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Abstract. Deep neural networks have achieved tremendous success in
image recognition, classification and object detection. However, deep
learning is often criticised for its lack of transparency and general inabil-
ity to rationalize its predictions. The issue of poor model interpretability
becomes critical in medical applications, as a model that is not under-
stood and trusted by physicians is unlikely to be used in daily clini-
cal practice. In this work, we develop a novel multi-task deep learning
framework for simultaneous histopathology image classification and re-
trieval, leveraging on the classic concept of k-nearest neighbors to im-
prove model interpretability. For a test image, we retrieve the most sim-
ilar images from our training databases. These retrieved nearest neigh-
bours can be used to classify the test image with a confidence score, and
provide a human-interpretable explanation of our classification. Our orig-
inal framework can be built on top of any existing classification network
(and therefore benefit from pretrained models), by (i) adding a triplet
loss function with a novel triplet sampling strategy to compare distances
between samples and (ii) a Cauchy hashing loss function to accelerate
neighbour searching. We evaluate our method on colorectal cancer histol-
ogy slides, and show that the confidence estimates are strongly correlated
with model performance. The explanations provided by nearest neigh-
bors are intuitive and useful for expert evaluation by giving insights into
understanding possible model failures, and can support clinical decision
making by comparing archived images and patient records with the ac-
tual case.

1 Introduction

Since the overwhelming success of deep learning in the ImageNet challenge in
2012 [1], novel image recognition techniques are now based on deep learning.
This is also true for histopathological image analysis, with deep learning based
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methods developed for mitosis detection [2], cancer classification [3], mutation
prediction [4] and survival prediction [5].

Despite the breakthroughs they have made, the adoption of deep neural
networks in daily clinical practice is slow. One bottleneck is that deep neu-
ral networks are often perceived as ’black-box’ models, as it is very difficult to
understand how networks make their predictions with their millions of model
parameters. This issue becomes critical in computational pathology, as patholo-
gists need to understand the rationale of a network’s decision for a certain input,
if they would like to use it for diagnostic purpose. Moreover, recent studies have
found deep neural networks are particularly vulnerable to adversarial examples
[6]: with a small amount of permutations that are imperceptible to human, ad-
versarial inputs can easily fool deep neural network and result in completely
wrong classification, which suggest the danger of using deep neural networks
without expert control.

In this paper, we aim to improve model interpretability of deep neural net-
works to pathologists without the need of a computational background. Inspired
by the decision making process of pathologists, i.e. relating the current case
to similar cases stored in their brains, we design a novel multi-task learning
framework for simultaneous image classification and retrieval. In addition to
cross-entropy loss used for the classification task, we add a triplet loss function
to compare distance between samples [7] and a Cauchy hashing loss function
to accelerate nearest neighbour search in Hamming space [8]. Through deeply
retrieved nearest neighbor images, we can provide pathologists intuitive expla-
nations of model predictions by visualizing the embedding space that is close to
human perception, and also calculate an confident score by measuring the vari-
ations of the retrieved neighbours. This approach pushes classification networks
in histopathology for the first time towards confident, interpretable and efficient
image retrieval and hence will have a big impact on the quickly growing field of
computational pathology.

2 Method

A schematic of our proposed multi-task learning framework for k-nearest neigh-
bour retrieval is shown in Fig. 1. Each compartment of the framework is ex-
plained in the following subsections accordingly.

2.1 Triplet loss with batch-hard sampling

The triplet loss has been firstly introduced by [7] for face recognition. In contrast
to Siamese networks that measure pairwise distance, triplet loss considers the
triangular relationship between three samples: an anchor instance x, a positive
instance x+ that is similar to x (usually belonging to the same class), and a
negative instance x− that is different from x (usually belonging to a different
class). The network is then trained to learn an embedding function f(.), with a
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loss function defined in [9]:

L1(d
+, d−) = ‖(d+, d− − 1)‖2 (1)

where:

d+ = e‖f(x)−f(x+)‖2

e‖f(x)−f(x+)‖2+e‖f(x)−f(x−)‖2
, d− = e‖f(x)−f(x−)‖2

e‖f(x)−f(x+)‖2+e‖f(x)−f(x−)‖2
. (2)

Fundamental to triplet networks is the right sampling strategy. Random sam-
pling is usually not sufficient as most random negative images radically differ
from the anchor image in the embedding space and no longer contribute to the
gradients in the optimisation process. Hence, [7] proposed a batch-hard strategy
which selects for each anchor sample the most distant positive (hard-positive)
sample and the closest negative (hard-negative) sample. Here we propose an im-
proved batch-hard strategy: 1) sample a balanced data set of k samples from
each of the n classes; 2) compute embedding for each sample; 3) choose each
sample to be an anchor, and match it with all k − 1 positive samples; 4) for
each anchor sample, choose k closest negative (hard-negative) samples, hence
matching all anchor-positive pairs. This strategy results in n∗k ∗ (k−1) triplets
when computing n ∗ k embeddings only, which is more computational efficient
than the original strategy where three embeddings were computed for one triplet.
Moreover, sampling k hard-negative samples instead of one makes our approach
more robust against outliers.

Fig. 1. A multi-task learning framework for simultaneous image classification and re-
trieval. Our framework is comprised of five key components: (1) a convolutional neural
network backbone for learning a deep representation of each image as a feature vector;
(2) a fully-connected hash layer for transforming the feature vector into a K-bit hash-
ing vector, which is then discretized into a binary hashing code hi∈{0, 1}K by taking
the sign of the each neurons in the hashing vector; (3) a triplet loss function which
brings close samples from same class and push apart samples from different classes; (4)
a Cauchy loss function which is a combination of Cauchy cross-entropy for similarity
preserving learning and a Cauchy quantification loss for controlling the binarization
error; (5) a cross-entropy loss that assesses the image classification accuracy.

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted June 6, 2019. ; https://doi.org/10.1101/661454doi: bioRxiv preprint 

https://doi.org/10.1101/661454


4 Lecture Notes in Computer Science: Authors’ Instructions

2.2 Cauchy loss for efficient image retrieval in Hamming space

Although the triplet network can train an efficient embedding function that pre-
serves similarity, the resulted embedding vectors are continuous and need a L2
distance comparison for neighbour searching. A more efficient searching method
is hashing, which compares binary codes in hamming space [10]. Recent works
have focused on combining convolutional neural network with hashing meth-
ods, yielding an end-to-end framework that jointly preserves pairwise similarity
and controls the quantization error [10]. Here we use the Deep Cauchy Hashing
proposed in [8], which achieves superior performance over other state-of-the-
art hashing approaches such as Hashnet [11]. In combination with our triplet
sampling, we write the Cauchy loss function as:

L2(x, x
+, x−) = log ‖f(x)−f(x

+)‖2
γ + log

(
1 + γ

‖f(x)−f(x+)‖2

)
+ log

(
1 + γ

‖f(x)−f(x−)‖2

)
(3)

L3(x, x
+, x−) = log

(
1 + ‖f(x)−1‖2γ

)
+ log

(
1 + ‖f(x

+)−1‖2
γ

)
+ log

(
1 + ‖f(x

−)−1‖2
γ

)
(4)

where L2 is the cross-entropy term that preserves similarities and L3 measures
the quantification error before and after discretization, where we generate a
binary hashing code by taking the sign of each neuron of the hashing vector.
The scale parameter γ controls the decaying speed of the probability of the
Cauchy distribution: a smaller γ will impose more force to concentrate similar
samples into a small Hamming radius. Here we choose γ to be K/2, where K is
the bit number of our hashing code.

2.3 Cross-entropy loss as an auxiliary classification task

To enable our framework for classification, we add a classification layer after
the hashing layer, in which a cross-entropy loss is used to minimize the discrep-
ancy between prediction and ground-truth labels. The addition of a classification
function also allows us to compare the performance of our framework to previous
work of [5], which use standard classification networks.

2.4 Hierarchical image retrieval

In the testing phase, for each query image we adopt a coarse-to-fine search strat-
egy for rapid and accurate image retrieval. We first retrieve a candidate pool with
similar binary hashing codes after discretization within a small Hamming radius
(e.g. of 1) from the query image. To further filter the images with similar ap-
pearance, we extract the feature vector (one layer before the hashing vector) and
rank the retrieved samples (see Fig. 1) using a L2 distance of the feature vector.
In our implementation, we use the built-in functions BallTree and cKDTree of
the scikit-learn toolbox for nearest neighbour searching in Hamming space and
Euclidean space. As one important purpose of our image retrieval is for expert
evaluation, we limit the number of retrieved images for each query image to be
10.
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2.5 Confidence measurement

The retrieved nearest neighbours of a given query image also provide a straight-
forward confidence measure of our prediction on that image by simply counting
the frequency of the predicted class in the retrieved neighbourhood.

3 Results and Discussions

3.1 Experimental data

In order to evaluate our framework we use the colorectal cancer (CRC) histol-
ogy dataset [5]. It contains more than 100,000 hematoxylin-eosin (HE)-stained
image patches from 86 CRC tissue slides from the NCT biobank and the UMM
pathology archive (NCT-CRC-HE-100K) and a testing data set of 7,180 im-
age patches from 25 CRC patients from an independent cohort (CRC-VAL-
HE-7K). Both datasets are created by pathologists by manually delineating
tissue regions in whole slide images into the following nine tissue classes: adi-
pose tissue, background, cellular debris (comedonecrosis), lymphocytes, extra-
cellular mucus, smooth muscle (lamina muscularis mucosae), normal colon mu-
cosa, cancer-associated stroma, and neoplastic cell population (CRC epithelium).
CRC epithelium was exclusively derived from human CRC specimen (primary
and metastatic). Normal tissue such as smooth muscle and adipose tissue was
mostly derived from CRC surgical specimen, but also from upper gastrointestinal
tract specimen (including smooth muscle from gastrectomy) in order to maxi-
mize variability in this training set. The created non-overlapping image patches
are 224 × 224px (112 × 112µm) and have a approximately equal distribution
among the nine tissue classes. [5] trained a classification network on NCT-CRC-
HE-100K and reach 98.8% accuracy on the test split of the dataset and 94.3%
accuracy on the independent test set (CRC-VAL-HE-7K).

3.2 Evaluation of image classification

To train our framework we split the training data (NCT-CRC-HE-100K) into
70% training set,15% validation set and 15% test set. The independent cohort
(CRC-VAL-HE-7K) is used for testing purpose only. We choose convolutional
neural networks of different architectures and replace the last layer of each net-
work with our hashing and classification layers (see Sec. 2 and Fig. 1). To train
each network, we initiate it with ImageNet pretrained weights, train our added
layers first and then fine tuning the entire network. In additional to different
network architectures, we also examine the influence of multi-task learning by
comparing the classification performance when training with multi-task loss vs.
training with cross-entropy loss for classification only. The classification accuracy
we achieve is comparable to the results reported in [5], suggesting our networks
are properly trained (see Table 1). Moreover, we demonstrate that the multi-task
learning improves the classification performance on an unseen test set, suggest-
ing the advantage of using our multi-task loss combination. It also illustrates
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that there is a domain shift between the histology images from the two different
cohorts, so the network that achieves the best performance on the internal test
set of NCT-CRC-HE-100K does not generalize best on the indepedent CRC-
VAL-HE-7K test set.

3.3 Evaluation of image retrieval

To evaluate image retrieval, we use the entire NCT-CRC-HE-100K set as our
database and the independent CRC-VAL-HE-7K set as query images. As ex-
plained in Sec. 2.4, for a query image we use the coarse-to-fine strategy to re-
trieve its nearest neighbours. To make a comparison, we formulate a baseline
neighbour searching method using classification: we amend our coarse search to
compare hashing vectors without discretization using L2 distance and to retrieve
100 neighbours as the candidate pool for the next fine search. We measure our
retrieval precision for each query image by counting the number of true neigh-
bours, i.e. belonging to the same class, among the top 10 retrieved samples, as
proposed in [8][11]. Over 6000 images out of our 7180 query images reach a per-
fect retrieval precision of 10 true neighbours by using our multi-task network
(Fig. 2), which is around 30% higher than that achieved by the baseline classifi-
cation network (4697 images). This suggests that the embedding space created
by multitask framework is more compact, i.e. a sample is surrounded predom-
inantly by neighbours of its own class. By contrast, in the embedding space
created by baseline classification, a sample is more mixed with neighbours of
different classes. A dispersed embedding could be one reason that classification
networks are vulnerable to attacks of adversarial samples [6].

Fig. 4 shows exemplary results of our image retrieval. The first query image
is a patch of cancer-associated stroma. While the classification network confuses
it with patches of smooth muscle in healthy tissue due to their similar color
appearance, our multi-task network, by contrast, is not fooled by the colour
variations and is able to reach perfect retrieval. The second query image is a
patch of colorectal adenocarcinoma epithelium, which is mixed with normal colon
mucosa by the classification network but not by the multi-task network.

Fig. 3 shows that the confidence measurement of our framework is highly
correlated with the actual performance of our classification on the testing set.
One exemplary low confident retrieval case captured by our framework is shown
in the last row of Fig. 4, the query image is annotated as normal colon mucosa
yet is considered to be mostly lymphocytes, debris, cancer-associated stroma and

Testing accuracy Multitask Resnet18 Resnet18 Resnet34 Resnet50 VGG19*

NCT-CRC-HE-100K (%) 98.6 98.5 98.8 99.4 98.8
CRC-VAL-HE-7K (%) 95.0 94.4 94.2 93.6 94.3

Table 1. Evaluation of classification accuracy on both test set of NCT-CRC-HE-100K
and an independent test set of CRC-VAL-HE-7K. *The results of VGG19 is directly
quoted from [5] and are shown here as a comparison.
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colorectal adenocarcinoma epithelium by our framework. An expert pathologist
also reviewed the case and did not agree with its original annotation as normal
colon mucosa, though a more definite conclusion could not be reach due to the
limited context provided by this patch. Our framework can be used to highlight
these uncertain cases for review by more than one pathologists.

4 Conclusion

We propose a novel multi-task learning framework for simultaneous image classi-
fication and retrieval. Our objective function is composed of a triplet loss function
to compare distance between samples, a Cauchy hashing loss function to accel-
erate nearest neighbour search in Hamming space and a classic cross-entropy
loss to assess classification performance. We demonstrate that such a multi-task
learning framework learns a more compact and accurate embedding space as
compared to classic classification networks and allows medical experts to ex-
plore and check the embedding space without the need of in-depth machine
learning knowledge. Moreover, we illustrate that the confidence measure pro-
vided by the variations of the retrieved neighbourhood is highly correlated with
the model performance and hence can be used to select low confident predic-
tions for expert review. Our framework can be turned into a very useful tool to
support clinical decision making of pathologists by comparing archived images
and patient records with the actual case.
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