New Results
proDA: Probabilistic Dropout Analysis for Identifying Differentially Abundant Proteins in Label-Free Mass Spectrometry
View ORCID ProfileConstantin Ahlmann-Eltze, View ORCID ProfileSimon Anders
doi: https://doi.org/10.1101/661496
Constantin Ahlmann-Eltze
Center for Molecular Biology (ZMBH), University of Heidelberg, Germany
Simon Anders
Center for Molecular Biology (ZMBH), University of Heidelberg, Germany
Posted June 06, 2019.
proDA: Probabilistic Dropout Analysis for Identifying Differentially Abundant Proteins in Label-Free Mass Spectrometry
Constantin Ahlmann-Eltze, Simon Anders
bioRxiv 661496; doi: https://doi.org/10.1101/661496
Subject Area
Subject Areas
- Biochemistry (7352)
- Bioengineering (5328)
- Bioinformatics (20269)
- Biophysics (10024)
- Cancer Biology (7749)
- Cell Biology (11314)
- Clinical Trials (138)
- Developmental Biology (6438)
- Ecology (9956)
- Epidemiology (2065)
- Evolutionary Biology (13330)
- Genetics (9362)
- Genomics (12589)
- Immunology (7713)
- Microbiology (19041)
- Molecular Biology (7446)
- Neuroscience (41056)
- Paleontology (300)
- Pathology (1231)
- Pharmacology and Toxicology (2138)
- Physiology (3163)
- Plant Biology (6865)
- Synthetic Biology (1897)
- Systems Biology (5315)
- Zoology (1089)