal epilepsy and underwent presurgical monitoring. To explore 470 

seizure variability on longer time-scales, intracranial EEG was also analysed from three canine 471 

subjects with focal-onset seizures due to naturally occurring epilepsy that underwent prolonged 472 

recordings as part of a seizure prediction study12,45 (available at www.ieeg.org73,74). Subjects were 473 

selected without reference to cause or other characteristics of their pathology.  474 

 475 

For all the iEEG portal patients, all patients gave consent to have their anonymised iEEG data 476 

publicly available on the International Epilepsy Electrophysiology Portal (www.ieeg.org)73,74. For 477 

the UCLH patients, their iEEG was anonymised and exported, and the anonymised data was 478 

subsequently analysed in this study under the approval of the Newcastle University Ethics 479 

Committee (reference number 6887/2018). 480 

 481 

To be included in the study, each subject was required to have had at least six seizures suitable for 482 

the analysis. This threshold was chosen to allow examination of seizure variability in a broad cohort 483 

of subjects, while still ensuring that enough seizures were observed to draw conclusions about the 484 

forms, types, and characteristics of seizure variability in each subject. Seizures were excluded from 485 

the analysis if they did not have clear electrographic correlates (with clear onset and termination), 486 

if they were triggered by or occurred during cortical stimulation, if they had noisy segments, or if 487 

they had large missing segments. Periods of status epilepticus and continuous epileptiform 488 

discharges were also excluded. However, electrographic seizures without clinical correlates were 489 

included in the analysis. Additionally, in the canine subjects, to allow algorithmic identification of 490 

seizure termination (see “Seizure extraction in canine subjects”), seizures were only included if 491 

there was at least 330 s between the seizure start and the termination of the previous seizure, and 492 

if the preictal period (defined as three minutes to one minute before seizure start) lacked large 493 

noisy or missing segments. 494 

 495 

Additional information about each subject and the analysed seizures is shown in Supplementary 496 

Tables S1.1 and S1.2. 497 

 498 
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Data acquisition: For each human subject, the placement of the intracranial electrodes was 499 

determined by the clinical team, independent of this study. In each canine subject, a total of sixteen 500 

electrodes, divided into strips of four electrodes, were placed bilaterally on the brain surface45, 501 

again independent of this study. In human subjects, ictal segments were identified and extracted 502 

for the analysis based on clinical seizure markings. In canine subjects, seizure start times were 503 

previously marked by a team of clinicians, and seizure termination times were determined 504 

algorithmically following preprocessing (see “Seizure extraction in canine subjects”).  505 

 506 

iEEG preprocessing: For each subject, if different seizures were recorded at multiple sampling 507 

frequencies, all of the recordings were first downsampled to the lowest sampling frequency. Noisy 508 

channels were then removed based on visual inspection. In the remaining channels, short sections 509 

of missing values were linearly interpolated. These sections of missing values were <0.05 s with 510 

the exception of one segment in seizure 2 of subject “Study 020”, which was 0.514 s. All channels 511 

were re-referenced to a common average reference. Each channel’s time series was then bandpass 512 

filtered from 1-150 Hz (4th order, zero-phase Butterworth filter). To remove line noise, the time 513 

series were additionally notch filtered (4th order, 2 Hz width, zero-phase Butterworth filter) at 60 514 

and 120 Hz (IEEG Portal patients and canines) or 50, 100, and 150 Hz (UCLH patients). 515 

 516 

Seizure extraction in canine subjects: Because seizure end times were not marked in the canine 517 

data, seizure termination was identified algorithmically using an approach similar to Schindler et 518 

al.35. In each channel, the time period containing seizure activity was first identified based on an 519 

increase in signal absolute slope, S(t), compared to each seizure’s preictal period, which was defined 520 

as three minutes to one minute before the clinically marked seizure start. As a reminder, seizures 521 

with preictal periods with noisy or missing segments were excluded from the analysis, as were any 522 

seizures that occurred within 330 s of the preceding seizure’s termination (based on visual 523 

inspection).  524 

 525 

The absolute slope S of each channel i was given by  526 

Si(t) = çDxi/Dt ê 527 

where xi is the time series voltage value of channel i and Dt is size of the time step, which was 528 

determined by the sampling frequency of the recording. Si(t) was then normalised to S*i(t) by 529 

dividing each timepoint by si,pre, the standard deviation of the absolute slope of channel i during 530 

the seizure’s preictal period, and smoothed by applying a 5 s moving average. Channel i was 531 

considered epileptic at time point t if S*i(t) was greater than or equal to 2.5. Seizure termination 532 
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was marked as the first time, following the clinically marked seizure start, when the number of 533 

epileptic channels fell below and remained below two channels for at least 1.5 s. 534 

 535 

Computing functional connectivity: To compute the time-varying functional connectivity of 536 

each seizure, a 10 s sliding window, with 9 s overlap between consecutive windows, was applied 537 

to each preprocessed ictal time series. The same sliding window parameters have previously been 538 

used to estimate time-varying coherence in ictal iEEG data75. For each window, the coherence 539 

between each pair of iEEG channels was computed in six different frequency bands (delta 1-4 Hz, 540 

theta 4-8 Hz, alpha 8-13 Hz, beta 13-30 Hz, gamma 30-80 Hz, high gamma 80-150 Hz). The 541 

coherence in each frequency band was computed using band-averaged coherence, defined as 542 

𝐶",$(𝑓) = 	
*∑ 𝑃",$(𝑓

-.
-/-0 )*

1

∑ 𝑃","(𝑓)
-.
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-1
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 543 

where f1 and f2 are the lower and upper bounds of the frequency band, Pi,j(f) is the cross-spectrum 544 

density of channels i and j, and Pi,i(f) and Pj,j(f) are the autospectrum densities of channels i and j, 545 

respectively. In each window, channel auto-spectrums and cross-spectrums were calculated using 546 

Welch’s method (2 s sliding window with 1 s overlap).  547 

 548 

Thus, in a subject with n iEEG channels, the functional connectivity of each time window was 549 

described by six symmetric, non-negative, n´n matrices, in which each entry (i,j) gives the 550 

coherence between channels i and j in the given frequency band. Each matrix was then written in 551 

vector form by re-arranging the upper-triangular, off-diagonal elements into a single column vector 552 

of length (n2 – n)/2. Each vector was then normalised so that the L1 norm (i.e., sum of all elements) 553 

was 1, thus ensuring that differences between connectivity vectors captured a change in 554 

connectivity pattern rather than gross changes in global levels of coherence. This normalisation 555 

step also allowed the magnitude of seizure dissimilarities to be compared across patients with 556 

different numbers of electrodes. For each time window, the six connectivity vectors were then 557 

vertically concatenated together, forming a single column vector of length 6*(n2 – n)/2. Each 558 

subject’s ictal connectivity vectors were subsequently horizontally concatenated together to form 559 

a matrix V containing 6*(n2 – n)/2 features and m observations, where m is the total number of 560 

ictal windows across all seizures.  561 

 562 

Non-negative matrix factorization and network state assignment: To extract recurring 563 

patterns of functional connectivity and reduce noise in the connectivity matrices, non-negative 564 

matrix factorization (NMF)46 was used to approximately factor each subject’s ictal time-varying 565 
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connectivity matrix V into two non-negative matrices, W and H, such that V»W´H. The matrix 566 

W contained subject-specific basis vectors, each of which had 6*(n2 – n)/2 features that captured 567 

a pattern of connectivity across all channels and frequency bands. Each original ictal time window 568 

was summarised as an additive combination of these basis vectors, with the coefficients matrix H 569 

giving the contribution of each basis vector to each time window. These factorisations were 570 

subject-specific since the basis vector features depended on the iEEG electrode layout in each 571 

subject.  572 

 573 

To determine the optimal number of basis vectors, r, for each subject, the highest r that produced 574 

consistent sets of basis vectors was found (see Supplementary Fig. S2.1 for details). This approach, 575 

known as stability NMF47, exploits the non-deterministic nature of NMF to identify the r at which 576 

W consistently converges to a similar set of basis vectors. Since the resulting stable NMF basis 577 

vectors can be reliably found, they are thought to provide a meaningful representation of the data. 578 

To perform stability NMF for each subject, the value of r was scanned from 1 to 20. This scan 579 

range was chosen based on the observation that the stability of the factorisation greatly decreases 580 

at approximately r>10 in our data, and is consistent with the number of connectivity patterns 581 

typically found in ictal iEEG data in other studies7,42,43. At each r, NMF of V was performed 25 582 

times using the alternating nonnegative least squares with block principal pivoting method76,77. 583 

Each iteration used different random initializations of W and H, thus yielding 25 different 584 

factorizations of V at each value of r. Using the method established by Wu et al.47, for each r, the 585 

instability I of two sets of basis vectors W and W’ was defined as  586 

𝐼(𝑟)4,45 = 	
1
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A 587 

where P is the Pearson’s cross-correlation matrix of the sets of basis vectors. Low values of I 588 

indicate that similar sets of basis vectors were found in the separate iterations; indeed, if the two 589 

sets of basis vectors are the same (minus reordering), then I = 0. The instability of all 25*(25-1)/2 590 

pairs of basis vector sets was then averaged to produce Iavg(r). The highest r with Iavg(r)£ 0.005 was 591 

selected for each subject, thus allowing small deviations between the observed basis vector sets, 592 

while still enforcing consistent factorisations across iterations. At this r, the factorisation yielding 593 

the lowest reconstruction error was used for the subsequent analysis. 594 

 595 

We then used NMF to cluster observations based on the contributions of the basis vectors to each 596 

observation78,79 (Supplementary Fig. S2.2). In our data, most subjects had a sparse coefficients 597 
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matrix H, with only a single highly-expressed basis vector in a given time window. As such, the 598 

dominant basis vector provided a simplified description of the functional connectivity at that time. 599 

Therefore, in each subject, each time window was assigned to a network state corresponding to 600 

the basis vector with the highest coefficient. Each seizure was then described as a progression of 601 

network states, enabling visualization of differences in network evolution between seizures.  602 

 603 

While the NMF state progressions provided a simplified description of the seizure network 604 

dynamics, the entire functional connectivity time courses gave a more accurate description of the 605 

dynamics. However, small fluctuations in the connectivity due to noise would create a high baseline 606 

dissimilarity between seizures. Therefore, to reduce noise in the connectivity matrices, for each 607 

subject the selected factorisation was also used to create V*=W´H, a lower-rank approximation 608 

of the original time-varying seizure functional connectivity (Supplementary S2.2). This return to 609 

the original feature space is necessary since NMF basis vectors are not orthogonal, and distances 610 

in NMF basis vector space are therefore not equivalent to distances in feature space. Each 611 

reconstructed connectivity vector was then re-normalised to have an L1 norm of 1, ensuring that 612 

differences in reconstruction accuracy did not affect the distances between different ictal 613 

timepoints.  614 

 615 

Computing seizure dissimilarity: Following the NMF-based reconstruction of the seizure 616 

connectivity, the network evolution of each seizure was described by a multivariate time series 617 

with 6*(n2 – n)/2 features. To compare network evolutions across within-subject seizures, a 618 

“seizure dissimilarity matrix” was created for each subject. Each pair of seizure functional 619 

connectivity time series was first warped using dynamic time warping, which stretches each time 620 

series such that the total distance between the two time series is minimised (Supplementary S3). 621 

This step ensures that 1) similar network dynamics of the two seizures are aligned, and 2) the 622 

warped seizures are the same length. We chose to minimise the L1 distance between each pair of 623 

seizures, as this metric provides a better measure of distances in high dimensional spaces80.  624 

 625 

Following dynamic time warping, the L1 distance between the pair of warped time series was 626 

computed, resulting in a vector of distances capturing the dissimilarity in the seizures’ network 627 

structures at each time point. The “seizure dissimilarity” between the two seizures was defined as 628 

the average distance across all warped time points. The seizure dissimilarity matrix contains the 629 

dissimilarities between all pairs of the subject’s seizures.  630 

 631 
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We wish to point out as a technical note that due to the warping step, the seizure dissimilarity 632 

measure is not a metric distance. Like a metric distance, all dissimilarities are non-negative, the 633 

dissimilarity of a seizure to itself is zero, and the dissimilarity between pairs of seizures is 634 

symmetric; however, the triangle inequality does not necessarily hold. In particular, any two 635 

seizures that follow approximately the same pathway will have a near-zero dissimilarity, regardless 636 

of their rates of progression along the pathway. However, their relationship to other seizures that 637 

share part of the same pathway will depend on how long (temporally) the seizures share the same 638 

pathway. Thus, although pairs of seizures may have a low dissimilarity, their relationships to other 639 

seizures may differ due to their different rates of progression. These situations can, in turn, lead 640 

to violations of the triangle inequality. These limitations should be considered if using the seizure 641 

dissimilarity measure as a substitute for a distance measure in future work. In our case, we also 642 

compared our dissimilarity measure to two metric distances of trajectories, the Fréchet distance 643 

and the Hausdorff distance. Our results are qualitatively similar regardless of the measure used to 644 

quantify seizure dissimilarity, and all conclusions still hold (Supplementary S10). 645 

 646 

Seizure clustering and cluster evaluation: To identify groups of similar seizures in each subject, 647 

each subject’s seizures were hierarchically clustered by using the seizure dissimilarity matrix as 648 

input for an agglomerative hierarchical clustering algorithm, UPGMA (unweighted pair group 649 

method with arithmetic mean). The hierarchical clustering resulted in a dendrogram that 650 

summarised the similarity between the subject’s seizures. Note that the hierarchical clustering 651 

representation was an approximation of the seizure dissimilarities that forced all dissimilarities into 652 

a metric space.  653 

 654 

The gap statistic49, which compares the within-cluster dispersion of a given clustering relative to a 655 

reference (null) distribution, was then used to determine if optimal flat (i.e., non-hierarchical) 656 

clusters of seizures existed in each subject. In order to generate reference datasets, the subject’s 657 

seizures were first projected into Euclidean space using classical (Torgerson’s) multidimensional 658 

scaling (MDS). Given the seizure dissimilarity matrix, MDS assigned a coordinate point to each 659 

seizure while attempting to preserve the specified dissimilarities between seizures. In order to most 660 

closely approximate the dissimilarities matrix, the seizures were projected onto the maximum 661 

possible number of dimensions; note, however, that like the hierarchical clustering, MDS also 662 

provided a metric approximation of the nonmetric dissimilarities. One thousand reference datasets 663 

were then generated by drawing coordinates from a uniform distribution placed over a box aligned 664 

with the principal components of the projected seizure data. Each reference dataset was 665 
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hierarchically clustered by computing the distances between the coordinate points and applying 666 

the UPGMA algorithm. To test for flat clusters in the seizure data and reference datasets, the 667 

dendrograms were cut at different levels to generate 1, 2, …. s clusters, where s is the number of 668 

seizures. At each number of clusters k, the gap statistic G(k) was computed by comparing the 669 

within-cluster dispersion of the observed seizures and the reference datasets. The multiple 670 

reference datasets also allowed calculation of the standard error of the gap statistic at each k, SE(k). 671 

The optimal number of clusters was defined as the smallest number of clusters where G(k) ³ 672 

G(k+1) – SE(k+1), which identifies the point at which increasing the number of clusters provides 673 

little improvement in the clustering of the data49.  674 

 675 

Comparison to temporal features: To determine if differences in seizure network evolution co-676 

varied with differences in temporal features, three distance matrices were created for each subject: 677 

• temporal distance matrix: the amount of time elapsed (measured in hours) between the 678 

onset times of each pair of seizures.  679 

• duration distance matrix: the absolute difference (measured in seconds) in the temporal 680 

length of each pair of seizures. 681 

• circadian distance matrix: the difference (measured in hours) in the time-of-day of the 682 

occurrence of each pair of seizures. This measure is a circular statistic that can range from 683 

0 to 12 hours.  684 

 685 

For each subject, Spearman’s correlation was computed between the upper triangular elements of 686 

the seizure dissimilarity matrix and each of above distance matrices. Since the distances in each 687 

matrix were not independent observations, the Mantel test81 was used to determine the significance 688 

of each correlation. Briefly, for each matrix comparison, the rows and columns of one matrix were 689 

randomly permuted 10,000 times. The correlation between the two upper triangular elements was 690 

re-computed after each permutation, resulting in a distribution of correlation values that described 691 

the expected correlation if there were no relationship between the two matrices. The p-value of 692 

the association was then defined as the proportion of permuted correlation that were greater than 693 

or equal to the observed correlation. To correct for multiple comparisons, the Benjamini-694 

Hochberg false discovery rate (FDR) correction82 was applied to the set of p-values from all matrix 695 

comparisons across all subjects (34x3 total tests). The correlation was considered significant if the 696 

associated adjusted p-value was less than 0.05.  697 

 698 
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As discussed earlier, the dissimilarity between seizures with partially shared dynamics will partly 699 

depend on the temporal duration of the shared dynamics, relative to the warped seizure length. 700 

We therefore caution that our seizure dissimilarity measure (computed using dynamic time 701 

warping) is not always independent of seizure temporal duration. To determine the robustness of 702 

the relationship between seizure dissimilarities and seizure duration distances, as well as the 703 

robustness of our other primary results, we additionally computed seizure dissimilarity using two 704 

metric distance measures, the Fréchet and Hausdorff distances, which are independent of seizure 705 

durations. Using these alternative measures, we then repeated our analysis of seizure clustering and 706 

the comparison of seizure dissimilarities with other seizure features (Supplementary S10).  707 

 708 

Statistics 709 

 710 

The number of seizures analysed in each subject was determined by the number of seizures suitable 711 

for analysis (see “Subject and seizure selection”) captured during each iEEG recording. These 712 

sample sizes are available in Supplementary Tables S1.1 and S1.2. The results focused on qualitative 713 

visualisation of within-subject seizure pathways and quantitative comparison of within-subject 714 

seizure dynamics, without assigning statistical significance to the similarity of the seizure dynamics. 715 

To find an optimal number of seizure clusters based on seizure dynamics in each subject, we used 716 

the gap statistic49 (details in “Seizure clustering and cluster evaluation”). Additionally, in each 717 

subject, we used Spearman’s correlation to quantify the relationship between the subject’s seizure 718 

dissimilarity matrix and three distance matrices describing other seizure features (see “Comparison 719 

with temporal features”). A p-value for each association was then determined using a permutation 720 

test (one-tailed Mantel test81). Global FDR correction, using the Benjamini-Hochberg algorithm82, 721 

was then applied to all 34x3 (number of subjects x number of within-subject comparisons) p-722 

values, and a correlation was considered significant if the associated adjusted p-value was less than 723 

0.05.  724 

 725 

Code and data availability 726 

All data was analysed using MATLAB version R2018b. To perform NMF, we used the 727 

Nonnegative Matrix Factorization Algorithms Toolbox, available at 728 

https://github.com/kimjingu/nonnegfac-matlab/, which implements the alternating nonnegative 729 

least squares with block principal pivoting algorithm76,77. For the remainder of the analysis, we used 730 

MATLAB implementations of standard algorithms (dynamic time warping: dtw, hierarchical 731 

clustering: linkage, multidimensional scaling: cmdscale, gap statistic: evalclusters, FDR 732 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 6, 2019. ; https://doi.org/10.1101/661371doi: bioRxiv preprint 

https://doi.org/10.1101/661371
http://creativecommons.org/licenses/by/4.0/


 23 

correction: mafdr) or custom code. The iEEG time series of all IEEG Portal subjects is available 733 

at www.ieeg.org. The NMF factorisation of each subject’s data, along with the code for producing 734 

the primary downstream results (state progressions, seizure dissimilarity matrices, clustering, and 735 

comparison with temporal features) is published on Zenodo 736 

(http://dx.doi.org/10.5281/zenodo.3240102).  737 
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 910 

 911 
Fig. 1: Visualisation and comparison of seizure network dynamics in an example subject, 912 

P1. (a) Intracranial EEG traces of seven seizures of subject P1. (b) The first three windows of the 913 

sliding-window functional connectivity, defined as coherence in six different frequency bands, of 914 

seizure 4. The entire network evolution of the seizure was described by six sets of connectivity 915 

matrices. Each connectivity matrix was normalised such that the upper triangular elements sum to 916 

one. (c) Example seizure network state (state 5), derived using non-negative matrix factorisation. 917 

(d) State progressions of subject P1’s seizures, which provide a visual summary of the seizure’s 918 

pathway through network space. Each state is indicated by a different colour. (e) Subject P1’s 919 

seizure dissimilarity matrix, which quantifies the difference in the network evolutions of each pair 920 

of seizures. A low dissimilarity indicates that the two seizures have similar pathways through 921 

network space.  922 
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 923 
 924 

Fig. 2: Within-subject variability in seizure network progressions. The iEEG traces and 925 

corresponding network states of selected seizures from subjects P2 (a) and P3 (b). Seizures are 926 

numbered by the order of their occurrence in each subject. The seizure network progressions of 927 

subjects P2 and P3 were described by five (a) and six (b) network states, respectively, with each 928 

network state indicated by a different colour. The state progression of each seizure is placed 929 

beneath the ictal iEEG, with each state in the centre of the corresponding time window. Note that 930 

due to the 10 s sliding window, each network state corresponds to 10 s of the iEEG trace; thus, 931 

transitions in the dynamics seen on the iEEG may not be exactly aligned to changes in the network 932 

states.  933 
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 934 

 935 
Fig. 3: Seizure dissimilarity matrices and distributions in example subjects. The seizure 936 

dissimilarity matrices of subjects P2 (a) and P3 (c) describe the dissimilarity in the network 937 

evolution of each pair of seizures. A low dissimilarity (close to zero) indicates that the two seizures 938 

have similar network evolutions. To the right of each matrix, the corresponding state progressions 939 

of each seizure are shown, allowing a comparison between seizure dissimilarities and network state 940 

progressions. For example, in subject P2 (a), there were low dissimilarities between seizures 6-8, 941 

all of which had similar network progressions. (b, d) The distributions of seizure dissimilarities in 942 

each subject. Note that in both histograms, each observation corresponds to a seizure pair, rather 943 

than a single seizure. Subject P2 (b) had a wide range of seizure dissimilarities, while in subject P3 944 

(d), there were either relatively low or high dissimilarities between seizures, forming a bimodal 945 

distribution.  946 
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 947 

 948 
Fig. 4: The form and amount of seizure variability differs across subjects. Seizure clustering 949 

results of subjects P2 (a) and P3 (b). The seizure dissimilarity matrices and seizure state 950 

progressions are the same as in Fig. 3, but now sorted to match the seizure order of the 951 

dendrograms, which describe the hierarchical clustering of the seizures. More similar seizures, 952 

represented by leaves on the dendrogram, are joined by nodes. The height of the node linking two 953 

seizures (or groups of seizures) represents the dissimilarity between them, with higher nodes 954 

indicating less similar seizures. (a) In subject P2, an optimal non-hierarchical clustering of seizures 955 

was not found; instead, seizures were best described by the hierarchical clustering. (b) In subject 956 

P3, seizure dynamics were best described by three non-hierarchical clusters (grey, purple, and red 957 

dendrogram leaves). (c, d) Analysis of seizure variability across subjects. Histograms and bars in 958 

purple correspond to data from subjects with a single seizure cluster, while those in teal correspond 959 

to data from subjects with two or more seizure clusters. (c) Bar chart of the number of seizure 960 

clusters in each subject. (d) Histograms of seizure dissimilarities, averaged across pairs of seizures 961 

within a subject. The top histogram shows dissimilarities in subjects with a single seizure cluster, 962 
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indicating that dynamics were either stereotyped or formed a spectrum. The bottom two 963 

histograms show seizure dissimilarities within and between seizure clusters in the remaining 964 

subjects, each of which had at least two seizure clusters. The inset of each histogram shows a 965 

schematic illustration of the type of variability (spectrum vs. clustered) and the type of distance 966 

(within vs. between cluster/spectrum) investigated. Each gray point represents a seizure, and 967 

arrows between seizures provide examples of the dissimilarities used in the computation.  968 
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 969 
Fig. 5: Comparison of seizure dissimilarities and duration distances. The comparison of 970 

seizure dissimilarities and duration distances is shown for subjects P2 (a-d) and P3 (e-h), along 971 

with results across all subjects (i). (a and e) Seizure dissimilarity matrices, summarising differences 972 

in seizure network dynamics within each subject (same as Fig. 3). (b, f) Duration distance matrices. 973 

Each entry corresponds to the absolute difference in seizure duration, in seconds, between two 974 

seizures. (c, g) Scatter plots of seizure dissimilarities vs. duration distances, along with the 975 

Spearman correlation, r, between the two measures. (d, h) For each subject, permutation tests 976 

yielded a distribution of 10,000 correlation values that described the expected correlation if there 977 

were no relationship between seizure dissimilarities and duration distances. The p-value of the 978 

association was equal to the proportion of times a correlation value greater than or equal to the 979 

observed correlation (vertical bar) was seen in the distribution. The colour of the vertical bar 980 

indicates whether the association between seizure dissimilarities and duration distances was 981 

significant (blue = significant, grey = not significant after false discovery rate correction). (i) Dot 982 

plot showing the range of correlations between seizure dissimilarities and duration distances across 983 
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all subjects. Each marker represents a subject (square = human subject, circle = canine subject, 984 

blue = significant, grey = not significant after false discovery rate correction).   985 
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 986 

 987 
 988 

Fig. 6: Temporal distribution of seizure dynamics in example subjects. The seizure state 989 

progressions of subjects P2 (a) and P3 (b) are plotted in the order of their occurrence. The vertical 990 

distance between seizure progressions is proportional to the amount of time elapsed between 991 

seizures.   992 
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 993 
 994 

Fig. 7: Comparison of seizure dissimilarities and temporal distances. The comparison of 995 

seizure dissimilarities and temporal distances is shown for subjects P2 (a-d) and P3 (e-h), along 996 

with results across all subjects (i). Colour and marker coding is the same as in Fig. 5. (a, e) Seizure 997 

dissimilarity matrices, summarising differences in seizure network dynamics within each subject 998 

(same as in Fig. 3 and 5). (b, f) Temporal distance matrices. Each entry corresponds to the amount 999 

of time elapsed between the onsets of a pair of seizures. (c, g) Scatter plots of seizure dissimilarities 1000 

vs. temporal distances, along with the Spearman correlation, r, between the two measures. (d and 1001 

h) Permutation test results for each subject. See Fig. 5 for a description of the permutation test 1002 

and p-values. (i) Dot plot showing the range of correlations between seizure dissimilarities and 1003 

duration distances across all subjects, as well as whether each relationship was significant after false 1004 

discovery rate correction.  1005 

1006 
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 1007 

 1008 
Fig. 8. Hypothesised model for variability in seizure pathways. (a) Diagram of possible 1009 

seizure pathways, which are described as transitions between seven network states. For simplicity, 1010 

we use a schematic of seizure progression that provides examples of seizure variability features 1011 

observed in our data. States that are filled in (states 1 and 2) are possible initiation states in the 1012 

seizure pathway. Dotted arrows represent secondary transitions that are less likely to occur. Square 1013 

states indicate points in the progression where the seizure may terminate. While some transitions 1014 

are deterministic (e.g., state 3 always progresses to state 4), other states are decisions points at 1015 

which variability is introduced into the seizure progression. Variability can be introduced by 1016 

alternative onsets (e.g., onset states 1 and 2, which can both lead to state 3), different possible 1017 

progressions (e.g., state 6 can progress to either state 3 or 7), and potential termination points (e.g., 1018 

state 4 can terminate the seizure or progress to state 5). (b) Potential seizures arising from these 1019 

seizure pathways, demonstrating variability in state onset, state progression, state termination, and 1020 

state inclusion. All these types of variability are observed in our cohort. Note that the last three 1021 

progressions, beginning with the state sequence (2, 6), will be rarer since these transitions are less 1022 

likely.  1023 
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