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Abstract  1 

Visual speech is an integral part of communication.  Yet it remains unclear whether semantic 2 

information carried by movements of the lips or tongue is represented in the same brain regions 3 

that mediate acoustic speech representations.  Behaviourally, our ability to understand 4 

acoustic speech seems independent from that to understand visual speech, but neuroimaging 5 

studies suggest that acoustic and visual speech representations largely overlap. To resolve 6 

this discrepancy, and to understand whether acoustic and lip-reading speech comprehension 7 

are mediated by the same cerebral representations, we systematically probed where the brain 8 

represents acoustically and visually conveyed word identities in a human MEG study.  We 9 

designed a single-trial classification paradigm to dissociate where cerebral representations 10 

merely reflect the sensory stimulus and where they are predictive of the participant’s percept. 11 

In general, those brain regions allowing for the highest word classification were distinct from 12 

those in which cerebral representations were predictive of participant’s percept.  Across the 13 

brain, word representations were largely modality-specific and auditory and visual 14 

comprehension were mediated by distinct left-lateralised ventral and dorsal fronto-temporal 15 

regions, respectively.  Only within the inferior frontal gyrus and the anterior temporal lobe did 16 

auditory and visual representations converge. These results provide a neural explanation for 17 

why acoustic speech comprehension is a poor predictor of lip-reading skills and suggests that 18 

those cerebral speech representations that encode word identity may be more modality-19 

specific than often upheld.  20 

 21 

Words abstract: 226. 22 

 23 

 24 

 25 

Keywords: visual speech, speech decoding, MEG, lip reading, speech reading, auditory 26 
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Introduction 28 

Acoustic and visual speech signals are both elemental for everyday communication.  While 29 

acoustic speech consists of temporal and spectral modulations of sound pressure, visual 30 

speech consists of movements of the mouth, head, and hands.  Movements of the lips, teeth 31 

and tongue in particular provide both redundant and complementary information to acoustic 32 

cues (Hall, Fussell, & Summerfield, 2005; Peelle & Sommers, 2015; Summerfield, 1992), and 33 

can help to enhance speech intelligibility in noisy environments or in a second language 34 

(Navarra & Soto-Faraco, 2007; Sumby & Pollack, 1954; Yi, Wong, & Eizenman, 2013).  While 35 

a plethora of studies have investigated the cerebral mechanisms underlying speech in general, 36 

we still have a limited understanding of the networks specifically mediating visual speech 37 

perception, i.e. lip-reading (Bernstein & Liebenthal, 2014; Capek et al., 2008; Crosse, ElShafei, 38 

Foxe, & Lalor, 2015).  In particular, it remains unclear whether visual speech signals are largely 39 

represented in specific and dedicated regions, or whether these visual signals are encoded by 40 

the same networks that mediate auditory speech perception. 41 

Behaviourally, our ability to understand acoustic speech seems to be independent from our 42 

ability to understand visual speech.  In the typical adult population, performance in 43 

auditory/verbal and visual speech comprehension tasks are uncorrelated (Conrad, 1977; 44 

Jeffers & Barley, 1980; Mohammed, Campbell, Macsweeney, Barry, & Coleman, 2006; 45 

Summerfield, 1991, 1992).   In contrast to this behavioural dissociation, neuroimaging and 46 

neuroanatomical studies have suggested the convergence of acoustic and visual speech 47 

information in some brain regions (Calvert et al., 1997; Campbell, 2007; Ralph, Jefferies, 48 

Patterson, & Rogers, 2017; Simanova, Hagoort, Oostenveld, & Van Gerven, 2012).  Prevalent 49 

models postulate a fronto-temporal network mediating acoustic speech representations, 50 

comprising a word-meaning pathway from auditory cortex to inferior frontal areas, and an 51 

articulatory pathway that extends from auditory to motor regions (Giordano et al., 2017; Giraud 52 

& Poeppel, 2012; Gross et al., 2013; Hickok, 2012; Huth, de Heer, Griffiths, Theunissen, & 53 

Gallant, 2016).  Specifically, a number of anterior-temporal and frontal regions have been 54 

implied in implementing a-modal semantic representations (MacSweeney, Capek, Campbell, 55 

& Woll, 2008; Ralph, et al., 2017; Simanova, et al., 2012) and in enhancing speech perception 56 

in adverse environments, based on the combination of acoustic and visual signals (Giordano, 57 

et al., 2017).  58 

Yet, when it comes to representing visual speech signals themselves, our understanding 59 

becomes much less clear.  That is, we know relatively little about which brain regions mediate 60 

speech reading (or lip reading; terms used interchangeably).  Previous studies have shown 61 

that visual speech activates ventral and dorsal visual pathways and bilateral fronto-temporal 62 

circuits (Bernstein & Liebenthal, 2014; Calvert, et al., 1997; Campbell, 2007; Capek, et al., 63 

2008). Some studies have explicitly suggested that auditory regions are also involved in 64 

speech reading (Calvert, et al., 1997; Calvert & Campbell, 2003; Capek, et al., 2008; Lee & 65 

Noppeney, 2011; Pekkola et al., 2005).  While these findings can be seen to suggest that 66 

largely the same brain regions represent acoustic and visual speech, neuroimaging studies 67 

have left the nature and the functional specificity of these visual speech representations 68 

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 10, 2019. ; https://doi.org/10.1101/661405doi: bioRxiv preprint 

https://doi.org/10.1101/661405
http://creativecommons.org/licenses/by-nc/4.0/


4 of 24 

 

unclear (Bernstein & Liebenthal, 2014; Crosse, et al., 2015; Ozker, Yoshor, & Beauchamp, 69 

2018).  This is in part because most studies focused on mapping activations rather than 70 

specific semantic or lexical speech content.  Indeed, alternative accounts have been proposed, 71 

which hold that visual and auditory speech representations are largely distinct (Bernstein & 72 

Liebenthal, 2014; for spoken vs sign language, Evans, Price, Diedrichsen, Gutierrez-Sigut, & 73 

MacSweeney, 2019). 74 

When investigating how speech is encoded in the brain, it is important to distinguish purely 75 

stimulus driven neural activity (e.g. classic ‘activation’) from activity specifically representing a 76 

stimulus while also mediating the participant’s percept, or behavioural choice, on an individual 77 

trial (Bouton et al., 2018; Grootswagers, Cichy, & Carlson, 2018; Keitel, Gross, & Kayser, 2018; 78 

Panzeri, Harvey, Piasini, Latham, & Fellin, 2017; Tsunada, Liu, Gold, & Cohen, 2016).  Indeed, 79 

recent studies have suggested that those cerebral representations representing the physical 80 

speech may be distinct from those reflecting the actually perceived meaning. For example, 81 

syllable identity can be decoded from temporal, occipital and frontal areas, but only focal 82 

activity in the IFG and pSTG mediates perceptual categorisation (Bouton, et al., 2018).  83 

Similarly, the encoding of the acoustic speech envelope is seen widespread in the brain, but 84 

correct word comprehension correlates only with focal activity in temporal and motor regions 85 

(Keitel, et al., 2018).  In general, activity in lower sensory pathways seems to correlate more 86 

with the actual physical stimulus, while activity in specific higher-tier regions correlates with the 87 

subjective percept (Crochet, Lee, & Petersen, 2018; Romo, Lemus, & de Lafuente, 2012). 88 

However, this differentiation poses a challenge for data analysis, and studies on sensory 89 

perception are only beginning to address this systematically (Grootswagers, et al., 2018; 90 

Panzeri, et al., 2017; Ritchie, Tovar, & Carlson, 2015). 91 

We here capitalise on this functional differentiation of cerebral speech representations linked 92 

to the physical stimulus or the actual percept, to identify comprehension-relevant encoding of 93 

auditory and visual word identity in the human brain.  That is, we ask where and to what degree 94 

comprehension-relevant representations of auditory and visual speech overlap.  To this end, 95 

we exploit a paradigm in which participants performed a comprehension task based on 96 

individual sentences that were presented either acoustically or visually (lip reading), while brain 97 

activity was recorded using MEG  (Keitel, et al., 2018).  We then extract single trial word 98 

representations and, apply multivariate classification analysis geared to quantify i) where brain 99 

activity correctly encodes the actual stimulus, and ii) where the strength of the cerebral 100 

representation of word identity is predictive of the participant’s comprehension.   101 
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Results 102 

Behavioural performance 103 

On each trial participants viewed or listened to visual or acoustically presented sentences 104 

(presented in blocks), and performed a comprehension task (4-alternative forced choice) on a 105 

specific target word.  Acoustic sentences were presented mixed with background noise, to 106 

equalise performance between visual and auditory trials. On average, participants perceived 107 

the correct target word in approximately 70% of trials across auditory and visual conditions 108 

(chance level was 25%). The behavioural performance did not differ significantly between 109 

these conditions (Mauditory = 69.7%, SD = 7.1%, Mvisual = 71.7%, SD = 20.0%; t(19) = -0.42, 110 

p = 0.68; Figure 1), demonstrating that the addition of acoustic background noise indeed 111 

equalised performance between conditions.  Still, the between-subject variability in 112 

performance was larger in the visual condition (between 31.7% and 98.3%), in line with the 113 

notion that lip reading abilities vary extremely across individuals (Bernstein & Liebenthal, 2014; 114 

Summerfield, 1992; Tye-Murray, Hale, Spehar, Myerson, & Sommers, 2014).  An F-test 115 

confirmed that the variance between the auditory and visual condition differed significantly 116 

(F(17,17) = 0.13, p < .00001).  Due to the near ceiling performance (above 95% correct), the 117 

data from three participants in the visual condition had to be excluded from the neuro-118 

behavioural analysis. Participants also performed the task with auditory and visual stimuli 119 

presented at the same time (audiovisual condition), but as performance in this condition was 120 

near ceiling, we present the corresponding data only in the supplementary material (Suppl. 121 

Figure 1). 122 

 123 

Figure 1.  Trial structure and behavioural performance.  A)  Trial structure was identical in the auditory and visual 124 
conditions.  Participants listened to sentences while a fixation dot was presented (auditory condition) or watched 125 
videos of a speaker saying sentences (visual condition).  The face of the speaker is obscured for this figure only, it 126 
was clear to participants.  After each trial, a prompt on the screen asked which adjective (or number) appeared in 127 
the sentence and participants chose one of four alternatives by pressing a corresponding button.  B)  Dots represent 128 
individual participants, boxes denote median and interquartile ranges, whiskers denote minima and maxima (no 129 
outliers present) for all 20 participants.  MEG data of two participants (shaded in a lighter colour) were not included 130 
in neural analyses due to excessive artifacts.  Subjects exceeding a performance of 95% correct (grey line) were 131 
excluded from the neuro-behavioural analysis (for the visual condition, three participants had a performance above 132 
95% correct).  C)   Example sentence with target adjective marked in blue.  133 
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Decoding word identity from MEG source activity  134 

Using multivariate classification, we quantified how well the single-trial word identity could be 135 

correctly predicted from source-localised brain activity.  Classification was computed in source 136 

space at the single-subject level and converted to z-scores for group-level analysis.  137 

Importantly, for each trial we computed classification performance within the subset of the four 138 

presented alternative words in each trial, based on which participants performed their 139 

behavioural judgement. We did this to be able to directly link neural representations of word 140 

identity with perception in a later analysis. We first quantified how well brain activity encoded 141 

the word identity regardless of behaviour (‘stimulus-classification’; c.f. Materials and 142 

Methods). The group-level analysis (t-test, two-sided, FDR-corrected) revealed significant 143 

stimulus classification performance in both conditions within a widespread network of temporal, 144 

occipital and frontal regions (Figure 2).    145 

Auditory speech was represented bilaterally in fronto-temporal areas, extending into intra-146 

parietal regions within the left hemisphere (Figure 2A), with classification performance ranging 147 

from 25.3% to 29.2% (with a chance level of 25%).  Visual speech was represented bilaterally 148 

in occipital areas, as well as in left parietal and frontal areas (Figure 2B), with classification 149 

performance between 25.1% and 34.3%.  Interestingly, the regions representing word identity 150 

in visual and auditory conditions overlapped only little (mostly in left intraparietal regions; 151 

Figure 2C; overlap in green).  This suggests that largely distinct regions represent visual and 152 

acoustic speech, in line with the notion that auditory and visual speech signals are reflected 153 

most strongly within the respective sensory cortices (Hauswald, Keitel, Roesch, & Weisz, 154 

2019; Keitel, et al., 2018).  Results for the audiovisual condition essentially mirror these 155 

unimodal findings and exhibit significant stimulus classification in bilateral temporal and 156 

occipital regions (Suppl. Figure 1B).  157 
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 158 

Figure 2. Word classification performance regardless of behavioural performance (‘stimulus classification’).  159 
Surface projections show areas with significant classification performance at the group level (surface projection of 160 
the t-statistics, p < 0.05, two-sided, FDR corrected).  Results show strongest classification performance in temporal 161 
regions for the auditory condition (A) and occipital areas for the visual condition (B).  Panel (C) overlays the 162 
significant effects from both conditions, with the overlaps shown in green. 163 

Cerebral speech representations that are predictive of comprehension 164 

The above analysis leaves it unclear which of the neural representations are perceptually 165 

relevant and shape single-trial word comprehension.  To directly address this, we computed 166 

an index of how strongly the evidence for a specific word identity in the neural single-trial word 167 

representations is predictive of the participant’s response.  That is, we regressed the evidence 168 

in the cerebral classifier for word identity against the participants’ behaviour (see Materials 169 

and Methods). The resulting neuro-behavioural weights (regression betas) were converted 170 

into t-values for group-level analysis.  The results in Figure 3 (two-sided cluster-based 171 

permutation statistics, corrected at p = 0.05 FWE) reveal largely distinct regions in which 172 

neural representations of word identity are predictive of behaviour.  In the auditory condition, 173 

we found a large left-lateralised cluster covering ventral portions of occipital, temporal, and 174 

inferior frontal areas (Tsum = 868.32, p < .001), and a cluster in the right inferior parietal cortex 175 

(Tsum = 157.46, p < .001; Figure 3A).  In the visual condition, we found three dorsal clusters in 176 

the left superior frontal gyrus (Tsum = 201.54, p < .001), the inferior frontal gyrus (Tsum = 379.18, 177 

p < .001), and premotor cortex (Tsum = 23.55, p < .001), and one cluster in the right 178 

supramarginal cortex (Tsum = 167.93, p < .001; Figure 3B).  MNI coordinates of local maxima 179 

and the corresponding beta and t-values are given in Table 1.  The corresponding results for 180 

the audiovisual condition are presented in Suppl. Figure 1C.  181 
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 182 

Figure 3.  Cortical areas in which neural word representations predict participants’ percept.  Coloured areas denote 183 
significant group-level effects (surface projection of the cluster-based permutation statistics, corrected at p<0.05 184 
FWE). In the auditory condition (A), we found a large left-lateralised ventral cluster (a global peak in ITG and three 185 
local maxima marked with dots), as well as a smaller cluster in inferior parietal cortex (peak marked with dot). In the 186 
visual condition (B), we found three clusters in left frontal and somato-motor cortex, as well as one cluster in right 187 
supramarginal cortex (all peaks are marked with dots).  Panel (C) overlays the significant effects from both 188 
conditions, with the overlap shown in green. The overlap comprises regions in the left inferior frontal gyrus and 189 
temporal pole.  D)  Neuro-behavioural effect (at local and global maxima, and maximum of overlap). Regions that 190 
predict auditory word perception do not predict visual word perception, and vice versa.  Asterisks indicate results of 191 
statistical t-test against zero (**: p < .01, *: p < .05, n.s.: p > .05; all p-values FDR corrected). 192 
IFG – inferior frontal gyrus; MTG – middle temporal gyrus; OCC – occipital gyrus; IPG – inferior parietal gyrus; ITG 193 
– inferior temporal gyrus; SFG – superior frontal gyrus; MC – motor cortex; SMG – supramarginal gyrus. 194 

Table 1. Global and local maxima of neuro-behavioural analysis in both conditions.  Labels are taken from the AAL 195 
atlas (Tzourio-Mazoyer et al., 2002). For each peak, MNI coordinates, regression beta (SEM) and corresponding t-196 
value are presented.  Abbreviations as used in Figure 3 are given in parentheses.  Global maxima noted in italics. 197 
For the peak within the significant overlap of auditory and visual conditions, averaged (across both conditions) beta 198 
and t-values are given. 199 

Atlas label MNI coordinates Beta (SEM) t-value 

Auditory    

Frontal Inf Orb L (IFG) -33   30  -14 1.38 (0.39) 3.53 

Temporal Mid L (MTG) -64  -26  -14 1.82 (0.57) 3.12 

Occipital Mid L, Occipital Inf L,  

Temporal Mid L (OCC) 

-40  -67    -2 1.41 (0.45) 3.16 

Parietal Inf R, Angular R (IPG) 51  -60   40 1.82 (0.47) 3.92 

Temporal Inf L (ITG) -35  -25  -29 1.52 (0.34) 4.47 

Visual    

Frontal Sup Medial L (SFG) -9   53   10 2.63 (0.76) 3.69 

Frontal Inf Tri L (IFG) -56   23    -1 1.68 (0.41) 4.71 

Postcentral L (MC) -62   - 8   35 1.44 (0.54) 2.80 

Rolandic Oper R, Heschl R (SMG) 43  -26   21 1.41 (0.33) 4.18 

Overlap    

Frontal Inf Orb L, Temporal Pole Sup L -46   18  -15 1.44 (0.34) 2.99 
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Collectively, these results highlight that in the left hemisphere, perception-relevant 200 

representations of acoustic speech reside mainly in ventral regions, whereas those for visual 201 

speech are found mostly in dorsal frontal areas (Figure 3C).  In the right hemisphere, auditory 202 

speech representations in parietal regions and visual speech representations in auditory 203 

(supramarginal) regions are also predictive of perception.  In large, these auditory and visual 204 

representations seem distinct, but overlap within higher-order language areas, such as the left 205 

inferior frontal and anterior superior temporal gyri. 206 

Given that individual effects where sometimes only significant in one hemisphere, we 207 

performed a direct statistical test on whether these effects are indeed lateralised (c.f. Materials 208 

and Methods). We only found evidence for a statistically significant lateralisation for the large 209 

ventral cluster in the auditory condition (t(17) = 2.88, pFDR = .02, corresponding to local maxima 210 

in IFG, MTG, OCC and ITG). In the other clusters, corresponding betas in the contralateral 211 

hemisphere were systematically smaller, but did not differ significantly from original effects (all 212 

pFDR ≥ .15). 213 

To substantiate that perception-relevant auditory and visual representations are largely 214 

distinct, we performed two control analyses. First, we tested whether the representations 215 

identified as relevant for visual (auditory) speech are also predictive of perception in the 216 

respective other condition. That is, we directly compared the perceptual-relevance for visual 217 

and auditory speech representations for those significant clusters shown in Figure 3A,B. The 218 

result, Figure 3D, shows that each region predicts perception only within one modality, with 219 

the exception of the overlap in the left IFG.  220 

Second, we implemented a cross-decoding analysis, in which we directly quantified whether 221 

the activity patterns of local speech representations are the same across modalities.  At the 222 

whole-brain level, we found no evidence for significant cross-classification (at p = 0.05, FDR 223 

corrected, Figure 4A), although statistically significant cross-classification is in principle 224 

possible from the data, as shown by the audiovisual condition (Suppl. Figure 1D).    225 
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 226 

Figure 4. Control analyses.  A)  Cross-classification between auditory and visual conditions.  Areas where word 227 
identity in the auditory trial can be predicted based on the word representations obtained from the visual condition 228 
(upper panel), and vice versa (lower panel).  Classification performance did not survive correction for multiple 229 
comparison at an alpha-level of 5%, supporting the result that auditory and visual word identities are largely 230 
represented in different networks.  Colour scale is adapted from Figure 2, to allow a comparison of results.  B)  231 
Correlation between visual word classification performance and behavioural lip reading performance. Surface 232 
projection of resulting rho-values. None of the results survived correction for multiple comparisons at an alpha-level 233 
of 5%, supporting the finding that stimulus classification alone does not predict behaviour. 234 

Strong sensory representations do not necessarily predict behaviour 235 

The above results suggest that the brain regions in which sensory representations shape 236 

speech comprehension are distinct from those allowing the best prediction of the actual 237 

stimulus.  In other words, the accuracy by which local activity reflects the physical stimulus is 238 

not predictive of its’ perceptual impact.  To test this formally, we performed within-participant 239 

regression analyses between the overall stimulus classification performance and the 240 

perceptual weight of each local representation across all grid points.  Group-level statistics of 241 

the participant-specific beta values provided no support for a consistent relationship between 242 

these (auditory condition: b = 1.44 ± 1.62 [M ± SEM], t(17) = 0.90, pFDR = .58; visual condition: 243 

b = 1.59 ± 2.57 [M ± SEM], t(14) = 0.56, pFDR = .58).   244 

Still, this leaves it unclear whether variations in the strength of neural speech representations 245 

can explain variations in the behavioural performance differences between participants.  Such 246 

an analysis was feasible only for the visual condition, as participants’ performance here reflects 247 

their individual lipreading skills, whereas performance in the auditory condition was 248 

manipulated to yield around 70% correct responses.  We correlated the stimulus classification 249 

performance for all grid points with participants’ visual performance.  Stimulus classification 250 

performance was not significantly correlated with lip reading performance across participants 251 

(all pFDR > .94, Figure 4B). 252 

  253 
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Discussion 254 

Acoustic and visual speech are represented in largely distinct brain regions 255 

The principal finding of this study is that the cerebral representations of unimodal auditory and 256 

visual speech signals are spatially dissociated and each dominates within distinct brain 257 

regions.  This is the case for overall strength of word representations, which are mostly related 258 

to the physical stimuli themselves, and it is also the case for those word representations that 259 

are directly predictive of the individual’s single-trial percept.  The inability to cross-classify 260 

auditory and visual speech from local brain activity further supports the conclusion that 261 

acoustic and visual speech representations are largely distinct.  These results provide an 262 

explanation for the generally observed finding that auditory or verbal skills and visual lip 263 

reading are uncorrelated in normal-hearing adults (Jeffers & Barley, 1980; Mohammed, et al., 264 

2006; Summerfield, 1992).  Indeed, it has been suggested that individual differences in 265 

lipreading represent something other than normal variation in speech perceptual abilities 266 

(Summerfield, 1992). For example, lip reading skills are unrelated to reading abilities in the 267 

typical adult population (Arnold & Köpsel, 1996; Mohammed, et al., 2006), although a 268 

relationship is sometimes found in deaf or dyslexic children (Arnold & Köpsel, 1996; de Gelder 269 

& Vroomen, 1998; Kyle, Campbell, & MacSweeney, 2016). The only language ability that can 270 

accurately predict speech reading skills in the typical population seems to be guessing 271 

strategies (Lyxell & Ronnberg, 1989; Van Tasell & Hawkins, 1981).   272 

We found that perceptually relevant representations of acoustic and visual speech converge 273 

only within small regions in the left temporal pole and inferior frontal cortex.  These two regions 274 

coincide with the higher-order part of the ventral speech pathway.  Thus, our results confirm 275 

that these regions represent the a-modal and perceived meaning of words, based on a direct 276 

assessment of the cerebral speech representations predictive of single trial comprehension 277 

(Ralph, et al., 2017; Simanova, et al., 2012).   278 

Previous imaging studies suggested that silent lipreading engages similar regions of the 279 

auditory cortex as acoustic speech (Calvert, et al., 1997; Calvert & Campbell, 2003; Capek, et 280 

al., 2008; MacSweeney et al., 2000; Paulesu et al., 2003; Pekkola, et al., 2005), implying a 281 

direct route for visual speech into the auditory pathways and an overlap of acoustic and visual 282 

speech representations in these regions (Bernstein & Liebenthal, 2014).  Studies comparing 283 

semantic representations of categories from different modalities (e.g. pictures and words) also 284 

found large networks with modality-independent activations (Fairhall & Caramazza, 2013; 285 

Shinkareva, Malave, Mason, Mitchell, & Just, 2011; Simanova, et al., 2012).  Yet, most studies 286 

have focused on mapping activation strength rather than the word identity of cerebral speech 287 

representations. Hence, it could be that visual speech may activate a large language network 288 

in an unspecific manner, without engaging specific semantic or lexical representations, maybe 289 

as a result of attentional engagement or feed-back (Balk et al., 2013; Ozker, et al., 2018).  290 

Support for this interpretation comes from lip reading studies showing that auditory cortical 291 

areas are equally activated by visual words and pseudo-words (Calvert, et al., 1997; Paulesu, 292 

et al., 2003).  While our results suggest that visual speech is largely represented in occipital 293 

and frontal regions, we found that the cerebral encoding of visual speech in right auditory 294 
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regions (supramarginal and superior temporal gyrus) is also predictive of participants’ percept.  295 

We therefore support the notion that auditory temporal regions can also contribute to lip-296 

reading. Importantly though, these regions differ from the ones that contribute to auditory 297 

speech comprehension.  298 

Another specific region mediating lip-reading comprehension was the IFG, which we have 299 

previously also shown to participate in the visual facilitation of auditory speech-in-noise 300 

perception (Giordano, et al., 2017).  Behavioural studies have shown that lip-reading drives 301 

the improvement of speech perception in noise (MacLeod & Summerfield, 1987), hence 302 

suggesting that the representations of visual speech in the IFG revealed here are indeed 303 

central for hearing in noisy environments, as suggested previously (Giordano, et al., 2017)..  304 

Interestingly, these regions resemble the left-lateralised dorsal pathway activated in deaf 305 

signers when seeing signed verbs (Emmorey, McCullough, Mehta, Ponto, & Grabowski, 2011).  306 

Still, our study cannot directly address whether these auditory and visual speech 307 

representations are the same as those that mediate the multisensory facilitation of speech 308 

comprehension in adverse environments (Bishop & Miller, 2009; Giordano, et al., 2017).  The 309 

analysis of the audiovisual condition suggested that stimulus-related representations can be 310 

found in auditory and visual sensory areas, similar to unimodal conditions.  The preliminary 311 

results from a small sample of participants suggest that right precentral and inferior frontal 312 

areas drive speech perception in multisensory conditions, in agreement with our previous work 313 

(Giordano, et al., 2017). 314 

Sub-optimally encoding brain areas contribute critically to behaviour 315 

To understand which cerebral representations of sensory information guide behaviour, it is 316 

important to dissociate those that mainly correlate with the indicated percept from those that 317 

encode sensory information and guide behavioural choice (Grootswagers, et al., 2018; 318 

Panzeri, et al., 2017; Pica et al., 2017).  Single neuron studies have proposed that only those 319 

neurons encoding the specific stimulus optimally are readout and used to drive behaviour by 320 

downstream areas (Britten, Newsome, Shadlen, Celebrini, & Movshon, 1996; Pitkow, Liu, 321 

Angelaki, DeAngelis, & Pouget, 2015; Purushothaman & Bradley, 2005).  However, other 322 

studies suggest that “plain” sensory information, and sensory information predictive of choice 323 

can be decoupled across neurons (Runyan, Piasini, Panzeri, & Harvey, 2017). On a larger 324 

scale, the proportions of neurons correlating with the physical stimulus and those correlating 325 

with the subjective percept are also de-correlated, with perceptually-relevant neurons 326 

dominating within high-level sensory and frontal regions (Leopold & Logothetis, 1999; Romo, 327 

et al., 2012). In general, such a dissociation of sensory and choice-related neural 328 

representations necessarily emerges in any paradigm where performance is below ceiling, as 329 

those regions most predictive of the participants’ choice will not be those best representing the 330 

stimulus (de-Wit, Alexander, Ekroll, & Wagemans, 2016; Panzeri, et al., 2017).  Theoretically, 331 

these different types of neural representations can be dissected by considering the intersection 332 

of brain activity predictive of stimulus and choice (Panzeri, et al., 2017).  In practice, however, 333 

it remains a challenge to elucidate these distinct representations, as stimulus and response 334 

may correlate for multiple reasons, including confounding factors (Panzeri, et al., 2017).  335 

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 10, 2019. ; https://doi.org/10.1101/661405doi: bioRxiv preprint 

https://doi.org/10.1101/661405
http://creativecommons.org/licenses/by-nc/4.0/


13 of 24 

 

We here capitalised on the use of a stimulus-classifier to first pinpoint brain activity carrying 336 

relevant word-level information and to then test where the quality of the single trial word 337 

representation is predictive of participants’ comprehension (Cichy, Kriegeskorte, Jozwik, van 338 

den Bosch, & Charest, 2017; Grootswagers, et al., 2018; Ritchie, et al., 2015).  This revealed 339 

that brain regions allowing for a sub-optimal readout of the actual stimulus are predictive of the 340 

perceptual outcome, whereas those areas allowing the best read-out not necessarily predict 341 

behaviour, a dissociation emerging in several recent studies on the neural basis underlying 342 

perception (Bouton, et al., 2018; Grootswagers, et al., 2018; Hasson, Skipper, Nusbaum, & 343 

Small, 2007; Keitel, et al., 2018).  344 

One factor that may shape the behavioural relevance of local sensory representations is the 345 

specific task imposed (Hickok & Poeppel, 2007). In studies showing the perceptual relevance 346 

of optimally encoding neurons, the tasks were mostly dependent on low-level features (Pitkow, 347 

et al., 2015; Tsunada, et al., 2016), while studies pointing to a behavioural relevance of high 348 

level regions were relying on high-level information such as semantics  or visual object 349 

categories (Grootswagers, et al., 2018; Keitel, et al., 2018).  One prediction from our results is 350 

therefore that if the nature of the task was changed from speech comprehension to an acoustic 351 

task, the perceptual relevance of word representations would shift from left anterior regions to 352 

strongly word encoding regions in the temporal and supramarginal regions. Similarly, if the 353 

task would concern detecting basic kinematic features of the visual lip trajectory, activity within 354 

early visual cortices tracking the stimulus dynamics should be more predictive of behavioural 355 

performance (Di Russo et al., 2007; Keitel et al., 2019; Keitel, Thut, & Gross, 2017). 356 

Conclusion 357 

Overall, our results suggest that cerebral representations of acoustic and visual speech might 358 

be more modality-specific than often assumed, and provide a neural explanation for why 359 

acoustic speech comprehension is a poor predictor of lip-reading skills. Our results also 360 

suggest that those cerebral speech representations that directly drive comprehension are 361 

largely distinct from those best representing the physical stimulus, strengthening the notion 362 

that neuroimaging studies need to more specifically quantify the cerebral mechanisms driving 363 

single trial behaviour.  364 

  365 
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Materials & Methods 366 

Part of the dataset analysed in the present study has been used in a previous publication 367 

(Keitel, et al., 2018). The data analysis performed here is entirely different from the previous 368 

work and includes unpublished data.  369 

Participants and data acquisition 370 

Twenty healthy, native volunteers participated in this study (9 female, age 23.6 ± 5.8 y [M ± 371 

SD]).  The sample size was set based on previous recommendations (Bieniek, Bennett, 372 

Sekuler, & Rousselet, 2016; Poldrack et al., 2017; Simmons, Nelson, & Simonsohn, 2011).   373 

MEG data of two participants had to be excluded due to excessive artefacts.  Analysis of MEG 374 

data therefore included 18 participants (7 female), whereas the analysis of behavioural data 375 

included 20 participants.  All participants were right-handed (Edinburgh Handedness Inventory; 376 

Oldfield, 1971), had normal hearing (Quick Hearing Check; Koike, Hurst, & Wetmore, 1994), 377 

and normal or corrected-to-normal vision.  Participants had no self-reported history of 378 

neurological or language disorders.  All participants provided written informed consent prior to 379 

testing and received monetary compensation of £10/h.  The experiment was approved by the 380 

ethics committee of the College of Science and Engineering, University of Glasgow (approval 381 

number 300140078), and conducted in compliance with the Declaration of Helsinki.   382 

MEG was recorded with a 248-magnetometers, whole-head MEG system (MAGNES 3600 383 

WH, 4-D Neuroimaging) at a sampling rate of 1 KHz.  Head positions were measured at the 384 

beginning and end of each run, using five coils placed on the participants’ head.  Coil positions 385 

were co-digitised with the head-shape (FASTRAK®, Polhemus Inc., VT, USA).  Participants 386 

sat upright and fixated a fixation point projected centrally on a screen. Visual stimuli were 387 

displayed with a DLP projector at 25 frames/second, a resolution of 1280 × 720 pixels, and 388 

covered a visual field of 25 × 19 degrees.  Sounds were transmitted binaurally through plastic 389 

earpieces and 370-cm long plastic tubes connected to a sound pressure transducer and were 390 

presented stereophonically at a sampling rate of 22,050 Hz.  Stimulus presentation was 391 

controlled with Psychophysics toolbox (Brainard, 1997) for MATLAB (The MathWorks, Inc.) on 392 

a Linux PC. 393 

Stimuli 394 

Data of two conditions across two experimental sessions were used for the current analysis: 395 

an auditory only (A) and visual only (V) condition.  Participants also completed a third condition 396 

in which the same stimulus material was presented audiovisually.  This condition could not be 397 

used for the present analysis as participants performed near ceiling level in the behavioural 398 

task (correct trials: M = 96.5%, SD = 3.4%; see suppl. Figure 1A for results).  The stimulus 399 

material consisted of two equivalent sets of 90 sentences (180 in total) that were spoken by a 400 

trained, male, native British actor.  Sentences were recorded with a high-performance 401 

camcorder (Sony PMW-EX1) and external microphone.  The speaker was instructed to speak 402 

clearly and naturally.  Each sentence had the same linguistic structure (Keitel, et al., 2018).  403 

An example is: “Did you notice (filler phase), on Sunday night (time phrase) Graham (name) 404 
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offered (verb) ten (number) fantastic (adjective) books (noun)”.  In total, 18 possible names, 405 

verbs, numbers, adjectives, and nouns were each repeated ten times.  Sentence elements 406 

were re-combined within a set of 90 sentences.  As a result, sentences made sense, but no 407 

element could be semantically predicted from the previous material.  To measure 408 

comprehension performance, a target word was selected that was either the adjective in one 409 

set of sentences (‘fantastic’ in the above example) or a three-syllable number in the other set 410 

(for example, ‘thirty-two’).  The duration of sentences ranged from 4.2 s to 6.5 s (5.4 ± 0.4 s [M 411 

± SD]).  Noise/video onset and offset was approximately 1 second before and after the speech, 412 

resulting in stimulus lengths of 6.4 s to 8.2 s (Figure 1).   413 

The acoustic speech was embedded in noise to match performance between auditory and 414 

visual conditions.  The noise consisted of ecologically valid, environmental sounds (traffic, car 415 

horns, talking), combined into a uniform mixture of 50 different background noises.  The 416 

individual noise level for each participant was determined with a one-up-three-down staircase 417 

procedure that was designed to yield a performance of 70% correct.  For the staircase 418 

procedure, only the 18 possible target words (i.e. adjectives and numbers) were used instead 419 

of whole sentences.  Participants were presented with a single target word embedded in noise 420 

and had to choose between two alternatives.  The average signal-to-noise ratio across 421 

participants was approximately -6 dB. 422 

Experimental Design 423 

The 180 sentences were presented in two conditions (A, V), each consisting of four blocks with 424 

45 sentences each.  In each block, participants either reported the comprehended adjective or 425 

number, resulting in two ‘adjective blocks’ and two ‘number blocks’.  The order of sentences 426 

and blocks was randomised for each participant.  The first trial of each block was a ‘dummy’ 427 

trial that was discarded for subsequent analysis; this trial was repeated at the end of the block.   428 

During the presentation of the sentence, participants fixated either a dot (auditory condition) or 429 

a small cross on the speaker’s mouth (visual condition; see Figure 1 for depiction of trial 430 

structure).  After each sentence, participants were presented with four target words (either 431 

adjectives or written numbers) on the screen and had to indicate which one they perceived by 432 

pressing one of four buttons on a button box.  After 2 seconds, the next trial started 433 

automatically.  Each block lasted approximately 10 minutes.  The two separate sessions were 434 

completed within one week.   435 

MEG pre-processing 436 

Pre-processing of MEG data was carried out in MATLAB (The MathWorks, Inc.) using the 437 

Fieldtrip toolbox (Oostenveld, Fries, Maris, & Schoffelen, 2011).  All experimental blocks were 438 

pre-processed separately.  Single trials were extracted from continuous data starting 2 sec 439 

before sound/video onset and until 10 sec after onset.  MEG data were denoised using a 440 

reference signal.  Known faulty channels (N = 7) were removed before further pre-processing.  441 

Trials with SQUID jumps (on average 3.86% of trials) were detected and removed using 442 

Fieldtrip procedures with a cutoff z-value of 30.  Before further artifact rejection, data were 443 
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filtered between 0.2 and 150 Hz (fourth order Butterworth filters, forward and reverse) and 444 

down-sampled to 300 Hz.  Data were visually inspected to find noisy channels (4.95 ± 5.74 on 445 

average across blocks and participants) and trials (0.60 ± 1.24 on average across blocks and 446 

participants).  There was no indication for a statistical difference between the number of 447 

rejected channels or trials between conditions (p > .48 for channels, p > .40 for trials).  Finally, 448 

heart and eye movement artifacts were removed by performing an independent component 449 

analysis with 30 principal components (2.5 components removed on average).  Data were 450 

further down-sampled to 150 Hz and bandpass-filtered between 0.8 and 30 Hz (fourth order 451 

Butterworth filters, forward and reverse). 452 

Source reconstruction 453 

Source reconstruction was performed using Fieldtrip, SPM8, and the Freesurfer toolbox.  We 454 

acquired T1-weighted structural magnetic resonance images (MRIs) for each participant.  455 

These were co-registered to the MEG coordinate system using a semi-automatic procedure 456 

(Gross, et al., 2013; Keitel, Ince, Gross, & Kayser, 2017).  MRIs were then segmented and 457 

linearly normalised to a template brain (MNI space).  A forward solution was computed using 458 

a single-shell model (Nolte, 2003).  We projected sensor-level timeseries into source space 459 

using a frequency-specific linear constraint minimum variance (LCMV) beamformer (Van 460 

Veen, van Drongelen, Yuchtman, & Suzuki, 1997) with a regularisation parameter of 7% and 461 

optimal dipole orientation (singular value decomposition method).  Covariance matrices for 462 

source were based on the whole length of trials to make use of the longer signal (Brookes et 463 

al., 2008).  Grid points had a spacing of 6 mm, resulting in 12,337 points covering the whole 464 

brain.  For subsequent analyses, we selected grid points that corresponded to cortical regions 465 

only (parcellated using the AAL atlas; Tzourio-Mazoyer, et al., 2002).  This resulted in 5,131 466 

grid points in total. 467 

Neural timeseries were spatially smoothed (Gross, et al., 2013) and normalised in source 468 

space.  For this, the bandpass-filtered timeseries for the whole trial (i.e. the whole sentence) 469 

were projected into source space and smoothed using SPM8 routines with a Full-Width Half 470 

Max value of 3.  The timeseries for each cortical grid point and trial was then normalised by 471 

computing the z-score.  472 

Decoding analysis 473 

We used multi-variate single trial classification to localise cerebral representations of the target 474 

word in source activity (Grootswagers, Wardle, & Carlson, 2017; Guggenmos, Sterzer, & 475 

Cichy, 2018).  Each target word was presented in ten different trials.  We extracted the 500 ms 476 

of activity following the onset of each target word and re-binned the source activity at 20 ms 477 

resolution.  Classification was performed on spatial searchlights of 1.5 cm radius.  We initially 478 

tested a number of different classifiers, including linear-discriminant and diagonal-linear 479 

classifiers, and then selected a correlation-based nearest-neighbour classifier as this 480 

performed slightly better than the others.  This (leave-one-trial-out) classifier computed, for a 481 

given trial, the Pearson correlation of the spatio-temporal searchlight activity in this test-trial 482 

with the activities for the same words in all nine other trials (within-target distances), and with 483 
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the activities of the ten repeats of the three other words offered as alternative words on this 484 

test trial to the participant (between-word distances).  That is, each trial was classified within 485 

the sub-set of words that was available to the participant as potential behavioural choices.  We 486 

then averaged correlations within the four candidate words and decoded the target trial as the 487 

word identity with the strongest average correlation (that is, smallest classifier distance).  This 488 

classification measure is comparable to previous studies probing how well speech can be 489 

discriminated based on patterns of dynamic brain activity (Luo & Poeppel, 2007; Rimmele, 490 

Zion Golumbic, Schroger, & Poeppel, 2015). 491 

To quantify the degree to which the evidence of local speech representations in favour of a 492 

specific word identity is predictive of comprehension, we extracted an index of how well the 493 

classifier separated the correct word identity from the three alternatives (Cichy, et al., 2017; 494 

Grootswagers, et al., 2018; Ritchie, et al., 2015).  This representational distance was defined 495 

as the average correlation with trials of the same (correct) word identity and the mean of the 496 

correlation with the three alternatives.  If a local cerebral representation allows a clear and 497 

robust classification of a specific word identity, this representational distance would be large, 498 

while if a representation allows only for poor classification, or mis-classifies a trial, this distance 499 

will be small or negative.  For cross-condition classification (Figure 4A), we classified the 500 

single trial activity from the auditory (visual) condition against all trials with the same word 501 

alternatives from the other condition, or from the audiovisual condition.  502 

Quantifying the behavioural relevance of speech representations  503 

To determine the degree to which local speech representations are predictive of the individual 504 

percept, that is the participant’s choice on each trial, we quantified the statistical relation 505 

between subjects performance (accuracy) and the single trial representational distances 506 

(Cichy, et al., 2017; Grootswagers, et al., 2018; Panzeri, et al., 2017; Pica, et al., 2017; Ritchie, 507 

et al., 2015).  This analysis was based on a regularised logistic regression (Parra, Spence, 508 

Gerson, & Sajda, 2005), which was computed across all trials per participant. To avoid biasing, 509 

the regression model was computed across randomly selected subsets of trials with equal 510 

numbers of correct and wrong responses, averaging betas across 50 randomly selected trials.  511 

The resulting beta values were then entered into a group-level analysis.  512 

Statistical analyses 513 

To test the overall stimulus classification performance, we transformed the performance per 514 

grid point into z-values relative to a surrogate distribution obtained from 2000 within-subject 515 

permutations trial labels (i.e. mean and standard deviation of this normally distributed variable 516 

were used for the z-transformation).  These z-values were tested against zero, using a two-517 

sided, dependent t-test. Resulting p-values were corrected for multiple comparisons by 518 

controlling the false discovery rate (FDR) at p ≤ 0.05, using the Benjamini-Hochberg procedure 519 

(Benjamini & Hochberg, 1995). 520 

For the neuro-behavioural analyses, the regression betas obtained from the logistic regression 521 

were transformed into group-level t-values.  These were compared with a surrogate distribution 522 
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of t-values obtained from 1000 within-subject permutations using shuffled trial labels.  Results 523 

of the two-sided, dependent t test were corrected for multiple comparisons with cluster-based 524 

permutations (Maris & Oostenveld, 2007), corrected at p = 0.05 family-wise error (FWE).  525 

Significant clusters were identified based on a first-level significance two-tailed critical t-value 526 

of t = 2.1 for the 18 participants in the auditory condition and t = 2.2 for 15 participants in the 527 

visual condition. Clusters were selected based on a minimal cluster size of 10. We report the 528 

summed t-values (Tsum) as measure of effect size. 529 

Resulting clusters of the neuro-behavioural analysis were tested for lateralisation (Liegeois et 530 

al., 2002).  For this, we extracted the participant-specific regression betas for each cluster and 531 

for the corresponding contralateral grid points.  Betas were averaged within each cluster and 532 

the between-hemispheric difference was computed using a group-level, two-sided t-test. 533 

Resulting p-values were corrected for multiple comparisons by controlling the FDR at p ≤ 0.05 534 

(Benjamini & Hochberg, 1995).  We only use the term “lateralised” if the between-hemispheric 535 

difference is statistically significant.  536 
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Supplementary Figure 537 

 538 

Suppl. Figure 1. Results of the audiovisual condition.  A)  Behavioural performance of 20 participants. Scaling of 539 
the figure is identical to the auditory and visual results for better comparability.  Dots represent individual 540 
participants, boxes denote median and interquartile ranges, whiskers denote minimum and maximum (no outliers 541 
present).  MEG data of two participants (shaded in a lighter colour) were not included in neural analyses due to 542 
excessive artifacts.  Subjects exceeding a performance of 95% correct (grey line) were excluded from the neuro-543 
behavioural analysis (for the audiovisual condition, twelve participants had a performance above 95% correct).  B)  544 
Word classification performance in the audiovisual condition.  Surface projections show areas with significant 545 
classification performance at the group level (surface projection of the t-statistics, p < 0.05, two-sided, FDR 546 
corrected).  Results show strongest classification performance in right auditory and bilateral visual sensory areas, 547 
and a classification performance ranging from 25.03% to 33.3% (with a chance level of 25%).  C)  Cortical areas in 548 
which neural word representations predict participants’ audiovisual percept.  Coloured areas denote significant 549 
group-level effects (surface projection of the cluster-based permutation statistics, corrected at p=0.05 FWE).  Three 550 
positive right-lateralised clusters emerged: two in fronto-central regions (superior cluster: Tsum = 260.13, p < .001; 551 
inferior cluster: Tsum = 59.15, p < .001), and one in the orbito-frontal region (Tsum = 63.42, p < .001).  D)  Areas 552 
where word identity in the auditory (upper panel) or visual (lower panel) conditions can be predicted significantly 553 
based on word representations obtained from the audiovisual condition. Auditory word identities can be significantly 554 
classified from audiovisual word representations in a small region in right temporal and supramarginal gyrus.  Visual 555 
word identities can be classified from audiovisual word presentations mainly in bilateral occipital cortex.  556 

557 
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