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Abstract  13 

Personalised medicine requires that treatments adapt to not only the patient, but changing factors 14 

within each individual. Although epilepsy is a dynamic disorder that is characterised by 15 

pathological fluctuations in brain state, surprisingly little is known about whether and how seizures 16 

vary in the same patient. We quantitatively compared within-patient seizure network dynamics 17 

using intracranial recordings of over 500 seizures from 31 patients with focal epilepsy (mean 16.5 18 

seizures/patient). In all patients, we found variability in seizure paths through the space of possible 19 

network dynamics, producing either a spectrum or clusters of different dynamics. Seizures with 20 

similar pathways tended to occur closer together in time, and a simple model suggested that seizure 21 

pathways change on circadian and/or slower timescales in the majority of patients. These temporal 22 

relationships occurred independent of whether the patient underwent antiepileptic medication 23 

reduction. Our results suggest that various modulatory processes, operating at different timescales, 24 

shape within-patient seizure dynamics, leading to variable seizure pathways that may require 25 

tailored treatment approaches.  26 
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Introduction 27 

 28 

Focal epilepsy is characterised by spontaneous, recurrent seizures that arise from localised cortical 29 

sites (1). An unresolved question is how much seizure dynamics can vary in individual patients. 30 

Past studies suggest that seizures within a single patient share common features (2–6) and progress 31 

through a similar sequence (7), or “characteristic pathway” (8), of neural dynamics. However, there 32 

is also evidence that seizure dynamics vary in some patients. Clinically, there may be different types 33 

of seizure dynamics in patients with multiple seizure onset sites (9), and long-term 34 

electroencephalographic (EEG) recordings suggest that a subset of patients have multiple seizure 35 

populations with distinct dynamics (8, 10–12). Ictal onset patterns (13, 14), the extent of seizure 36 

spread (15, 16), and seizure recruitment patterns (17) can also differ in the same patient. This 37 

variability may arise from fluctuations in the underlying brain state (18–22), suggesting that 38 

background neural dynamics affect not only seizure likelihood (19, 23), but also seizure features. 39 

Crucially, a given treatment may only address a subset of a patient’s seizure dynamics: for example, 40 

a single neurostimulation protocol may not control the complete repertoire of seizures (18) and a 41 

single prediction algorithm may fail to forecast all seizures (10, 12, 24). Consequently, seizure 42 

variability has important implications for clinical management in these patients. 43 

 44 

To design optimal and comprehensive treatments, we therefore need to understand the prevalence 45 

and characteristics of within-patient seizure variability. Is seizure variability present in all patients, 46 

and, if so, what form does the variability take? Do within-patient seizures cluster into groups with 47 

distinct dynamics? How are different seizure dynamics distributed in time?  48 

 49 

To answer these questions, we must objectively quantify seizure similarity. This task is challenging 50 

due to the complexity of seizure dynamics: a variety of spatiotemporal features change 51 

independently during seizure evolution. Although some studies have quantitatively compared 52 

within-patient seizures (25–30), the current gold standard remains visual inspection of ictal EEG 53 

by trained clinicians. This latter approach is time-consuming and subjective, and can miss 54 

important features, including functional network interactions, that are difficult to detect visually. 55 

These functional network dynamics, also known as functional connectivity patterns, describe 56 

relationships between the activity recorded by different EEG channels. Temporal changes in 57 

network dynamics play important roles in seizure initiation, propagation, and termination (2, 22, 58 

31–40), in part due to dynamic changes in the connectivity of the seizure onset zone (7, 41–43). 59 

To fully understand how functional interactions support ictal processes, we must also determine 60 
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if multiple seizure pathways, representing different ictal network evolutions, can co-exist in an 61 

individual patient. Such diversity would reveal that the same neural regions can variably interact to 62 

produce a variety of pathological dynamics.  63 

 64 

Our goal was to quantify and characterise within-patient variability in seizure pathways through 65 

network space. We visualised and compared the within-patient seizure network evolutions of 66 

human patients with focal epilepsy (recorded for 43-382 hrs). In total, we analysed the network 67 

evolutions of 511 seizures (average 16.5 seizures/patient), making our study the first large-scale 68 

examination of within-patient seizure variability. In each patient, we found variability in seizure 69 

network evolution, revealing that within-patient seizures are not well-represented by a single 70 

characteristic pathway. However, seizures can share parts or all of the same pathway, with recurring 71 

dynamical elements across seizures. Furthermore, we explored how seizure dynamics change over 72 

different timescales, providing novel insight into the temporal changes of within-patient seizures. 73 

Our analysis revealed that seizures change on circadian and/or slower timescales in each patient, 74 

suggesting that different modulatory processes shape seizure pathways.  75 

 76 

 77 

Results 78 

 79 

We analysed seizure network evolution in 31 human patients (511 seizures total, mean 16.5 80 

seizures/patient) with focal epilepsy who underwent continuous intracranial 81 

electroencephalographic (iEEG) recordings as part of presurgical evaluation. Patient details are 82 

provided in SI Appendix, Text S1. We first visualise seizure network dynamics and quantify the 83 

dissimilarity of within-subject seizure pathways through network space. Importantly, our analysis 84 

captures differences in network interactions during seizures, which do not necessarily correspond 85 

to anatomical differences in the location and spread of seizure activity. We then investigate the 86 

amount and form of this variability across patients, and explore how seizure dynamics change over 87 

time. Finally, we hypothesise how underlying processes occurring on different time scales could 88 

drive the observed changes in seizure pathways. 89 

 90 

Visualising and quantifying variability in within-patient seizure pathways 91 

 92 

Our first goal was to objectively compare within-patient seizure network dynamics. For each 93 

patient, we extracted the seizure iEEGs (Fig. 1A) and computed the sliding-window functional 94 
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connectivity, defined as band-averaged coherence in six frequency bands (Fig. 1B). Thus, each 95 

seizure time window was described by a set of six connectivity matrices that captured interactions 96 

between iEEG channels in each frequency band. We additionally normalised the magnitude of 97 

each connectivity matrix to focus on the evolving patterns of network interactions, rather than 98 

gross changes in the global level of coherence. The set of all possible connectivity patterns created 99 

a high-dimensional space, in which each location corresponded to a specific network 100 

configuration. As such, each time window could be represented by a high-dimensional data point, 101 

and the evolution of a seizure’s network dynamics formed a pathway in this high-dimensional 102 

connectivity space. By transforming seizures in this manner, we framed our comparison of seizure 103 

dynamics as a comparison of seizure pathways (or trajectories) through the high-dimensional 104 

network space.  105 

 106 

Due to the high dimensionality of this network space, it was infeasible to directly visualise seizure 107 

pathways. However, seizure pathways could be approximated in a two dimensional projection 108 

using multidimensional scaling (MDS), a dimensionality reduction technique that attempts to 109 

maintain the distances between high-dimensional data points in the lower dimensional space (Fig. 110 

1C). As such, this technique placed seizure time windows in the two-dimensional projection based 111 

on the similarity of their network configurations; each time window was represented by a single 112 

point, and points corresponding to time windows with more similar network dynamics were placed 113 

closer together. While imperfect, this approximation of the network space nonetheless provided 114 

an intuitive visualisation for comparing seizure pathways in the same patient. For example, in 115 

patient 931, the projection demonstrated that two seizures may follow approximately the same 116 

pathway (seizures 6 and 8), part of the same pathway (seizures 8 and 9), or completely distinct 117 

pathways (seizures 2 and 10) through the network space, in agreement with visual impressions of 118 

the EEG.  119 

 120 

To quantify these visual observations, we developed a “seizure dissimilarity” measure that provides 121 

a “distance” between two seizures based on their pathways through network space. Importantly, 122 

our approach recognises similarities in seizure pathways, even if the seizures evolve at different 123 

rates, by first applying dynamic time warping (44) to each pair of seizure functional connectivity 124 

time courses (SI Appendix, Text S2). Dynamic time warping nonlinearly stretches each time series 125 

such that similar points are aligned, thus minimizing the total distance between the two time series. 126 

We then defined the dissimilarity between two seizures as the average difference between the 127 

seizure pathways across all warped time points. The seizure dissimilarity matrix then summarises 128 
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the dissimilarity between all pairs of seizure pathways in the same patient (Fig. 1D).   In patient 129 

931, seizures with similar pathways therefore have a low dissimilarity (e.g., seizures 6 and 8, 130 

dissimilarity 0.49); seizures with distinct, distant pathways have high dissimilarity (e.g., seizures 2 131 

and 10, dissimilarity 3.21); and seizures with partially overlapping pathways have an intermediate 132 

level of dissimilarity (e.g., seizures 8 and 9, dissimilarity 1.75). Again, our measure of seizure 133 

dissimilarity agrees with intuitive comparisons of seizures based on visually assessing the iEEG 134 

(Fig. 1A) and MDS projections of the seizure pathways (Fig. 1C).  135 

 136 

It is important to note that both seizure dissimilarity matrices and MDS projections are patient-137 

specific: due to different electrode implantations, we cannot compare seizures across patients using 138 

these network features. However, because we normalise the magnitude of the functional 139 

connectivity, we can compare seizure dissimilarity values across patients, even if the patients have 140 

different numbers of recording electrodes. In the remainder of the paper, we will focus on the 141 

across patient results, while using patient 931’s seizures as examples. The seizure variability analysis 142 

of all patients will be available on Zenodo (http://dx.doi.org/10.5281/zenodo.3560736) and 143 

summarised in SI Appendix, Text S3.  144 

 145 

Seizure variability is a common feature in all patients  146 

 147 

Using our measure of seizure dissimilarity, we compared seizure pathways through network space 148 

in each patient. We first determined if seizure variability was present in all patients. Fig. 2A shows 149 

the distribution of seizure dissimilarities in each patient, with patients sorted from lowest (patient 150 

934) to highest (patient I002 P006 D01) median dissimilarity. Note that each point corresponds 151 

to the difference in network dynamics of a pair of seizures, rather than a feature of a single seizure. 152 

From these distributions, it is apparent that all patients had variability in seizure network dynamics. 153 

Even in patients with more consistent seizures, such as patient 934, there were pairs of seizures 154 

with high dissimilarity, indicating dissimilar seizure pathways. Meanwhile, other patients, including 155 

patient 931, had varying levels of different dynamics, with only a few pairs of similar seizures. 156 

 157 

Past studies have noted that some patients have populations of seizures with distinct features such 158 

as different onset sites (9, 11) or durations (8, 12). As such, we would expect the variability 159 

described in these studies to result from different, discrete seizure types coexisting in the same 160 

patient. We therefore tested if each of the patients in our cohort had multiple seizure types by 161 

clustering their seizures based on seizure dissimilarities (Fig. 2B; see Methods for details). Contrary 162 
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to our expectation, we found that the majority of patients (21 patients), including patient 931, did 163 

not have distinct types. Importantly, without a clear way to split their seizures into different types, 164 

the full diversity of their seizure dynamics could not be described by a few example seizures. Ten 165 

patients had two or more seizure clusters, although there was still variability in dynamics within 166 

most clusters (SI Appendix, Text S4), and the average amount of seizure variability was the same 167 

in patients with or without multiple seizure clusters (Fig. 2C) (two sample t-test, p = 0.68). Thus, 168 

the presence or absence of different types of seizure dynamics does not indicate the average 169 

amount of seizure variability in each patient.  170 

 171 

We also found that the observed variability was not solely explained by the presence of different 172 

clinical seizure types (subclinical, focal, or secondarily generalised seizures) (SI Appendix, Text S5). 173 

This finding was expected given that seizures of different clinical types can share similar dynamics, 174 

while seizures of the same clinical type may have dramatically different features (16, 45, 46). 175 

Additionally, we found no association between postsurgical seizure freedom and measures of 176 

seizure variability (SI Appendix, Text S6). Likewise, higher levels of seizure variability were not 177 

associated with a particular seizure onset site (SI Appendix, Text S6). These findings suggest that 178 

the level of seizure variability is not associated with certain patient pathologies or treatment 179 

outcomes; instead, other factors may be more crucial for determining the extent and form of the 180 

variability.  181 

 182 

Seizures with more similar pathways tend to occur closer together in time 183 

 184 

Many time-varying factors, such as sleep (21, 23, 45, 47, 48) and hormones (49–52), are thought 185 

to influence seizure likelihood and dynamics. Additionally, during presurgical monitoring, 186 

antiepileptic medication is reduced in many patients, impacting brain dynamics (53). We therefore 187 

explored whether there is a temporal structure to how seizure dynamics change over time in each 188 

patient. Fig. 3A shows the pathways of patient 931’s seizures, as well as the time that each seizure 189 

occurred relative to the patient’s first seizure. From this visualisation, we see that the pathways 190 

gradually migrated through network space as the recording progressed, creating the observed 191 

spectrum of network dynamics. Moreover, looking at the seizure timings, we also see that seizures 192 

with similar pathways, such as seizures 6-8, tended to occur close together in time. 193 

 194 

To quantify this temporal relationship, we defined a “temporal distance” matrix as the amount of 195 

time elapsed between each pair of the patient’s seizures (Fig. 3B). Patient 931’s seizure dissimilarity 196 
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and temporal distance matrices have strikingly similar structures: groups of seizures with low 197 

dissimilarity tended to occur together in a relatively short time interval. In this patient, there was a 198 

strong and significant positive correlation between these features (Spearman’s r = 0.69, p = 0.001, 199 

one-tailed Mantel test), indicating that seizures with more similar pathways tended to occur closer 200 

together in time.  201 

 202 

Fig. 3C summarises the relationship between seizure dissimilarities and temporal distances across 203 

all patients. In almost all patients, there was a positive Spearman’s correlation between seizure 204 

dissimilarities and temporal distances (range: -0.10 – 0.83, mean: 0.45). This association was 205 

significant in 21 patients (67.7%) after false discovery rate correction. In these patients, we also 206 

observed that the average level of dissimilarity tends to increase with the time between the two 207 

seizures (Fig. 3D). Interestingly, there was no association between whether antiepileptic 208 

medication was reduced and whether the correlation between seizure dissimilarities and temporal 209 

distances was significant (c2 test, p = 0.96) (SI Appendix, Text S7). Therefore, although medication 210 

levels may affect seizure dynamics (9, 16, 54, 55), medication changes alone cannot explain the 211 

observed shifts in seizure pathways, suggesting that other temporal factors also play a role in 212 

shaping seizure features.  213 

  214 

Seizure pathways change on different timescales 215 
 216 

The observed temporal associations of seizure dissimilarities reflected gradual changes in seizure 217 

dynamics across the length of each recording. In other words, we observed relatively slow shifts 218 

in seizure pathways over the course of multiple days. However, we also hypothesised that seizure 219 

dynamics may change on shorter timescales due to, for example, circadian rhythms. Such rhythms 220 

would create timescale-dependent relationships between seizures; in particular, there would be a 221 

positive correlation between seizure dissimilarities and temporal distances on shorter timescales, 222 

but this association would be destroyed on longer timescales.  223 

 224 

Therefore, to explore the possibility of different timescales of changes in seizure dynamics, we 225 

scanned the correlation between seizure dissimilarities and temporal distances on different 226 

timescales T ranging from 6 hrs to the longest amount of time between a seizure pair (Fig. 4A). 227 

For example, for T = 3 days, we computed the correlation between seizure dissimilarities and 228 

temporal distances for all pairs of seizures that occurred within three days of each other. We refer 229 

to these sets of correlation as “temporal correlation patterns” of seizure dynamics. Fig. 4A shows 230 
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the temporal correlation patterns of patient 931’s seizures. As we determined earlier, there was a 231 

positive correlation between seizure dissimilarities and temporal distances when all seizures were 232 

included in the computation (T = 5 days) as a result of the observed gradual changes in seizure 233 

pathways. At shorter timescales, however, the temporal relationship fluctuates; for example, the 234 

correlation is relatively low at T = 1 and 2.5 days, and higher at T = 0.75 and 2.5 days. These 235 

fluctuations are signs of additional, timescale-dependent changes in seizure dynamics beyond the 236 

gradual changes.  237 

 238 

To investigate how these temporal correlation patterns arise, we modelled different patterns of 239 

seizure variability and the corresponding temporal correlation patterns (Fig. 4B) (see Methods and 240 

SI Appendix, Text S8 for modelling details).  Specifically, for each patient, we simulated sets of 241 

seizure dissimilarities arising from different levels of linear, circadian, and/or noisy dynamics based 242 

on predefined time-varying functions and the patient’s seizure times. Linear changes in dynamics 243 

would correspond to the slower, gradual shifts in seizure dynamics; circadian changes represent 244 

dynamics modulated by circadian rhythms; and noisy changes allow for the influence of random 245 

fluctuations and intermittent factors.  From these simulated dissimilarities, we computed simulated 246 

temporal correlation patterns. Based on the model parameters that most reliably reproduced the 247 

observed temporal correlation pattern, we categorised each patient’s pattern of seizure variability 248 

as linear (Fig. 4B, left), circadian (Fig. 4B, middle), or linear + circadian (Fig. 4B, right). Crucially, 249 

this modelling approach allowed us to hypothesise how different patterns of seizure variability 250 

could interact with the patient’s seizure timings to produce the observed temporal relationships 251 

between seizures.  252 

 253 

In patient 931, example simulations using a single noise realisation demonstrated that these 254 

different underlying models could produce different temporal correlation patterns of seizure 255 

dynamics (Fig. 4B). A linear change in seizure dynamics produced a positive temporal relationship 256 

that is stronger at longer timescales. Higher levels of noise reduced this positive correlation at all 257 

timescales. Meanwhile, a circadian model only produced strong, positive temporal correlations at 258 

timescales shorter than one day. Finally, a combination of the linear and circadian factors created 259 

both the short-term temporal relationships and a positive temporal correlation at the longer 260 

timescales. Note that there were also some additional fluctuations in the temporal correlation 261 

patterns due to noisy changes in dynamics, especially at higher levels of noise, which will differ 262 

depending on the outcome of the noisy simulation.  263 

 264 
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Fig. 4C shows the underlying model (linear, circadian, or linear + circadian) most likely to underlie 265 

the observed temporal correlation patterns, as defined by the percentage of model simulations 266 

with matching temporal correlation patterns. We additionally required the selected model to 1) 267 

outperform noisy simulations alone, 2) clearly distinguish between the linear and circadian models, 268 

and 3) in the case of the linear + circadian model, clearly outperform one of the simpler models. 269 

Using these criteria, seventeen patients’ temporal correlation patterns were best explained by the 270 

linear model, three by the circadian model, and seven by the linear + circadian model. Thus, most 271 

patients (77.4%) required a linear component to explain the observed changes in seizure dynamics, 272 

while (32.3%) of the temporal correlation patterns were well-matched by a model incorporating 273 

circadian dynamics. As before, different classifications of seizure dynamics were not associated 274 

with surgical outcomes  (SI Appendix, Text S6) or whether the patient’s medication was reduced 275 

during presurgical monitoring (SI Appendix, Text S7).  276 

 277 

Four patients’ temporal correlation patterns could not be assigned to a model, either because the 278 

linear model and circadian model performed similarly (patient Study 038) or the best model did 279 

not outperform noise alone (patients Study 017, Study 033, and 1163). Notably, in some patients 280 

(Study 020, 756, 1196, and Study 017) only a small percentage of the simulations matched that 281 

observed temporal correlation patterns, indicating that reproducing the observed dynamics 282 

required specific patterns of noise. In these cases, other models may therefore provide a better 283 

explanation for the patient’s changes in seizure dynamics. In particular, many of these patients had 284 

strong positive correlations at a timescales longer than one day, but less than the length of the 285 

recording, suggesting multi-day fluctuations in seizure dynamics.   286 
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Discussion 287 

 288 

We have quantified variability in seizure network dynamics within individual human patients with 289 

focal epilepsy, revealing that within-patient seizures are neither deterministic nor comprehensively 290 

represented by a single dynamical pathway. Contrary to our expectation, most patients had a 291 

spectrum of seizure dynamics, rather than distinct seizure populations. Interestingly, seizure 292 

network dynamics change over time in most patients, with more similar seizures tending to occur 293 

closer together in time. Our modelling results indicate that in most patients, a combination of fast 294 

(i.e. circadian) and/or slow changes in seizure pathways may underlie the observed variability, 295 

suggesting that factors operating on different timescales modulate within-patient seizure dynamics.  296 

 297 

We investigated variability in seizure functional network evolution due to the importance of 298 

network interactions in ictal processes (2, 7, 22, 31, 33–43) and build on previous work by 299 

demonstrating within-patient variability in these pathological network dynamics. However, the 300 

framework we present could easily be adapted to compare other features that highlight different 301 

aspects of seizure dynamics. For example, a univariate feature that captures the amplitude and 302 

frequency of ictal discharges may be better suited for comparing the involvement of different 303 

channels, similar to how clinicians visually compare EEG traces. Meanwhile, comparisons of 304 

parameter time courses, derived using model inversion (8, 56, 57), could reveal different patterns 305 

of changes in the neural parameters underlying a patient’s seizures. Finally, due to patient-specific 306 

recording layouts, we focused on comparing seizure dynamics within individual patients. However, 307 

comparing seizures across patients, either using spatially-independent features or common 308 

recording layouts, in future studies could uncover common classes of pathological dynamics (8, 309 

58).  310 

 311 

To quantify within-patient variability in seizure pathways, we developed a “seizure dissimilarity” 312 

measure that addresses the challenges of comparing diverse spatiotemporal patterns across 313 

seizures. A few previous studies have attempted to quantitatively compare seizure dynamics using 314 

either univariate (26, 27, 29, 30) or network (25, 28) features computed from scalp or intracranial 315 

EEG. These earlier dissimilarity measures were based on edit distance, which captures how many 316 

replacements, insertions, and deletions are required to transform one sequence into another. 317 

Importantly, the insertion cost increases the dissimilarity of similar seizures with different rates of 318 

progression. Although previous work suggested lowering seizure dissimilarity in such scenarios 319 

(30), to our knowledge, our dynamic time warping approach provides the first measure of seizure 320 
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dissimilarity that does not penalise temporal variability between otherwise similar seizures. Despite 321 

this difference, those past studies also reported both common and disparate dynamics across 322 

within-patient seizures; however, their analysis was limited to a small number of patients and/or 323 

seizures per patient. Our work provides novel insight into the prevalence and characteristics of 324 

seizure variability by analysing over 500 seizures across thirty-one patients. Finally, we expand on 325 

previous work by using seizure dissimilarity for downstream analysis, including clustering seizures 326 

and describing temporal changes in seizure dynamics.  327 

 328 

Previous work has found that within-patient seizures have similar dynamics (2–8), although 329 

variability may be introduced through different rates of progression (4, 59) or early termination in 330 

the seizure pathway (6, 8). In our cohort, we observed that subsets of within-patient seizures follow 331 

approximately the same dynamical pathway through network space, and such similar groups of 332 

seizures likely underlie these past findings. However, we also found that the complete repertoire 333 

of within-patient seizure network dynamics is poorly characterised by a single, characteristic 334 

pathway. Notably, we also found that a patient with different seizure dynamics does not necessarily 335 

have distinct populations of seizures. We therefore propose a model in which various decision 336 

points, existing on the framework of potential seizure pathways, produce a repertoire of seizure 337 

evolutions (SI Appendix, Text S9). The number and location of these decision points would also 338 

explain why some patients have a spectrum of seizure dynamics: a larger number of “forks” in 339 

seizure pathways would produce a series of small changes between different seizures, rather than 340 

distinct seizure types.  Future studies can map these potential seizure pathways and the factors 341 

shaping how individual seizures evolve.  342 

 343 

The crucial question is then how these different seizure pathways arise from the same neural 344 

substrate. In theory, a range of changes before or during the seizure can affect its network 345 

progression. We hypothesise that spatiotemporal changes in the interictal neural state produce 346 

seizures with different characteristics. Past studies suggest that neural excitability (19, 55, 60), 347 

inhibition (59), and network interactions (22, 61) influence certain spatiotemporal seizure features, 348 

such as the rate and extent of seizure propagation. These changes in brain state may be driven by 349 

various factors, including sleep (21, 45, 47), hormones (49–52), and medication (53). Recently, 350 

prolonged recordings of patients with focal epilepsy have revealed that the rates of epileptiform 351 

discharges and seizures fluctuate according to both circadian and patient-specific multidien 352 

(approximately weekly to monthly) cycles (48, 62). An intriguing possibility is that the same factors 353 

that rhythmically modulate seizure likelihood may also influence seizure dynamics. Consistent with 354 
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this hypothesis, we found that the majority of observed temporal patterns of seizure variability 355 

were well-explained by models incorporating circadian and/or linear changes in seizure dynamics. 356 

In particular, the linear component of the model may reflect gradual changes in dynamics on 357 

slower timescales, ranging from weeks to months. These simple models provided an initial 358 

hypothesis for the observed patterns of changes in seizure dynamics. Some patients seizure 359 

patterns may be better explained by more complex models that capture different dynamics, such 360 

as multistability or multidien cycles. Ultimately, it is likely that various factors, with differential 361 

effects on seizure dynamics, interact to produce the observed repertoire of seizure network 362 

evolutions. Analysing within-patient seizure variability in long-term recordings could provide 363 

additional insight into patterns of temporal changes in seizure dynamics. 364 

 365 

Notably, a large number of the patients in our study underwent antiepileptic medication reduction 366 

as part of pre-surgical monitoring, making it difficult to disentangle the effects of changing drug 367 

levels from other potential slow-varying modulators of seizure dynamics. Changes in antiepileptic 368 

medication can impact neural excitability (63–65), and medication tapering increases seizure 369 

likelihood in most patients (16, 66); however, it is controversial whether it also affects seizure 370 

patterns (9, 16, 54, 66). In some cases, it appears that medication tapering reveals latent seizure 371 

pathways that are suppressed by medication (9) or allows existing pathways to further progress 372 

(e.g., the secondary generalisation of typically focal seizures) (16). It is possible that the impact of 373 

medication reduction on seizure dynamics is drug-, patient-, and dose-dependent, and may 374 

ultimately depend on how well the medication controls neuronal excitability (55). However, 375 

medication changes alone cannot account for the observed seizure variability in our cohort, as we 376 

observed temporal associations of seizure dynamics in patients that did not undergo medication 377 

reduction. In future work, associating medication levels with differences in seizure dynamics could 378 

help untangle the different factors shaping seizure dynamics. 379 

 380 

Another confounding factor in our data is that the surgical implantation itself could artificially alter 381 

seizure dynamics. Using chronic recordings of epileptic canines, Ung et al. (67) found variability in 382 

seizure onset and interictal burst dynamics, with the most stable dynamics emerging approximately 383 

a few weeks after electrode implantation. In agreement with their work, we found that earlier 384 

seizure types often recur later in the recording, making it unlikely that gradual changes in the 385 

recording quality or an acute reaction to the surgery underlie the observed variability. Instead, Ung 386 

et al. hypothesised that seizure variability results from transient, atypical dynamics as the brain 387 

recovers from surgery, with later dynamics representing a truer epileptic network. Other stressors, 388 
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such as medication withdrawal, could similarly elicit abnormal dynamics. Nevertheless, a large 389 

number of our patients had good surgical outcomes, suggesting that their recorded seizures 390 

accurately represented their epileptic networks. Additionally, clinicians often note that patients 391 

have typical seizures during iEEG recordings, as compared to preimplantation reports, despite the 392 

effects of surgery and medication withdrawal (16). As such, the observed seizure dynamics in our 393 

cohort may be part of their usual repertoires of seizure dynamics, even if some dynamics are only 394 

elicited by strong stressors. Further analysis in chronic human recordings is needed to determine 395 

whether and how seizure pathways vary in a more naturalistic setting.    396 

 397 

Contrary to the expectation that high levels of seizure variability may worsen surgical outcomes, 398 

we found no association between these patient features. It may be that only some types of 399 

variability, such as multifocal (9) or secondarily generalised (68) seizures, impact the likelihood of 400 

seizure freedom following surgery. Importantly, variability in the seizure onset network state does 401 

not indicate that a patient has multifocal seizures, as different network configurations can be 402 

associated with the same apparent ictal onset zone. Additionally, variability in seizure dynamics 403 

may not be inherently deleterious, as long as it is observed and accounted for when planning the 404 

surgical resection. Indeed, due to the short presurgical monitoring time and limited spatial coverage 405 

of the recording electrodes, some potential seizure pathways may not have been captured (11, 67), 406 

leading us to underestimate the level of variability in some patients. 407 

 408 

Although the amount of seizure variability was not associated with post-surgical seizure freedom, 409 

it may have implications for clinical treatments. First, regardless of the source of the observed 410 

seizure variability, the different seizure dynamics observed during presurgical monitoring provide 411 

crucial information for guiding surgical resection. For example, recent studies suggest that seizure 412 

network properties can help identify epileptogenic tissue (7, 69, 70); however, we must determine 413 

if seizures with different network evolutions provide equivalent localisation information. Seizure 414 

variability may also have implications for seizure prediction. In particular, in that same patient, 415 

seizures with different dynamics may have distinct preictal signatures, making seizure prediction 416 

more difficult (10, 12). A successful seizure prediction algorithm would either need to recognise 417 

multiple signatures or find common features among the disparate preictal dynamics. Finally, 418 

neurostimulation offers a promising new approach for controlling seizures; however, in rodent 419 

models, the effectiveness of a given stimulation protocol depends on the preictal brain state (18). 420 

Thus, such interventions may need to recognise and adapt to the specific characteristics of each 421 

seizure type in order to control all seizure dynamics. Importantly, our cohort was limited to 422 
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patients with medication refractory focal epilepsy who were candidates for surgical resection. The 423 

characteristics and clinical implications of seizure variability may be different in other patient 424 

cohorts.  425 

 426 

In summary, we have shown that there is within-patient variation in seizure network dynamics in 427 

patients with focal epilepsy. Temporal changes in seizure dynamics suggest that a combination of 428 

circadian and slow-varying factors shape these seizure pathways, perhaps by modulating the 429 

background brain state. Further research is needed to determine whether and how preictal 430 

dynamics shape seizure pathways. Uncovering these mechanisms could provide novel approaches 431 

for predicting and controlling seizures that are tailored to the complete repertoire of pathological 432 

neural dynamics in each patient.   433 
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Materials and methods   434 

 435 

Patient selection and data acquisition: This work was a retrospective study that analysed 436 

seizures from 13 patients from the Mayo Clinic and the Hospital of the University of 437 

Pennsylvania (available on the IEEG Portal, www.ieeg.org (71, 72)) and 18 patients from the 438 

University College London Hospital (UCLH) who were diagnosed with refractory focal 439 

epilepsy and underwent presurgical monitoring. Patients were selected without reference to 440 

cause or other characteristics of their pathology. All IEEG Portal patients gave consent to have 441 

their anonymised iEEG data publicly available on the International Epilepsy Electrophysiology 442 

Portal (www.ieeg.org) (71, 72). For the UCLH patients, their iEEG was anonymised and 443 

exported, and the anonymised data was subsequently analysed in this study under the approval 444 

of the Newcastle University Ethics Committee (reference number 6887/2018). 445 

 446 

For each patient, the placement of the intracranial electrodes was determined by the clinical 447 

team, independent of this study. Ictal segments were identified and extracted for the analysis 448 

based on clinical seizure markings. To be included in the study, each patient was required to 449 

have had at least six seizures suitable for the analysis. This threshold was chosen to allow 450 

examination of seizure variability in a broad cohort of subjects, while still ensuring that enough 451 

seizures were observed to draw conclusions about the forms, types, and characteristics of 452 

seizure variability in each subject. Seizures were excluded from the analysis if they did not 453 

have clear electrographic correlates (with clear onset and termination), if they were triggered 454 

by/occurred during cortical stimulation, if they had noisy segments, or if they had large missing 455 

segments. Periods of status epilepticus and continuous epileptiform discharges were also 456 

excluded. However, electrographic seizures without clinical correlates were included in the 457 

analysis. Additional information about each subject and the analysed seizures is shown in SI 458 

Appendix, Text S1. 459 

 460 

iEEG preprocessing: For each patient, if different seizures were recorded at multiple sampling 461 

frequencies, all of the recordings were first downsampled to the lowest sampling frequency. 462 

Noisy channels were then removed based on visual inspection. In the remaining channels, short 463 

sections of missing values were linearly interpolated. These sections of missing values were 464 

<0.05 s with the exception of one segment in seizure 2 of patient “Study 020”, which was 465 

0.514 s. All channels were re-referenced to a common average reference. Each channel’s time 466 

series was then bandpass filtered from 1-150 Hz (4th order, zero-phase Butterworth filter). To 467 

remove line noise, the time series were additionally notch filtered (4th order, 2 Hz width, zero-468 
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phase Butterworth filter) at 60 and 120 Hz (IEEG Portal patients) or 50, 100, and 150 Hz 469 

(UCLH patients). 470 

 471 

Computing functional connectivity: To compute the time-varying functional connectivity of 472 

each seizure, a 10 s sliding window, with 9 s overlap between consecutive windows, was 473 

applied to each preprocessed ictal time series. The same sliding window parameters have 474 

previously been used to estimate time-varying coherence in ictal iEEG data (73). For each 475 

window, the coherence between each pair of iEEG channels was computed in six different 476 

frequency bands (delta 1-4 Hz, theta 4-8 Hz, alpha 8-13 Hz, beta 13-30 Hz, gamma 30-80 Hz, 477 

high gamma 80-150 Hz). The coherence in each frequency band was computed using band-478 

averaged coherence, defined as 479 

𝐶",$(𝑓) = 	
*∑ 𝑃",$(𝑓

-.
-/-0 )*

1

∑ 𝑃","(𝑓)
-.
-/-0

∑ 𝑃$,$(𝑓)
-1
-/-0

 480 

where f1 and f2 are the lower and upper bounds of the frequency band, Pi,j(f) is the cross-481 

spectrum density of channels i and j, and Pi,i(f) and Pj,j(f) are the autospectrum densities of 482 

channels i and j, respectively. In each window, channel auto-spectrums and cross-spectrums 483 

were calculated using Welch’s method (2 s sliding window with 1 s overlap).  484 

 485 

Thus, in a patient with n iEEG channels, the functional connectivity of each time window was 486 

described by six symmetric, non-negative, n´n matrices, in which each entry (i,j) gives the 487 

coherence between channels i and j in the given frequency band. Each matrix was then written 488 

in vector form by re-arranging the upper-triangular, off-diagonal elements into a single column 489 

vector of length (n2 – n)/2. Each vector was then normalised so that the L1 norm (i.e., sum of 490 

all elements) was 1, thus ensuring that differences between connectivity vectors captured a 491 

change in connectivity pattern rather than gross changes in global levels of coherence. This 492 

normalisation step also allowed the magnitude of seizure dissimilarities to be compared across 493 

patients with different numbers of electrodes. For each time window, the six connectivity 494 

vectors were then vertically concatenated together, forming a single column vector of length 495 

6*(n2 – n)/2. Each patient’s ictal connectivity vectors were subsequently horizontally 496 

concatenated together to form a matrix V containing 6*(n2 – n)/2 features and m observations, 497 

where m is the total number of ictal windows across all seizures.  498 

 499 

Dimensionality reduction and visualisation: Small fluctuations in the functional connectivity 500 

due to noise would create a high baseline dissimilarity between seizures. Therefore, to reduce 501 
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noise in the connectivity matrices, non-negative matrix factorization (NMF) (74) was used to 502 

approximately factor each patient’s ictal time-varying connectivity matrix V into two non-503 

negative matrices, W and H, such that V»W´H (details provided in SI Appendix, Text S10). 504 

The matrix W contained patient-specific basis vectors, each of which had 6*(n2 – n)/2 features 505 

that captured a pattern of connectivity across all channels and frequency bands. Each original 506 

ictal time window was summarised as an additive combination of these basis vectors, with the 507 

coefficients matrix H giving the contribution of each basis vector to each time window. These 508 

factorisations were patient-specific since the basis vector features depended on the iEEG 509 

electrode layout in each patient. The optimal number of basis vectors, r, was determined using 510 

stability NMF (75). 511 

 512 

For each patient the selected factorisation was then used to create V*=W´H, a lower-rank 513 

approximation of the original time-varying seizure functional connectivity (SI Appendix, Text 514 

S10). This return to the original feature space is necessary since NMF basis vectors are not 515 

orthogonal, and distances in NMF basis vector space are therefore not equivalent to distances 516 

in feature space. Each reconstructed connectivity vector was then re-normalised to have an L1 517 

norm of 1, ensuring that differences in reconstruction accuracy did not affect the distances 518 

between different ictal timepoints. To visualise the connectivity vectors of patient 931’s 519 

seizures in Fig. 1C, all time seizures windows were projected into a two-dimensional 520 

embedding using multidimensional scaling (specifically, Sammon mapping) based on their L1 521 

(cityblock) distances in the high-dimensional reconstructed feature space. 522 

 523 

Computing seizure dissimilarities: Following the NMF-based reconstruction of the seizure 524 

connectivity, the network evolution of each seizure was described by a multivariate time series 525 

with 6*(n2 – n)/2 features. To compare network evolutions across within-patient seizures, a 526 

“seizure dissimilarity matrix” was created for each patient. Each pair of seizure functional 527 

connectivity time series was first warped using dynamic time warping, which stretches each 528 

time series such that the total distance between the two time series is minimised (SI Appendix, 529 

Text S2). This step ensures that 1) similar network dynamics of the two seizures are aligned, 530 

and 2) the warped seizures are the same length. We chose to minimise the L1 distance between 531 

each pair of seizures, as this metric provides a better measure of distances in high-dimensional 532 

spaces (76).  533 

 534 

Following dynamic time warping, the L1 distance between the pair of warped time series was 535 

computed, resulting in a vector of distances capturing the dissimilarity in the seizures’ network 536 
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structures at each time point. The “seizure dissimilarity” between the two seizures was defined 537 

as the average distance across all warped time points. The seizure dissimilarity matrix contains 538 

the dissimilarities between all pairs of the patient’s seizures. Note that seizure dissimilarity is 539 

not a metric distance because the triangle equality does not necessarily hold; however, it 540 

performs similarly to alternative metric distances of seizure dissimilarity (SI Appendix, Text 541 

S11). 542 

 543 

Seizure clustering and cluster evaluation: To identify groups of similar seizures in each 544 

patient, each patient’s seizures were hierarchically clustered by using the seizure dissimilarity 545 

matrix as input for an agglomerative hierarchical clustering algorithm, UPGMA (unweighted 546 

pair group method with arithmetic mean). The hierarchical clustering resulted in a dendrogram 547 

that summarised the similarity between the patient’s seizures. Note that the hierarchical 548 

clustering representation was an approximation of the seizure dissimilarities that forced all 549 

dissimilarities into a metric space.  550 

 551 

The gap statistic (77), which compares the within-cluster dispersion of a given clustering 552 

relative to a reference (null) distribution, was then used to determine if optimal flat (i.e., non-553 

hierarchical) clusters of seizures existed in each patient. In order to generate reference datasets, 554 

the patient’s seizures were first projected into Euclidean space using classical (Torgerson’s) 555 

multidimensional scaling (MDS). Note that this step differs from the earlier visualisation of 556 

seizure pathways, which projected seizure time points, rather than seizures themselves. Given 557 

the seizure dissimilarity matrix, MDS assigned a coordinate point to each seizure while 558 

attempting to preserve the specified dissimilarities between seizures. In order to most closely 559 

approximate the dissimilarities matrix, the seizures were projected onto the maximum possible 560 

number of dimensions; note, however, that like the hierarchical clustering, MDS also provided 561 

a metric approximation of the nonmetric dissimilarities. One thousand reference datasets were 562 

then generated by drawing coordinates from a uniform distribution placed over a box aligned 563 

with the principal components of the projected seizure data. Each reference dataset was 564 

hierarchically clustered by computing the distances between the coordinate points and applying 565 

the UPGMA algorithm. To test for flat clusters in the seizure data and reference datasets, the 566 

dendrograms were cut at different levels to generate 1, 2, …. s clusters, where s is the number 567 

of seizures. At each number of clusters k, the gap statistic G(k) was computed by comparing 568 

the within-cluster dispersion of the observed seizures and the reference datasets. The multiple 569 

reference datasets also allowed calculation of the standard error of the gap statistic at each k, 570 

SE(k). The optimal number of clusters was defined as the smallest number of clusters where 571 
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G(k) ³ G(k+1) – SE(k+1), which identifies the point at which increasing the number of clusters 572 

provides little improvement in the clustering of the data (77).  573 

 574 

Comparison to temporal distances: For each patient, we computed a “temporal distance 575 

matrix” containing the amount of time elapsed (measured in days) between the onset times of 576 

each pair of seizures. Spearman’s correlation was computed between the upper triangular 577 

elements of the seizure dissimilarity matrix and the temporal distance matrix of each patient. 578 

Since the distances in each matrix were not independent observations, the Mantel test (78) was 579 

used to determine the significance of each correlation. Briefly, the rows and columns of one 580 

matrix were randomly permuted 10,000 times. The correlation between the two sets of upper 581 

triangular elements was re-computed after each permutation, resulting in a distribution of 582 

correlation values that described the expected correlation if there were no relationship between 583 

seizure dissimilarities and temporal distances. The p-value of the association was then defined 584 

as the proportion of permuted correlation that were greater than or equal to the observed 585 

correlation. To correct for multiple comparisons, the Benjamini-Hochberg false discovery rate 586 

(FDR) correction (79) was applied to the set of p-values computed across all patients (31 total 587 

tests). The correlation was considered significant if the associated adjusted p-value was less 588 

than 0.05.  589 

 590 

Computing temporal correlation patterns: To quantify how seizure dynamics change over 591 

different timescales in each patient, Spearman’s correlation between seizure dissimilarities and 592 

temporal distances was computed only for seizure pairs with temporal distances less than or 593 

equal to timescale T. T was scanned from 0.25 days up to the patient’s largest temporal distance 594 

in steps of 0.25 days. A timescale was excluded from the analysis if less than seven pairs of 595 

seizures occurred within the given timescale or if no new seizure pairs were added when the 596 

timescale was increased.  The resulting set of correlations across various timescales were 597 

referred to as “temporal correlation patterns.” 598 

 599 

Modelling seizure dissimilarities and temporal correlation patterns: To determine the 600 

underlying processes that could produce the observed temporal correlation patterns, changes 601 

in seizure dynamics were modelled using the functions 602 

𝑓2(𝑡) = 	
4
5
𝑡	 (a line with a slope of one per week) 603 

𝑓6(𝑡) = 	 sin 2p𝑡 (a sine wave with a period of one day) 604 

 𝑓;(𝑡)	~	𝑁(0,1) (Gaussian noise with a mean of zero and standard deviation of 1) 605 
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where t is time in days.  606 

 607 

For each function, a simulated distance matrix D was then defined for the patients’ seizures, 608 

with  609 

𝐷(𝑖, 𝑗) = 	 *𝑓(𝑡") − 𝑓(𝑡$)* 610 

where ti is the time of seizure i, tj is the time of seizure j, and f(t) is the corresponding function. 611 

The dissimilarity of the two seizures was then defined as  612 

𝐷𝑖𝑠𝑠(𝑖, 𝑗) = 	E[𝑙𝐷2(𝑖, 𝑗)]1 +	[𝑐𝐷6(𝑖, 𝑗)]1 +	[𝑛𝐷;(𝑖, 𝑗)]1 613 

where l, c, and n are scalars controlling the relative contributions of the linear, circadian, and 614 

noise functions, respectively.  615 

 616 

The relative contributions of the linear, circadian, and noise functions were scanned by varying 617 

the levels of l, c, and n. At each set of values, seizure dissimilarities were simulated 1000 times 618 

using different noise realisations (and correspondingly changing the noise distance matrix, Dn), 619 

and the resulting temporal correlation patterns were computed for each set of simulated 620 

dissimilarities. Note that because temporal correlation patterns only depend on the order of the 621 

dissimilarities, only the relative magnitudes of l, c, and n affected the modelling results. A 622 

model was termed a “linear model” if c = 0, a “circadian model” if l = 0, and a “linear + 623 

circadian model” if l > 0 and c > 0.  624 

 625 

To determine if a patient’s seizure dynamics could be categorised as linear, circadian, or linear 626 

+ circadian, the simulated temporal correlation patterns were compared to the patient’s 627 

observed temporal correlation pattern by computing the mean squared error (MSE) of each 628 

simulated pattern. Simulated temporal correlation patterns with MSE £ 0.02185 were defined 629 

as “good matches” to the observed dynamics. This threshold was chosen because it was the 5th 630 

percentile of the set of all MSEs, across all patients, and based on visual inspection of simulated 631 

temporal correlation patterns with different MSEs. The likelihood L of a given parameter set 632 

was then defined as the percentage of “good matches” produced by the 1000 noisy simulations 633 

of seizure dissimilarities at those parameter values. For each class of model (linear, circadian, 634 

or linear + circadian), the model’s likelihood (Ll, Lc, or Ll+c, respectively) was the highest 635 

likelihood among the model type’s parameter sets, and the “best model” was the model with 636 

the highest likelihood. Ln was also defined as the highest likelihood of the parameter sets 637 

without any linear or circadian contributions (l = 0, c = 0, n > 0).  638 

 639 
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This best model with likelihood Lmax was then used to categorise the patient’s dynamics if it 640 

outperformed all competing models. Specifically, we required that 641 

1) The best model clearly outperform noise alone (Lmax ³ 2Ln); otherwise, the patient’s 642 

dynamics were classified as other/indeterminate.  643 

2) The performance of the linear model and circadian model were clearly distinguishable 644 

(Ll ³ 2Lc if the linear model was best; Lc ³ 2Ll if the circadian model was best); 645 

otherwise, the patient’s dynamics were classified as other/indeterminate. 646 

3) If the best model was linear + circadian, it clearly outperform the two simpler models 647 

(Ll+c ³ 2Ll and Ll+c ³ 2Lc); otherwise, the patient’s dynamics were classified as the 648 

simpler model (if one simpler model performed comparably by this criterion) or as 649 

other/indeterminate (if both simpler models performed comparably).  650 

See SI Appendix, Text S8 for additional modelling details and the selected models for each 651 

patient.  652 

 653 

Code and data availability 654 

All data was analysed using MATLAB version R2018b. To perform NMF, we used the 655 

Nonnegative Matrix Factorization Algorithms Toolbox, available at 656 

https://github.com/kimjingu/nonnegfac-matlab/, which implements the alternating 657 

nonnegative least squares with block principal pivoting algorithm (80, 81). For the remainder 658 

of the analysis, we used MATLAB implementations of standard algorithms (multidimensional 659 

scaling (Sammon mapping): mdscale (criterion “Sammon”), dynamic time warping: dtw, 660 

hierarchical clustering: linkage, Torgerson’s multidimensional scaling: cmdscale, gap statistic: 661 

evalclusters, FDR correction: mafdr) or custom code. The iEEG time series of all IEEG Portal 662 

patients is available at www.ieeg.org. The NMF factorisation of each patient’s data, along with 663 

the code for producing the primary downstream results (seizure dissimilarity matrices, 664 

clustering, and temporal analysis) and figures will be published on Zenodo 665 

(http://dx.doi.org/10.5281/zenodo.3560736).  666 
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 837 
 838 
Fig. 1: Visualising and comparing seizure pathways through network space in an example patient, 839 
patient 931. A) Intracranial EEG traces of a subset of the patient’s seizures. For clarity, only a 840 
representative subset of the recording channels are shown.  B) Functional connectivity of three example 841 
seizure time windows. Functional connectivity was defined as band-averaged coherence in each of six 842 
different frequency bands. Each matrix was normalised so that the upper triangular elements summed to 843 
one. Self connections are not shown in order to focus on inter-channel connectivity. C) Projection of all 844 
seizure time windows into a two dimensional space using multidimensional scaling (MDS), allowing 845 
visualisation of seizure pathways through network space. Each point corresponds to a seizure time window, 846 
and time windows with more similar network dynamics are placed closer together in the projection. 847 
Consecutive time windows in the same seizure are connected to visualise seizure pathways. The time 848 
windows and pathways of the six seizures shown in Fig. 1A have been highlighted using the corresponding 849 
colours, and the time windows of the remaining seizures are shown in grey for reference. The first time 850 
windows of the selected seizures are each marked with a diamond. D) Seizure dissimilarity matrix of all of 851 
the patient’s seizures, which quantifies the difference in the network dynamics of each pair of seizures. A 852 
low dissimilarity indicates that the two seizures have similar pathways through network space.  853 
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 855 
 856 
Fig. 2: Variability in seizure pathways is common in all patients, but may take the form 857 

of either a spectrum or clusters of seizure dynamics. A) Distributions of seizure 858 

dissimilarities in each patient. Patients are sorted from lowest median seizure dissimilarity 859 

(patient 934) to highest median seizure dissimilarity (I002 P006 D01). The red arrow indicates 860 

patient 931, the example patient from Figure 1. In each distribution, each point corresponds to 861 

the dissimilarity of a pair of seizures. The distribution is coloured based on the number of 862 

seizure clusters, computed using seizure dissimilarities, in each patient. B) The number of 863 

patients with different numbers of seizure clusters based on seizure dissimilarities. The majority 864 

of patients had one seizure cluster. C) Distribution of median seizure dissimilarities in patients 865 

with one (left, teal) or multiple (right, purple) seizure cluster.  866 

  867 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 7, 2019. ; https://doi.org/10.1101/661371doi: bioRxiv preprint 

https://doi.org/10.1101/661371
http://creativecommons.org/licenses/by/4.0/


 29 

 868 
 869 
Fig. 3: More similar seizures tend to occur closer together in time in most patients. A) 870 

MDS projections of all of patient 931’s seizure pathways, numbered from first to last seizure. The 871 

pathway of each seizure is shown in purple, with earlier time windows in lighter purple. The time 872 

windows and pathways of the remaining seizures are shown in grey for comparison. Below the 873 

pathways, the time of each seizure (red circles) relative to the first seizure is shown. Note that 874 

seizures with more similar pathways tend to occur close together in time. B) From left to right: 875 

patient 931’s seizure dissimilarity matrix, temporal distance matrix, and comparison of seizure 876 

dissimilarities and temporal distances. The temporal distance matrix quantifies the amount of time 877 

between each pair of seizures, in days. Plotting the seizure dissimilarity vs. the corresponding 878 

temporal distance of each pair of seizures (scatter plot, second from right) reveals a positive 879 

Spearman’s correlation r between the two features. The significance of this correlation can be 880 

tested using permutation testing (distribution, far right). The distribution of the 10,000 correlations 881 

computed from permuted matrices is shown in grey, and the observed correlation is marked with 882 

the vertical blue line. The p-value of the association was equal to the proportion of times a 883 

correlation value greater than or equal to the observed correlation was seen in the distribution. C) 884 

Dot plot showing the range of correlations between seizure dissimilarities and temporal distances 885 

across all subjects. Each marker represents a patient (blue = significant correlation, grey = not 886 

significant after false discovery rate correction). D) Median seizure dissimilarities of pairs of 887 

seizures occurring within different time intervals (i.e., temporal distances) for patient with (left, 888 
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blue) and without (right, grey) a significant correlation between seizure dissimilarities and temporal 889 

distances. Each point corresponds to the median dissimilarity of pairs of seizures occurring within 890 

the given time interval in a single patient. Note that some time intervals have fewer observations 891 

since some temporal distances were not observed in some subjects. The boxplots indicate the 892 

minimum, lower quartile, median, upper quartile, and maximum of the distribution of median 893 

seizure dissimilarities, across the subset of subjects, for that time interval.  894 
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 897 
 898 
Fig. 4: Temporal patterns of changes in seizure dynamics. A) For patient 931, the correlation 899 

between seizure dissimilarities and temporal distances was computed for seizure pairs within 900 

different timescales, producing a heatmap of the “temporal patterns” of seizure dynamics 901 

(bottom). The seizure pairs used to compute the correlation for three example timescales (T = 1 902 

day, T = 3 days, and T = 5 days) are shown in the top scatter plots (reproduced from Fig. 3B). 903 

Purple shading indicates the timescale used for each computation (e.g., seizure pairs occurring 904 

within 0 – 1 days for T = 1 day), black points correspond seizure pairs used to compute the 905 

correlation for that timescale, and grey points correspond to seizure pairs occurring further apart 906 

than the given timescale. The correlation between seizure dissimilarities and temporal distances at 907 

the given timescale is shown above each scatter plot. At T = 5 days, all seizure pairs are included 908 

in the computation, producing the same temporal correlation as in Fig. 3B. If there were less than 909 

seven seizure pairs occurring within a given timescale, or if no new seizure pairs were added when 910 

the timescale was extended, the correlation for that timescale was excluded from the heatmap and 911 

downstream analysis (regions with grey dots). B) Seizure dissimilarities were modelled based on 912 

linear (left), circadian (middle) or a combination of linear + circadian (right) changes in seizure 913 

dynamics. The timepoints of patient 931’s seizures are shown in red on each function. From each 914 

model, the temporal pattern of seizure changes was then derived (heatmaps, bottom row), 915 

revealing the expected temporal associations between seizures on different timescales given the 916 

simulated changes in dynamics. The temporal pattern also depended on the amount of noise 917 
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included in the simulation; for clarity and brevity, different levels of a single noise realisation are 918 

shown, with the amount of noise increasing from the top to bottom row of each set of heatmaps. 919 

C) Temporal patterns of seizure dynamics in each patient, sorted by the type of model that most 920 

closely matched the observed temporal patterns. The heatmap on the right (grey) shows the 921 

percentage of noisy simulations of the selected parameter set that closely matched the observed 922 

dynamics. Patient 931 is indicated with a red arrow.  923 
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