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Abstract – Protein mass spectrometry with label-free quantification (LFQ) is widely used for
quantitative proteomics studies. Nevertheless, well-principled statistical inference procedures are
still lacking, and most practitioners adopt methods from transcriptomics. These, however, cannot
properly treat the principal complication of label-free proteomics, namely many non-randomly
missing values.

We present proDA, a method to perform statistical tests for differential abundance of proteins.
It models missing values in an intensity-dependent probabilistic manner. proDA is based on linear
models and thus suitable for complex experimental designs, and boosts statistical power for small
sample sizes by using variance moderation. We show that the currently widely used methods
based on ad hoc imputation schemes can report excessive false positives, and that proDA not only
overcomes this serious issue but also offers high sensitivity. Thus, proDA fills a crucial gap in the
toolbox of quantitative proteomics.

Introduction

Label-free quantification (LFQ) is a standard approach
used in proteomics mass spectrometry (MS). Due to the
similarity of this data type to expression microarray
data, analysis methods from that field are commonly
used for LFQ-MS. A major difference, however, is the
presence of missing values in MS, but not in microarray
data.

It is well established that missing values do not oc-
cur entirely at random, but more often at low intensities
[1, 2, 3, 4]. The fraction of missing values varies by ex-
perimental design, but it is not uncommon to have more
than 50% missing values, especially in affinity purifica-
tion experiments. This issue hence cannot simply be
ignored but needs proper handling, and doing so is a cen-
tral challenge in statistical analysis of LFQ data, e.g., for
identifying proteins which are differentially abundant be-
tween conditions. In the last years several method have
been proposed to tackle this challenge, most of which
rely on imputation, i.e., they simply replace missing val-
ues with some number that is deemed realistic.

However, a fundamental problem with imputation is
that it obscures the amount of available information: im-
puted values will be considered as equally certain as ac-
tually measured values by any downstream processing
(identifying differentially abundant proteins, clustering,
quality control). This can invalidate inferential conclu-
sions due to underestimating statistical uncertainty or
cause loss of statistical power. Therefore, we propose a
probabilistic dropout model that explicitly describes the

available information about the missing values.

Figure 1A demonstrates that missingness carries in-
formation: observations in proteins with many missing
values (red) have a lower intensity than observations in
proteins with only one or no missing values (purple). In
addition, Figure 1B illustrates that the ratio of these
densities forms a curve with sigmoidal shape, clearly
showing how the probability of a value being missing
depends strongly on overall intensity.

If sample size is limited, substantial gains in statis-
tical power can be gained from using shrinkage estima-
tion procedure for variance estimation (“variance mod-
eration”) [5]. This approach is widely used in transcrip-
tomics data analysis, e.g., by the limma package [6]. The
advantage of using limma or similar approaches for LFQ-
MS has been advocated only rather recently (e.g., [7]).
For example, the DEP package [8] performs imputation
followed by a limma analysis to infer differentially abun-
dant proteins. As stated above, the use of imputation
may compromise the validity of limma’s statistical infer-
ence, and hence, the purpose of the present work is to
adapt limma-style inference to account for values miss-
ing not at random and so improve power and reliability
of differential abundance analysis for LFQ-MS.

A typical analysis of a label-free tandem mass spec-
trometry experiment consists of a number of steps. First,
peaks in the MS1 need to be identified using the corre-
sponding MS2 spectra. Second, the MS1 peaks need to
be quantified. In the literature, two approaches are pop-
ular for this tasks: spectral counting and peak area inte-
gration [9]. Abundant peptides are more often recorded
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Figure 1: Missingness in label-free mass spectrometry is informative. (A) Intensity distribution for six replicates
of the de Graaf data set. Shown is a ridgeline density plot of all the observed intensity values. They have been
stratified by the number of samples in which the protein’s value was missing. The height of the individual densities
is normalized per stratum. Panel (B) shows, in gray, a histogram of all the intensities. Overlayed are densities
combining either the values from proteins with at most one missing value (purple) or with more then one missing
value (red). The ratio of these two densities (gray line) has sigmoidal shape. The density ratio has been bootstrapped
100 times to show its sampling distribution.

by the MS2, thus the number of MS2 spectra associated
with a peptide can be used as a proxy for its abundance
[10]. Alternatively, more abundant proteins cause larger
peaks in the MS1, thus a second approach is to integrate
the peak area of a peptide [11, 12]. Subsequent compar-
isons of the methods concluded that peak area based
methods perform better than spectral counting [13, 14].
Consequently, we will only focus on methods that handle
continuous intensities.

The third important step is the aggregation of the
peptide level information to protein information. Tradi-
tionally, the peptide intensities are aggregated to protein
intensities and then in a separated step the differential
abundance is calculated for each protein. One popu-
lar method, that is directly integrated in the MaxQuant
platform [15], is called MaxLFQ that uses delayed nor-
malization based on the peptide ratios [16]. Alterna-
tive methods include summing up the peptide intensi-
ties, taking the average of the top three peptides [17],
selecting a reference peptide to calculate the protein in-
tensity [18], averaging the ratios [19], or using relative
abundances while taking into account shared peptides
[20]. More recently, some methods have been published
that directly try to combine both steps to gain more
power. The result of all those steps is a table with in-
tensities for each protein and sample. The values in this
table are commonly on a log2 scale in order to account
for the mean-variance relationship of the raw data (Sup-
plementary Figure S1).

Several methods have been published in the last years
that use those protein intensities to calculate differ-
ential abundance. Perseus [21] is a platform with a
graphical user interface, developed by the same group
as MaxQuant, which provides functionality to normal-
ize the data, impute missing values, identify significant
proteins using a t-test and visualize the results. For

multiple testing correction, Perseus offers two options:
either the Benjamini-Hochberg procedure [22] or signif-
icance analysis of microarrays (SAM), a permutation-
based correction originally described in Ref. [23]. As
already mentioned, DEP [8] is an R package that pro-
vides a similar set of functionalities, but uses the more
powerful variance moderated t-test to identify significant
proteins using the R package limma [6, 24]. For multi-
ple testing correction, DEP uses by default the methods
in the fdrtool package [25]. In order to handle miss-
ing values, it provides an interface to a large number of
imputation methods from the MSnbase R package [26].
In contrast, Perseus only provides two imputation meth-
ods, which either replace the missing values with a small
deterministic value (MinDet) or with random values jit-
tered around that small value (MinProb). DAPAR and
ProStaR [27] are complementary software tools where
DAPAR is an R-package that is similar to DEP, but
has additional imputation methods based on the imp4p
package [28]. ProStaR internally uses DAPAR and pro-
vides a web-based graphical user interface to make the
software more approachable to newcomers.

Approaches that work without imputation are limited
so far. one approach is the “empirical Bayesian random
censoring threshold” (EBRCT) model, which avoids im-
putation by integrating over the inferred intensity dis-
tribution for missing values [29]. However, it cannot
handle the case if a protein is completely missing in one
condition. This can actually be problematic because in
an affinity purification experiment those proteins might
actually be the ones that we care about the most. An-
other tool that follows a similar idea is QPROT [4]; a
command line tool that uses empirical Bayesian priors
and integrates out the position of missing values using
a cumulative normal distribution below a hard limit of
detection.
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Figure 2: Intuition behind the probabilistic dropout model. We assume that the real intensity values approximately
follow a normal distribution (”location prior”). The probability of not observing one of these values (”dropout
probability”) is high for low intensity and low for high intensity. Hence, the distribution of the actually observed
values (gray histogram) is skewed, with values missing in its left flank. The vertical lines indicate the observed
intensities for three hypothetical proteins: Protein 1 (green) has complete observations, protein 2 (orange) has
2 missing values, and protein 3 (purple) has only missing values. The lower panel shows the inferred posterior
probability distribution for the means for proteins 1, 2, and 3 (calculated using Stan [30]). The dashed lines show
the symmetric approximation to these that we use for efficient inference.

Lastly, Triqler [31] is a tool that directly works on the
peptide level instead of the protein level. This has the
advantage that it can incorporate additional uncertainty
due to the integration of multiple peptides to one protein
intensity. It is a command line tool written in Python
that fits an empirical Bayesian model integrating out the
uncertainty for missing peptide quantifications.

Here, we present proDA (inference of protein
d ifferential abundance by probabilistic dropout
analysis), a novel method for infering differential abun-
dance that makes full use of the information inherent
in missingness. proDA models the random process
resulting in missingness and so avoids the problems
discussed above that are inherent to imputation-based
inference.

In the following section, we explain the intuition be-
hind proDA and how it differs from the existing tools. In
the third section, we use a spike-in and a semi-synthetic
dataset to perform benchmarks. We show that many ex-
iting methods have either low statistical power, or seri-
ous deficiancies in controlling false discovery rate (FDR),
i.e., they refer too many false positives, and that hence
the need for a general, powerful and statistically reliable
inference method is unmet. We show that proDA offers
strong performance with reliable FDR control, and thus
is suitable to fill this crucial gap in existing methodol-
ogy. In the fourth section, we demonstrate proDA in an
application setting, by analyzing a real dataset studying
ubiquitination. We close with a conclusion.

Approach

The core of our idea is to combine the sigmoidal dropout
curve for missing values with the information from the
observed values. Figure 2 gives a conceptual overview
of our approach. Our method works on the protein-
level intensities, because this makes it compatible with a
variety of different intensity aggregation methods, easier
to use, and, as we will see later, the performance benefits
from working on the peptide level are unclear.

All the mathematical details of our method are de-
scribed in the Appendix, where we develop the approach
for full linear models. Here, in the main text, we aim
to provide a more intuitive explanation. We will first
discuss the simple setting of an experiment with only a
single condition with 3 replicates, and afterwards discuss
inference of differential abundance between two condi-
tions.

We assume that, within one condition, there is one
expected value for each protein, the population aver-
age, i.e., the mean value we would get if we averaged
over infinitely many replicate samples. The abundances
in our 3 replicates scatter around this unknown “true”
mean value, and our goal is to infer a posterior distri-
bution that contains the true mean and captures our
uncertainty about its location. In case of no missing
values, such a posterior takes the shape of the t dis-
tribution, which is the basis for the well known Stu-
dent’s t test (green posterior in Figure 2). Missing val-
ues cause these posteriors to become skewed, wider, and
their mode (peak) to shift to the left of the average of the

3

.CC-BY-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted May 1, 2020. ; https://doi.org/10.1101/661496doi: bioRxiv preprint 

https://doi.org/10.1101/661496
http://creativecommons.org/licenses/by-nd/4.0/


observed values (because the missing values are likely
lower than the observed ones); see orange posterior in
Figure 2. Even with no observed values, we can infer a
posterior (purple posterior in the figure): its left flank
follows the location prior, i.e., the distribution of val-
ues we actually expect in our data, and its right flank
follows the dropout curve, because higher values would
have likely been observed.

Hence, our approach first estimates from the data for
all proteins the shape of the dropout probability curve
and of the location prior. It then uses this informa-
tion to infer for each protein an approximate posterior
for its mean, with the necessary shift in mode location
and widening due to the additional uncertainty from any
missing values. We approximate the skewed posteriors
with a symmetric approximation (dashed lines in the fig-
ure) that follows the right flank. (See Appendix, Section
“Variance of the Coefficient Estimates” for details.)

The process of parameter estimation involves so-called
shrinkage estimation (or moderation), which shares in-
formation across proteins in order to improve variance
estimation (as originally proposed in Ref. [5] and also
used in limma [6]). Furthermore, we apply shrinkage
estimation not only to the variance but also to the lo-
cation, as this enables us to handle the edge case of all
observation missing in one condition.

To test if a protein is differentially abundant between
two conditions, we compare the approximate posteriors
inferred for the two conditions and calculate a p-value
for the null hypothesis of both true means being equal.
We do this using linear models, which allows for accom-
modating known covariates and complex experimental
designs, in the same manner as limma offers for tran-
scriptomics experiments.

Validation and Comparison

We validated our approach and compared it with the
existing methods discussed in the introduction. To this
end, we used a dataset by de Graaf et al. [32], who anal-
ysed phosphorylation dynamics of Jurkat T cells over 6
time points using affinity purification. We only use the
first time point, for which there are 18 samples, 3 bio-
logical replicates with 3 technical replicates each, which
were measured in two separate mass spectrometry runs.
As all these samples are in the same condition, we a pri-
ori do not expect any differences between the samples.
We then introduce the changes ourselves so that we have
a known ground truth. This has the additional advan-
tage that we can vary the number of compared samples
and the fraction of truly changed proteins to see how
those affect the results. As a first test, however, we run
our methods, as well as a variety of other methods, on
the data as is, without any real differences between con-
ditions, in order to check whether any of the tools might
nevertheless falsely report statistical differences.

Null comparison

Supplementary Figure S2 shows a heatmap of the data.
There are many missing values (49%), which helps us to
assess their impact on the different methods. In a typical
affinity purification experiment, it is not unusual to have
only three replicates per condition. So, we chose six
samples and divided them into two synthetic conditions,
ensuring that both contain a mix of different biological
replicates, so that there is no signal in the null dataset
(row marked “3v3” in Supplementary Figure S2).

We compare the 7 methods discussed in the introduc-
tion (Perseus, DEP, DAPAR, QPROT, EBRCT, Triqler,
and proDA), running each tool with their default set-
tings, except for the multiple testing correction, where
we stick to the Benjamini-Hochberg method wherever
possible, in order to make the results more comparable.
DEP offers a range of different imputation methods; we
chose to test it with five typical ones: Zero, MinDet,
MinProb, KNN, and QRLIC. For DAPAR we used the
structured least squares algorithm from the imp4p pack-
age [28, 33]. We ran QPROT with 2000 burn-in and
10,000 sampling iterations. For EBRCT, we have to
filter out the proteins where for one condition all pro-
teins are missing, because it cannot handle that edge
case. Lastly, Triqler was a little more challenging to
use, because it needs the data in a specific format that
includes the decoy matches to calculate the FDR. For
Triqler specifically, following the advice of the Triqler
authors, we re-ran the MaxQuant quantification, with
PSM and protein detection FDR set to 100% and match-
ing between runs turned off, then converted the evidence
file to Triqler input, skipping the normalization. We
ran Triqler version 0.3.1 with the fold change eval set-
ting changed to 0. It should be kept in mind that this
means that Triqler was run on a slightly different data
set without the same normalization and that thus the
performance results are not one-to-one comparable.

Figure 3 shows the results: proDA correctly detects
no significant proteins, as do most tested methods. The
DEP method combined with zero imputation proves to
be problematic, as are QPROT and EBRCT. DAPAR
performance worse with increasing number of samples
(“4v4“ and “6v6“ Supplementary Figure S3 and S4) .
Triqler (which is not included in the plots, because it
does not calculate classical p-values) detects an unac-
ceptably large number of false positives, which is why
we will exclude it from the subsequent analyses.

Semi-synthetic dataset

We now introduce the artificial changes so that we have
a known ground truth. We select 20% of all proteins and
randomly shuffle those rows, but only in the first condi-
tion. This creates a realistic dataset where we know
which proteins differ between condition one and two.
The more common approach, where a selected number
of proteins are shifted by a fixed effect size, is not appli-
cable here, because shifting the mean of a protein would
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also imply a different probability for missing observa-
tions. Unfortunately, this idea can not be consistently
applied to peptide level data, which is why we will have
to leave Triqler out of the following benchmark.

We compared the other 6 method (Perseus, DEP, DA-
PAR, QPROT, EBRCT, and proDA), ran them with the
same settings described in the previous section.

Figure 4A and B show the performance of the tools:
in this test, DEP with most imputation methods (ex-
cept zero imputation) and proDA succeed in controlling
the FDR. EBRCT, QPROT, and DAPAR fail to control
it. For those methods that passed the FDR control re-
quirement, we can again ask which has most inferential
power. Figure 4D shows the number of true positives
that each method recovered depending on the desired
FDR. proDA performs well in this test. Its actual FDR
always stays below the desired FDR and at 10% desired
FDR, it recovers 65% more true positives than the sec-
ond best approach, DEP with MinDet imputation.

The performance of DEP depended on the imputation
method that is used. Zero imputation is problematic, as
can be seen in this example, because it fails to control
the FDR at small values. The best imputation methods
are MinDet and MinProb, which perform nearly identi-
cal. Perseus with the MinProb imputation recovers fewer
true positives than DEP, which is expected, because it
uses the classical t-test and not the variance moderated
version provided by limma.

In Supplementary Figure S5, we further distinguish
the calibration and performance by the number of ac-
tually observed values in condition one and two. This
shows that the failure of QPROT to control the FDR
is because it has too many false positives specifically for
proteins with zero against one observation. The opposite
pattern is observed for EBRCT, that has too many false
positive detections if a protein is observed in all con-
ditions or mising in just one. proDA is more powerful
than the other methods, because it shows consistently
good performance across comparisons and in particular
if only one or two observations are missing. DEP with
the zero imputation method always identifies all proteins
fully observed in one condition and completely missing
in the other as significant. In many cases this is correct,
but as this does not depend on the desired FDR, this
can lead to an actual FDR that is too large if the user
specifies a small FDR.

In Supplementary Figure S6-S8, we show that we
mostly get consistent results even if we change the num-
ber of compared samples (3 vs 3, 4 vs 4, and 6 vs 6) and
also if we change the percentage of true positive proteins
(5%, 10%, 20%, and 30%). proDA reliably controls the
FDR, except in two circumstances where the noise from
the small number of changed genes (5% in Supplemen-
tary Figure S7A and Supplementary Figure S8A) causes
a small violation of the FDR control. It also detects
more true positives in most of the comparison than the
other tools, especially whenever there are many missing
values.

Application

After demonstrating that only few tools, including
proDA, control the FDR reliably, and that proDA is able
to recover the largest number of changed proteins, we
applied it to analyze a data set on the interaction land-
scape of ubiquitin [34]. In this example, we do not know
the ground truth, but show that we recover proteins that
biologically make sense. In the original publication the
authors analyzed the data set using Perseus, later they
presented the DEP R package for analyzing such data
sets [8]. We will re-run the analysis that Zhang et al.
describe with proDA.

Ubiquitin is a small protein that plays an impor-
tant role in many different signaling pathways. There
are three different kinds of ubiquitination: mono-
ubiquitination, multi-mono-ubiquitination and poly-
ubiquitination. Poly-ubiquitination is further distin-
guished by the linkage between the donor and the accep-
tor ubiquitin. The donor is linked with its C terminus to
any of the seven lysines (K6, K11, K27, K29, K33, K48,
K63) or the terminal methionine (M1) of the acceptor.
Zhang et al. studied the recognition of those eight link-
ages and mono-ubiquitin by ubiquitin binding proteins.
For this, they developed a new technique called ubiq-
uitin interactor affinity enrichment-mass spectrometry
(UbIA-MS) [8].

They run an enrichment experiment for each of the
eight ubiquitin linkages plus one condition with mono-
ubiquitin (Mono) and one empty control condition (ctrl).
Each condition was measured in triplicates. To deter-
mine which proteins bind (directly or indirectly) to any
of the ubiquitin linkages, we always compare the inten-
sity for each protein to the corresponding intensity in
the control group.

Figure 5 shows the results of the analysis with proDA.
Figure 5A compares the total number of significant inter-
actors at a nominal FDR of 10%, filtering out all proteins
that had higher intensity in the control condition than in
the ubiquitin condition. Figure 5B further stratifies the
data from panel A. It not just describes how many pro-
teins bind to a linkage, but also how many proteins bind
to a specific combination of linkages. We can see that a
majority interacts significantly with with all ubiquitins,
but there are also proteins showing significant interac-
tions only for specific linkages.

Figure 5D demonstrates that proDA has not just re-
covered many interactors, but proteins related to gene
ontology sets relevant for ubiquitination [35, 36, 37]. In
addition to the 9 ubiquitination conditions, here we also
list the results of conducting an F test to identify all
proteins that differ in any condition, as an example for
the ability of proDA to perform missing value aware
ANOVA.
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Figure 5: Ubiquitination analysis with proDA. A) shows the number of interactors for each of the nine conditions.
The green bars show the number of proteins identified as significant interactors for each condition with proDA.
B) breaks down those interactors into more detail. It shows the number of proteins that interact with a specific
combination of ubiquitin linkages. The total number of intersections was limited to the largest 25 sets ordered by
degree. C) shows two heatmaps with the sample distances, calculated according to Equation (42) (upper heatmap)
and on the imputed dataset (lower heatmap). The rows and columns were clustered using hierarchical clustering on
the distances. D) shows a dot plot with the seven most significant gene ontology (GO) terms related to the set of
interactors with any of the nine conditions and the set of proteins that differ over all conditions (“F-test”).

7

.CC-BY-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted May 1, 2020. ; https://doi.org/10.1101/661496doi: bioRxiv preprint 

https://doi.org/10.1101/661496
http://creativecommons.org/licenses/by-nd/4.0/


Distances

A commonly used approach for sample quality control
is to calculate some measure of similarity for all pairs
of samples, in order to check whether replicate samples
appear more similar than samples from different condi-
tions.

Typically, Euclidean distance is used, e.g. in the ubiq-
uitilation study by Zhang et al. [8] who use MinProb
imputation before Euclidean distance is calculated. Fig-
ure 5C shows the outcome of this procedure for the ubiq-
uitin data. Differences in the shape of the dropout prob-
ability curve can strongly influence a distance calculated
in this manner. Based on the proDA model, we devel-
oped an approach to calculate Euclidean distance in a
probabilistic manner without the need for imputation in
order to reduce the effect of differences in dropout prob-
abilities (Appendix, section “Distances”)). In fact, our
distance calculation is able to recover the triplet struc-
ture of the data set, while the MinProb imputation based
distances do not (Figure 5C).

Conclusion

In this paper, we have presented our R package proDA
for identifying proteins that are differentially abundant
in label-free mass spectrometry data sets. The main
challenge for analyzing label-free mass spectrometry
data are the large number of missing values. We sug-
gest to handle them using a probabilistic dropout model
combined with empirical Bayesian priors to combine the
available information from observed and missing values.

In the performance comparison with existing tools
with and without any true positives, we saw that some
method produce a lot of false positives. In particular,
Triqler had difficulties on the null-comparison. This
could be due to the challenges of balancing the differ-
ent levels of uncertainty from the missing values and the
observations on the peptide level.

On the semi-synthetic data set, we saw that proDA
recovers more true positives, while controlling the false
discovery rate. We showed that imputation can be prob-
lematic because it either leads to a loss of power or worse
to not controlling the false discovery rate. The improved
sensitivity of proDA comes at the prize of a somewhat
increased run time. Whereas DEP, DAPAR, and Perseus
finish within seconds, our model might need one or two
minutes to calculate a result. In the end, we believe the
increased computational demands are justified, because
the analysis run time is still fast enough for interactive
use.

In addition, our tool can handle any design specified as
a linear model. This has the advantage that one can not
just fit two condition comparisons, but also time series
data, nested data with patient and treatment specific
effects, and account for known covariates in the model.
Besides proDA, this is only supported by DEP although

this is standard for transcriptomic tools.
In conclusion, we have demonstrated that imputation

can be problematic and that properly modelling the un-
certainty posed by missing values boosts power.

Availability

Software: The proDA method is implemented
as an open-source R package. Documentation,
installation instructions and download links are
provided at the BioConductor package repository
https://www.bioconductor.org/packages/proDA/.

License: proDA is made available as open-source soft-
ware under the GNU General Public License, version 3
or later.

Source code for software: Full source code
for the software is available on GitHub, at
https://github.com/const-ae/proDA

Source code for benchmarks and example analyses:
The full R code to produce all the figures and all the
benchmark and example application results reported
here is available at github.com/const-ae/proDA-Paper
as R notebooks. The example data used was downloaded
using the accessions given in Refs. [32] and [34]; details
are given in the R notebooks.
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Appendices

Mathematical Description of the Probabilistic Dropout Model

At the center of proDA is the idea of a probabilistic dropout model. As we saw in Figure 1, the
chance of a missing value decreases with increasing protein intensity. We will model this relationship
with a sample specific sigmoid dropout curve. We will describe our model as a generative model,
i.e., the mathematical relations that we believe could be responsible for the data table from which
we start our analysis.

We denote the data table as a matrix Y with I × J rows and columns, where I is the number of
proteins and J is the number of samples, and the matrix elements yij are the recorded MS1 intensities
(on the logarithmic scale) for protein i in sample j. We write yij = NA if the intensity value for protein
i is missing in sample j.

As usual in linear models, we describe the experimental design with a design matrix X with
dimensions J × p. For the expected intensity value for protein i in sample j, we write µij = Xjβi,
where Xj is the row of the design matrix X corresponding to sample j. Our goal is to find for each
protein i the p coefficients of the vector βi.

We assume that the actual log intensities zij scatter around their expected values µij according to
a normal distribution with variance σ2

i . As discussed in the main text, the values zij are not always
recorded; with some probability, they might suffer a drop-out. If they are observed, we set yij = zij ,
otherwise we set yij = NA. We assume that the probability of a dropout depends on the intensity zij
and we will model this with a sigmoidal relationship. There are several possible functions describing
curves with sigmoidal shape; for mathematical convenience, we chose the inverse probit, i.e., the
complement of the cumulative density function (CDF) of a Normal distribution. In formal notation,
this model is

µij = Xjβi

zij |µij , σ2
i ∼ Normal(µij , σ

2
i )

dij |zij , ρj , ζj ∼ Bernoulli(Φ(zij ; ρj , ζj))

yij |zij , dij =

{
NA, if dij = 1

zij , else.

(1)

Here, zij are the latent intensities, that we do not have full access to because of the dropouts. βi
are the coefficients for which we want to find out if they or their linear combination are different
from zero. dij indicates if a protein is missing in the specific sample. The probability of missingness
(dij = 1) is given by the sigmoidal dropout curve Φ(·). As already mentioned, we chose to describe
this sigmoid with the complement Φ of a Normal CDF Φ, parameterized using the inflection point
ρj and the scale ζj :

Φ(x; ρ, ζ2) = 1− Φ(x; ρ, ζ2) = 1− 1√
2πζ2

∫ x

−∞
exp

(
− (t− ρ)2

2ζ2

)
dt. (2)

The decreasing behavior of Φ(·) matches the observation that measurements with lower intensities
are more likely to be missing.
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In addition, we assume that the means µij and the variances σ2
i are similar across proteins and

add the priors
µij |µ0, σ

2
0 ∼ Student-t(dfloc, µ0, σ

2
0) (3)

and
σ2
i |df0, τ

2
0 ∼ Scaled-inv-χ2(df0, τ

2
0 ). (4)

The prior in Equation (3) on the protein means µij is important to handle the edge case if in one
condition a protein is completely missing. The prior in Equation (4) corresponds to the variance
moderation of limma [6].

The probability density function of the generalized Student’s t-distribution used in Equation (3) is
defined as

ft(x; dfloc, µ, σ
2) =

Γ
(
dfloc+1

2

)
Γ
(
dfloc
2

)√
πdflocσ2

(
1 +

1

dfloc

(x− µ)2

σ2

)− dfloc+1

2

(5)

and the probability density function of the scaled inverse χ2 distribution used in Equation (4) is

fInv-χ2(x; τ2,df) =
(τ2df/2)df/2

Γ (df/2)

exp
(
−dfτ2

2x

)
x1+df/2

. (6)

We iteratively estimate the hyper parameters and the protein specific parameters using a maximum
a posteriori approach until the model converges. To identify which coefficients in βi are significant,
we use a Wald test or likelihood ratio F-test [38].

Model Fitting

In the following section, we will explain how to infer the feature parameters βi and σ2
i , and then the

hyper-parameters µ0, σ2
0 , τ20 , df0, ρ and ζ. We assume that dfloc is fixed by the user.

To simplify the notation, we will first focus on only one protein and assume that all samples belong
to the same condition and thus suppress all subscripts i and j. This also allows us to directly talk
about µ instead of Xβ, because in that specific case they are identical.

If there were no missing values and if we ignored the priors, the likelihood of µ and σ2 given the
observations y would be

L(µ, σ2|y) ∝
∏
j

fNormal(yj ;µ, σ
2). (7)

To handle the mix of observed and missing values in y, we will extend the above equation by marginal-
izing out the missing values

L(µ, σ2|y) ∝
∏

j:yj 6=NA

fNormal(yj ;µ, σ
2)

×
∏

j:yj=NA

∫ ∞
−∞

fNormal(z;µ, σ
2)Φ(z; ρj , ζ

2
j )dz.

(8)

The integral in Equation (8) can be simplified∫ ∞
−∞

fNormal(z;µ, σ
2)Φ(z; ρ, ζ2)dz = Φ(µ; ρ, ζ2 + σ2), (9)
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with the proof provided, for example, in Refs. [39] and [40].

Now, we can combine Equation (8) and Equation (9), add the priors that we proposed in Equa-
tion (3) and Equation (4) and use Xβ instead of µ. We find that the joint density is

p(β, σ2, µ0, σ
2
0 ,df0, τ

2
0 ,ρ, ζ|y, X) ∝ fInv-χ2(σ2; τ20 ,df0)

×
∏
j

ft(Xjβ; dfloc, µ0, σ
2
0)

×
∏

j:yj 6=NA

fNormal(Xjβ;xj , σ
2)

×
∏

j:yj=NA

Φ(Xjβ; ρj , σ
2 + ζ2).

(10)

In this likelihood, we have written the hyper-parameters (µ0, σ2
0 , df0, τ20 , ρ and ζ) as known constants.

In practice, we use an iterative procedure, alternating between two steps: (i) We first fix the hyper-
parameters to estimate the feature parameters and their uncertainties in a Bayesian fashion. We
calculate the first two moments of their posterior associated with Eq. (10). (ii) Then, we fix the
feature parameters to estimate the hyper-parameters by maximizing the likelihood (10). We iterate
between those two steps until the estimates have converged. In the following sections, we explain
either step in turn.

One might argue that the lack of proper hyper-priors renders our approach not a “pure” Bayesian
one. Alternatively, however, one may read Eq. (10) as implicitly including improper uniform hy-
perpriors for the hyperparameters. This is permissible because in an empirical Bayes approach, the
hyperparameters are estimated from a a very large amount of data (here, from sharing information
over all proteins), and hence the likelihood associated with this empirical data so strongly dominates
the hyperpriors that the specific choice of hyperpriors is negligible. This also leads to the posteriors
for the hyperparameters being very narrow, which justifies our approach of treating the hyperparam-
eters as constants in step (i) and performing step (ii) by simply maximizing the likelihood. We note
that the same approach is taken in other empirical-Bayes approaches (e.g., in limma [6]) even though
this fact is often not stated explicitly.

Feature Parameter Estimation

For each feature (protein), we search the linear model coefficient vector βi and the corresponding
variance value σ2

i that best explain the observed intensity values yi in the sense that they have
high a posteriori probability according to Eq. (10). We approximate the posterior for (βi, σi) as a
multivariate Gaussian, i.e., we seek the first two moments of the posterior.

To this end, we start by using a maximum a posteriori (MAP) approach to find the β̂i and σ̂2
i that

maximize Eq. (10) for the observed intensity values yi and a given set of hyperparameter values:

β̂, σ̂2 = arg max log p(β, σ2|µ0, σ
2
0 ,df0, τ

2
0 ,ρ, ζ,y, X) (11)

with
µ̂ij = Xjβ̂i. (12)

In proDA, the function pd lm performs this optimization for each gene i: We take the logarithm of
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Equation (10) and derive its Jacobian and Hessian to efficiently find the mode. To this end, we use
the nlminb function in R that wraps the PORT routines [41] for the actual optimization.

Then, pd lm continues with the following steps.

Coefficient Estimates

For the posterior of the coefficients vector βi, we simply use a multivariate Gaussien with the MAP
estimate β̂ as mean. For the posterior’s variance-covariance matrix, see below.

Unbiased Variance Estimates

For the coefficients, the MAP estimates β̂ can be used, but for σ̂2, we have to take its bias into
account.

In a standard linear model, we would expect the maximum likelihood estimator σ̂2 to be biased
and underestimate the true variance σ2 by

E[σ̂2] = σ2n− p
n

, (13)

and hence correct σ̂2 by multiplying it with n/(n− p).

With missing values, the challenge is that it is unclear what should be used for n. The simple
approaches of setting n = J or n = |{yj 6= NA}| are problematic because they over- or underestimate
the amount of information from the missing values. Instead, we will estimate an effictive value for n
from the variance of the σ̂2 estimate at the mode, which is given by

V[σ̂2] = − 1
∂2 log p
∂(σ2)2

,

where p is the posterior given in Equation (10). We get this second derivative for free as an element
of the Hessian matrix H, which is calculated anyway during the maximization of log p:

H =


∂2 log p
∂β2

1
· · · ∂2 log p

∂β1∂βp

∂2 log p
∂β1∂σ2

...
. . .

...
...

∂2 log p
∂βp∂β1

· · · ∂2 log p
∂β2

p

∂2 log p
∂βp∂σ2

∂2 log p
∂σ2∂β1

· · · ∂2 log p
∂σ2∂βp

∂2 log p
(∂σ2)2

 . (14)

We find the value of n using an analogy to the standard linear model without missing values. If
we have some values y and use their mean ȳ as the mean estimate µ̂, the density of σ2 would be

p(σ2|y) ∝
n∏
i=1

fNormal(yi; ȳ, σ
2)

∝
(

1

σ2

)n/2
exp

(
−
∑
i(yi − ȳ)2

2σ2

)
∝ fInv-Gamma(σ2;α = n/2− 1, β = RSS/2),

(15)
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where RSS =
∑
i(yi − ȳ)2. The mode of the inverse gamma distribution is

mode =
β

α+ 1
=

RSS

n
. (16)

We can now find the expected value of the second derivative that the inverse gamma distribution has
at the mode, which is

d2fInv-Gamma(x, α, β)

d(σ2)2

∣∣∣∣
x=mode

=
β2

(α+ 1)3
. (17)

With missing values, we can still identify identify the MAP for σ̂2 and the associated uncertainty
V[σ̂2]. If we now plug in those values

mode = σ̂2 (18)

and
d2fInv-Gamma(x, α, β)

d(σ2)2

∣∣∣∣
x=mode

= V[σ̂2] (19)

and solve Equation (16) and (17) using Equation (15) for n and RSS, we find that

n̂ = 2

(
σ̂2
)2

V[σ̂2]
, (20)

and

R̂SS = 2

(
σ̂2
)3

V[σ̂2]
. (21)

Finally, we can now identify the unbiased estimate of the variance, which is

ŝ2 =
R̂SS

n̂− p
(22)

and estimate the degrees of freedom
d̂f = n̂− p. (23)

Sometimes n̂ < p, in which case we fix d̂f to a small, but positive value (ie. 0.001), and estimate

ŝ2 =

√
V[σ̂2]

(d̂f + p)3

2d̂f
2 (24)

so that the approximation matches the scale of the original distribution, although the mode is slightly
off.

Variance of the Coefficient Estimates

In a standard linear model, it is easy to find the standard error for the coefficients because it is simply

V[β̂] = ŝ2 (X ′X)
−1
. (25)

Again, this cannot be directly applied to the case with missing values, because it is possible that ŝ2

is small, but we nevertheless are very uncertain of βj because there are many missing values for that
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Figure 6: Sketch of how the correction factor is calculated and how it modifies the approximation
in the one dimensional case. The original skewed distribution is shown in black. The black circle
marks its mode. The red parabola (which is equivalent to a normal approximation directly using the
Hessian) has the same curvature at the mode but is too wide on the right-hand side. If we move out
k steps from the mode to the right and calculate how much more the actual density has decreased
than we would expect from the Hessian (orange section), we can calculate the correction factor and
construct an approximation that captures the behaviour of the right flank better (purple parabola).

coefficient. Instead, we will use the inverse of the Hessian of the log likelihood with respect to the
coefficients, which we calculate using the unbiased estimate ŝ2

V[β̂]σ2=ŝ2 = −(Hσ2=ŝ2)−1. (26)

This works well for the cases where the distribution of βj does not have too much skew. However,
in Figure 2, we saw that for the cases with many missing values the skew can be considerable. If we
just used the curvature (Hessian) at the mode, we would be wrong on both sides of the distribution.
On the left, the approximation would be too narrow and on the right, it would be too wide.

We know that the distributions with considerable skew are always on the low end of the intensity
distribution. In the typical comparison, we care about the inside flanks of the two distributions that
we compare. We know that the skew will be larger for the distribution with the lower intensity. To
minimize the approximation error, it is thus more important to correctly model the right flank of the
distribution. Otherwise we would unnecessarily lose power. In the performance evaluation (Section
“Results”), we can see that this approximation and symmetrization seems permissible and does not
unduly inflate the false discovery rate.

We will hence calculate a correction factor, with which we scale the Hessian-derived variance, that
reduces the variance such that we match the right flank of the distribution. If there is no skew, we
know that if we go k units from the mode β̂ in the direction of βi the log probability should decrease
by k

2V[βi]
, because the log density should behave like a multivariate parabola. Note that we still use

the Hessian with σ2 = σ̂2. In our implementation we use k = 8 which ensures that the tails, which
we care about the most, are approximated best. Figure 6 shows an example for the one dimensional
case.
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From this relation we can calculate the correction factor which is

cfβj
=

k

2(log p(β; σ̂2, ·)− log p(β + βshift; σ̂2, ·))
. (27)

Here, we cannot directly use log p(β + k; σ̂2; ·), because in the multi-dimensional case we have to
correct the distance we go out by the changed width of a multivariate Gaussian. Instead we use βshift

which is a vector of zeros, except for the j’s entry which is

βshiftj =
√
k(V[β̂]jj − V[β̂]j,−jV[β̂]−1−j,−jV[β̂]−j,j). (28)

Here we use the notation V[β̂]−j,j to mean that we take the j-th column of V[β̂] and remove the j-th

entry. Similarly, V[β̂]−j,−j means that we remove the j-th row and column from V[β̂]. To understand
Equation (28), note the similarities to the variance of the conditional distribution along an axis of a
multivariate Gaussian.

We then identify the final covariance matrix as

Σ = V[β̂]
(corr)
σ2=ŝ2 = diag(

√
cf)V[β̂]σ2=ŝ2diag(

√
cf), (29)

where cf is the vector formed by the correction factors from Equation (27).

This covariance matrix is then used to perform the Wald tests for inference of statistical significance
of coefficients or contrasts. For a given contrast vector c, we get a t statistic

t =
c′β̂

c′Σc
, (30)

for which we report the two-sided tail probability of a t distribution with I − p degrees of freedom as
the p-value. In proDA this is implemented in the test diff function.

Hyper-parameter Estimation

In the previous section, we have focused on individual proteins and suppressed the subscript i and
handled y as a vector of size j. Now, we will describe how to fit the hyper-parameters across proteins
and thus mention i and work with the full data matrix Y .

We estimate the hyper-parameters using an empirical Bayesian approach. Unlike a pure Bayesian
setting where we would have hyper-priors on those parameters, we rely on the observed data to get
accurate point estimates of the parameters for the dropout curves, the variance prior, and the location
prior. This is typical for the empirical Bayesian framework, because the parameters are estimated
across all proteins which means that the residual uncertainty of the hyper-parameter estimates is
very small compared to the estimates of the feature parameters.

Dropout Curves

We fit one dropout curve for each sample, because the number of missing proteins can differ substan-
tially between samples and the effect cannot be fixed by normalization. The drop-out probability
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for sample j, given in Equation (2), is parametrized by ρj and ζj . We find these by maximizing the
following log likelihood

l(ρj , ζj |Y, µ̂j ,σ2
µ̂j

) =
∑

i:yij 6=NA

log
(
1− Φ(yij ; ρj , ζ

2
j )
)

+
∑

i:yij=NA

log
(

Φ(µ̂ij ; ρj , ζ
2
j + σ2

µ̂ij
)
)

+ const,

(31)

where we have plugged in the predicted values µ̂ij for the missing observations and the associated
uncertainty

σ2
µ̂ij

= X ′jΣiXj . (32)

We use the general purpose optimizer implemented by the R function optim [42, 43, 44, 45] to find
the maximum. The code performing the described step can be found in proDA’s internal function
dropout curve.

Variance Prior

In the model without missing values, Smyth [6] has described how to estimate the hyper-parameters
of the variance prior τ20 and df0 from the unbiased variances s2i and the degrees of freedom dfi. He
showed that the unbiased variance estimates s2i follow a scaled F distribution:

s2i ∼ τ20 Fdfi,df0 . (33)

The scaled F distribution has the density

fF (x; τ2,df1,df2) =
Γ
(
df1+df2

2

)
τ2Γ(df1/2)Γ(df2/2)

(
df1
df2

)df1/2

(x/τ2)
df1
2 −1

(
1 +

df1
df2

(x/τ2)

)− df1+df2
2

. (34)

Smyth [6] provides closed form estimators for τ20 and df0 based on the moments of the logarithmized
distribution, which are approximations of the maximum likelihood solution for Equation (34).

In the previous section (Equation (22) and (23)), we have shown how to find ŝ2i and d̂fi in the
case of missing values. However, if we were to use these values directly we would have the problem
that they already contain the information of last round’s hyper-parameters, and thus the variance
prior would get narrower and narrower. To avoid this problem, we recalculate the quantities from
the last section without location and variance moderation (simply by ignoring the first two lines of

Equation (10)) and call them uŝ
2 and ud̂f. Here, u stands for un-regularized. We use those values

for the inference of τ20 and df0, which are just the quantities that maximize the log likelihood of the
scaled F distribution:

l(τ20 ,df0| uŝ2, ud̂f) =
∑
i

log fF

(
uŝ

2
i ; τ

2 = τ20 ,df1 = ud̂fi,df2 = df0

)
+ const. (35)

In proDA, the variance prior estimation is performed by the internal function variance prior.
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Location Prior

Lastly, we explain how to find the hyper-parameters for the prior on the protein means. Equation (3)
states that we believe that the proteins means µi are drawn from a Normal distribution. We estimate
the mean of that location prior using a trimmed mean of the predicted values across all proteins and
samples

µ0 = trimmed-mean0.2(µ̂ij). (36)

However, we cannot calculate the variance the same way, because using the already regularized values
µ̂ij would lead to narrower and narrower estimates. This means that we need the un-regularized value

uµ̂ij .

We are only able to calculate uµ̂ij if we have at least one observation, but it is more likely to have
proteins without any observations left of the global mean µ0. Thus, we will ignore all uµ̂ij < µ0 and
assume that the distribution is symmetric.

To find the empirical Bayesian estimate of σ2
0 , we use the approach described in Ref. [46] for a

Normal prior density, which shows that σ2
0 is the value that solves

σ2
0 =

∑
i,j(uµ̂ij

2 − σ2

uµ̂ij
)(σ2

0 + σ2

uµ̂ij
)−2∑

i,j(σ
2
0 + σ2

uµ̂ij
)−2

(37)

which we find using the root function in R.

This step is performed by the internal function location prior.

Distances

Understanding which samples are similar and which are not is an important step for quality control.
Again, missing values make this task difficult: we cannot use the log intensity values for all proteins
to form one vector per sample and calculate Eudlidean distances between these vectors. If we were to
impute the missing values, we would get unrealistically high similarity for samples with many missing
values. Instead, we propose to construct a probabilistic similarity measure.

The most commonly used measure of sample similarity is the Euclidean distance between two
samples in the feature space. If there were no missing values this would just be

dist1,2 =

√∑
i

(yi1 − yi2)2. (38)

The feature space is the I dimensional space where each axis corresponds to one protein and each
sample is a point x·j in that space. If a protein measurement is missing, we know that its intensity was
low, but we cannot exactly say where along that particular axis the point is. We therefore consider
the coordinates of x·j as normally distributed random variables, Xij ∼ N(µi, σ

2
ij). For observed

intensity values yij , we set µij = yij and σij = 0. For missing values, we set µij to our estimate
according to Equation (12) and σ2

ij to the standard error of this estimate according to Equation (32).
Then, the distance between two samples (here labelled 1 and 2) becomes a random variable, too,
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defined as

D12 =

√∑
i

(X2
i1 −X2

i2). (39)

The full distribution of D12 may be hard to derive, but Ref. [47, p.53] provides formulas to ana-
lytically calculate the moments of the squared distance D2

12:

E[D2
12] =

∑
i

(µi1 − µi2)2 +
∑
i

(
σ2
i1 + σ2

i2

)
(40)

and
V[D2

12] =4
∑
i

(µi1 − µi2)2
(
σ2
i1 + σ2

i2

)
+ 2

∑
i

(
σ2
i1 + σ2

i2

)2
. (41)

We can use those equations to approximate the actual quantities of interested: the estimated distance
and the associated uncertainty

E[D12] ≈
√
E[D2

12] (42)

and

V[D12] ≈ V[D2
12]

(
d
√
x

dx

∣∣∣∣
x=E[D2

12]

)2

=
V[D2

12]

4E[D2
12]
.

(43)

The proDA sample distance heatmap shown in Figure 5C are the expectations from Equation (42),
calculated with proDA function dist approx.

19

.CC-BY-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted May 1, 2020. ; https://doi.org/10.1101/661496doi: bioRxiv preprint 

https://doi.org/10.1101/661496
http://creativecommons.org/licenses/by-nd/4.0/


Supplementary Figures
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Suppl. Figure S1: Mean-variance relationship on the full de Graaf dataset. Each dot represents mean and variance
for one protein at one time point and MS run. The blue line is a ggplot2 smoothing fit. A) the mean-variance relation
on the raw data. B) the mean variance relation on the log2 transformed data.
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Suppl. Figure S2: Heatmap of the de Graaf dataset. Each column is a sample and each row is a protein. The
color shows the intensity of the respective protein and missing values are greyed out. The samples and proteins are
clustered using a hierarchical clustering on the expected distances calculated with Equation (42). The annotations on
top of the heatmap indicate which samples were compared in the different performance and calibration experiments
shown in Figure 4 and Supplementary Figure S6-S8.
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Suppl. Figure S3: Same as Supplementary Figure 3, but for a comparison of 4 vs 4 samples
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Suppl. Figure S5: Calibration and performance stratified by the number of observations on the three vs three
comparison on the de Graaf dataset with 20% changed proteins. The x-axis shows the six tested methods and the
y-axis the number of observed values in condition one and two. The smaller number is listed first. In addition the
top line on the y-axis shows the marginal over all combination of observations. A) and B) show the results when
fixing the desired FDR at 10%. A) shows the actual FDR for each method and B) shows the number true positives.
C) and D) show the same features if the desired FDR is fixed at 1%. The color scales show the FDR (A and C) or
the number of true positives (B and D). White indicates the optimal value. In A) and C) light blue color indicates
a conservative FDR, whereas orange indicates an anti-conservative FDR.
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Suppl. Figure S6: Calibration and performance comparison with three vs. three samples. A,C,E,G) comparison of
the desired FDR with the FDR that is actually produced by the tool acording to the ground truth. The line for the
QPROT method is missing because it is literally of the charts. B,D,F,H) Plot of how many actually changed proteins
(true positives) each method identified at a specified FDR level. The regions where a method failed to control the
FDR in the left column are plotted as dashed lines. Note that for the performance comparison with only 5% of the
proteins changed, in absolute terms there are only a handful of false positives and the corresponding estimates of the
FDR are very noisy.
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Suppl. Figure S7: Same as Supplementary Figure S6, but for a comparison of 4 vs 4 samples.
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Suppl. Figure S8: Same as Supplementary Figure S6, but for a comparison of 6 vs 6 samples.
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