Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

proDA: Probabilistic Dropout Analysis for Identifying Differentially Abundant Proteins in Label-Free Mass Spectrometry

View ORCID ProfileConstantin Ahlmann-Eltze, View ORCID ProfileSimon Anders
doi: https://doi.org/10.1101/661496
Constantin Ahlmann-Eltze
1Center for Molecular Biology, University of Heidelberg, Germany
2Genome Biology Unit, European Laboratory for Molecular Biology (EMBL), Heidelberg, Germany
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Constantin Ahlmann-Eltze
Simon Anders
1Center for Molecular Biology, University of Heidelberg, Germany
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Simon Anders
  • For correspondence: sanders@fs.tum.de
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Data/Code
  • Preview PDF
Loading

Article usage

Article usage: June 2019 to April 2021

AbstractFullPdf
Jun 201993721271
Jul 20191161465
Aug 20191342142
Sep 20191761237
Oct 20191021431
Nov 2019761531
Dec 20192613189
Jan 20201652458
Feb 20201052641
Mar 2020881339
Apr 2020792239
May 20201392958
Jun 20201091838
Jul 202048841
Aug 2020106933
Sep 202080943
Oct 202077829
Nov 2020572835
Dec 2020461427
Jan 202152726
Feb 2021501417
Mar 2021672129
Apr 20211743
Back to top
PreviousNext
Posted May 01, 2020.
Download PDF
Data/Code
Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
proDA: Probabilistic Dropout Analysis for Identifying Differentially Abundant Proteins in Label-Free Mass Spectrometry
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
proDA: Probabilistic Dropout Analysis for Identifying Differentially Abundant Proteins in Label-Free Mass Spectrometry
Constantin Ahlmann-Eltze, Simon Anders
bioRxiv 661496; doi: https://doi.org/10.1101/661496
Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
proDA: Probabilistic Dropout Analysis for Identifying Differentially Abundant Proteins in Label-Free Mass Spectrometry
Constantin Ahlmann-Eltze, Simon Anders
bioRxiv 661496; doi: https://doi.org/10.1101/661496

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Bioinformatics
Subject Areas
All Articles
  • Animal Behavior and Cognition (2633)
  • Biochemistry (5216)
  • Bioengineering (3643)
  • Bioinformatics (15706)
  • Biophysics (7210)
  • Cancer Biology (5589)
  • Cell Biology (8037)
  • Clinical Trials (138)
  • Developmental Biology (4731)
  • Ecology (7457)
  • Epidemiology (2059)
  • Evolutionary Biology (10518)
  • Genetics (7692)
  • Genomics (10076)
  • Immunology (5144)
  • Microbiology (13817)
  • Molecular Biology (5348)
  • Neuroscience (30564)
  • Paleontology (211)
  • Pathology (870)
  • Pharmacology and Toxicology (1519)
  • Physiology (2233)
  • Plant Biology (4979)
  • Scientific Communication and Education (1036)
  • Synthetic Biology (1378)
  • Systems Biology (4128)
  • Zoology (802)