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Abstract 

 

We developed an automated 2-tiered Fuhrman’s grading system for clear cell renal cell 

carcinoma (ccRCC). Whole slide images (WSI) and clinical data were retrieved for 395 The 

Cancer Genome Atlas (TCGA) ccRCC cases. Pathologist 1 reviewed and selected regions of 

interests (ROIs). Nuclear segmentation was performed. Quantitative morphological, intensity, 

and texture features (n=72) were extracted. Features associated with grade were identified by 

constructing a Lasso model using data from cases with concordant 2-tiered Fuhrman’s grades 

between TCGA and Pathologist 1 (training set n=235; held-out test set n=42). Discordant cases 

(n=118) were additionally reviewed by Pathologist 2. Cox proportional hazard model evaluated 

the prognostic efficacy of the predicted grades in an extended test set which was created by 

combining the test set and discordant cases (n=160). The Lasso model consisted of 26 features 

and predicted grade with 84.6% sensitivity and 81.3% specificity in the test set. In the extended 

test set, predicted grade was significantly associated with overall survival after adjusting for age 

and gender (Hazard Ratio 2.05; 95% CI 1.21-3.47); manual grades were not prognostic. Future 

work can adapt our computational system to predict WHO/ISUP grades, and validating this 

system on other ccRCC cohorts. 
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Introduction 

Clear cell renal cell carcinoma (ccRCC) is the most common malignant tumor of 

epithelial origin in the kidney 
1
. For over 30 years, ccRCC was graded using the 4-tiered 

Fuhrman nuclear grading system which incorporates nuclear size, nucleolar prominence, and 

nuclear membrane irregularities. Diagnostic challenges can occur with the presence of other 

morphological features such as sarcomatoid or spindle cell pattern, when higher grade ccRCC 

show more eosinophilic staining in the cytoplasm, or in cases where other renal cancer 

histologic types (e.g. papillary RCC type1 and chromophobe RCC) exhibit clear cytoplasm 
2,3

. The 

correct classification of ccRCC grade and stage is important to guide clinical management, 

molecular-based therapies, and prognosis 
4,5

. Fuhrman grade is widely accepted as a prognostic 

factor despite mediocre inter-observer agreement 
6,7

. To improve inter-observer agreement, 

simplified 2- or 3-tiered grading systems have been proposed. These simplified systems appear 

to retain prognostic ability similar to that of 4-tiered systems 
8,9

. Recently, a new 

nuclear/nucleolar grading system, known as the World Health Organization 

(WHO)/International Society of Urological Pathology (ISUP) Grading Classification for RCC, was 

introduced 
10

.  

 

Technological advances have enabled computational pathology to discover novel 

morphometric features from whole slide images (WSIs) that may add diagnostic and/or 

prognostic information 
11–13

. Computational pathology techniques can analyze cancer WSIs 
14–16

, 

including the detection of malignant RCC cells 
17

. In this study, we developed an automated 

grading system to predict 2-tiered Fuhrman grade using ccRCC WSIs from The Cancer Genome 
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Atlas (TCGA). Our specific aims were to establish a computational pipeline to extract nuclei 

morphometric features and develop a model to predict 2-tiered ccRCC grade, and evaluate the 

prognostic efficacy of computer predicted grades. 

 

Materials and Methods 

Cases and Grade Assignment 

TCGA ccRCC clinical data, including Fuhrman’s grade (accessed June 2017), and the 

hematoxylin and eosin (H&E) WSIs were retrieved for 395 cases 
18,19

. TCGA ccRCC cases were 

contributed by seven participating medical centers. The TCGA Fuhrman’s grade for each case is 

the consensus of at least two pathologists from the case’s medical center. In order to identify 

tumor areas on each diagnostic WSI (i.e., regions of interest (ROIs)) for this computational 

pathology study, Pathologist 1 reviewed and identified an average of five ROIs for each case. 

Pathologist 1 assigned a Fuhrman grade of 1 to 4 for each ROI, and the highest grade among all 

the ROIs was the designated grade. Thus, each patient had two assigned grades: “TCGA grade” 

and “Grade by Pathologist 1”. TCGA and Pathologist 1 grades were re-stratified into the 2-tiered 

grading system: low (grades 1 and 2) and high (grades 3 and 4).  

 

Image Processing, Nuclei Segmentation and Morphometric Feature Extraction 

ROIs (n=1855) from 395 WSIs were extracted and split into 2000 pixel by 2000 pixel 

patches. Cell nuclei was segmented using our previously published workflow and Fiji 
20,21

 

(Figure 1). Patches were converted from the Red, Green, and Blue (RGB) color space to the 

Hue, Saturation, and Value (HSV) color space. Adaptive thresholding was performed to 
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identify nuclei regions. Watershed transform separated overlapping nuclei. Extracted nuclei 

of area less than 200 pixels or greater than 2000 pixels were excluded to improve the 

specificity of nuclear detection 
14

. 

 

For each patch, 72 nuclei morphometric features were extracted: nine morphological 

features, 15 intensity-based features, and 48 texture-based features. Morphological features 

describe the shape and size variation of nuclei. Intensity features (first order statistical features) 

describe the distribution of color variation in the nucleus. Three color channels were analyzed: 

lightness from HSV color space, lightness from Lab color space, and Hematoxylin channel from 

H&E color deconvolution 
22

. Five first order statistical features were computed—mean, median, 

standard deviation, skewness, and kurtosis—for each of the three color channels, for a total of 

15 intensity features. Texture features (second order statistical features) quantitatively describe 

patterns and texture of pixel values. Two types of second order statistical features were 

computed: co-occurrence based features (n=8) and run length based features (n=8). Co-

occurrence based features include correlation, cluster shade, cluster prominence, energy, 

entropy, Haralick correlation, inertia, and inverse difference moment 
23

. Run length based 

features include gray-level non-uniformity, run-length non-uniformity, low and high gray-level run 

emphasis, short run low and high gray-level emphasis, long run low and high gray-level emphasis 

24
. Likewise, texture features were extracted from the three selected color channels, resulting in 

a total of 48 texture features. 

 

Data Summarization and Selection of Representative ROI 
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Data extracted at the patch level were summarized to the ROI level by calculating the 

median and median absolute deviation (MAD) (i.e., 144 summarized features). Some cases had 

multiple ROIs annotated with the highest grade. Thus, one ROI among the highest grade ROIs 

was selected to represent the case. To do so, the median of all ROIs with the highest grade was 

calculated, and the ROI with the smallest Euclidean-distance to the calculated median was 

chosen.  

 

Nuclei Morphometric Features Associated with Grade 

Cases with concordant 2-tiered grade by TCGA and Pathologist 1 (n=277) were used to 

develop the automated 2-tiered grading system. Concordant cases were randomly spilt into a 

training set (n=235; 85%) and held-out test set (n=42; 15%). Seven machine learning 

classification methods were explored to classify ccRCC cases into low or high grade using nuclei 

morphometric features 
25,26

. All methods achieved similar area under the receiver-operator 

characteristic curves (AUC ROC; Supplementary 1). Lasso regression was the top performing 

method with a built-in feature selection capability. Furthermore, Lasso is computationally 

efficient and more interpretable compared to other machine learning methods such as deep 

learning. Therefore, the final classification model was built using Lasso on the training set using 

the optimal lambda parameter and evaluated on the test set. This workflow is summarized in 

Supplementary 2. 

 

Survival Analyses 
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The Lasso model was applied to predict the grade of the previously held out test set 

(n=42) and cases with discordant grades (n=118). These 160 cases were combined to create an 

extended test set to evaluate the prognostic capability (i.e., overall survival [OS]) of our 

predicted grade using crude and adjusted Cox proportional hazard models. The adjusted Cox 

models include patient age, gender, and cancer stage. TCGA treatment information was missing 

from 69% of the cases and thus was not included in the adjusted Cox models. Kaplan-Meier 

curves were plotted to visualize differences between the curves (survival package, R) 
27

.  

 

Additional Pathological Review for Discordant Cases 

The grades provided by TCGA may be assessed from ROIs other than the representative 

ROIs selected in our study. To obtain a fairer comparison between manual and predicted grades 

among the discordant cases, the representative ROIs were additionally reviewed by Pathologist 

2.  

 

Statistical Analyses 

Confusion matrices determined the concordance of the 2-tiered and 4-tiered grades 

between two raters 
26

. Inter-rater reliability among three raters was evaluated using Fleiss’ 

kappa. Boxplots were created using ggplot2 version 2.2.1. Comparisons between the nine 

morphological features with 2-tiered and 4-tiered grading were done using Mann-Whitney U or 

Kruskal Wallis test, respectively. All tests of statistical significance were two-sided. Statistical 

significance was achieved when p-value was <0.05 or when the false discovery rate (FDR) was 

<0.05. All analyses were conducted using R version 3.4.0. 
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Results 

The majority of TCGA ccRCC cases were white males. Most participants were between 

the ages of 50 to 69 and had stage I disease (Table 1). The agreement of 4-tiered grading 

between TCGA and Pathologist 1 was poor (frequency of agreement = 0.47, Cohen’s kappa = 

0.20; Supplementary 3A). When the grading was stratified into 2-tiers, 277 out of 395 cases 

were concordant (frequency of agreement = 0.70, Cohen’s kappa = 0.41; Supplementary 3B). 

Most of the discordant cases were assigned high grade by TCGA and low grade by Pathologist 1. 

 

Computer extracted morphological features reflected the variation of ccRCC nuclei as 

observed by pathologists. Nuclei size (i.e., area, perimeter, and spherical perimeter and radius) 

and shape (i.e., roundness, elongation, flatness and major axis of ellipse fit) were significantly 

larger and less spherical in higher grades (FDR<0.05; Supplementary 4 and 5). 

 

Lasso Classification Model 

The final Lasso model had an ROC AUC of 0.84. The model predicted 2-tiered ccRCC 

grade with 84.6% sensitivity, 81.3% specificity, 18.8% false positive rate and 15.4% false 

negative rate in the test set. The agreement between predicted and manual grades was good 

(frequency of agreement = 0.83, Cohen’s kappa = 0.65). The 18 unique morphometric features 

associated with ccRCC 2-tiered grade are in Table 2.  

 

Prognostic Efficacy of Predicted Grades 
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There were 65 death events out of 160 cases in the extended test set. Cases predicted 

as high grade had significantly poorer OS compared to low grade (Figure 2). The association 

between predicted grade and OS was significant in the crude analysis (hazard ratio (HR) 2.07; 

95% confidence interval (CI) 1.25-3.43) and after adjusting for age and gender (HR 2.05; 95% CI 

1.21-3.47). The association was attenuated when stage was included in the model (HR 1.66; 95% 

CI 0.97-2.83).  

 

Comparing Predicted Grade with TCGA and Pathologist 1 

Among the concordant cases, 2-tiered manual grades were significantly associated with 

OS (Figure 3A; Table 3). Predicted grade for concordant cases were not evaluated as the 

majority of the concordant cases were part of the training set used to build the Lasso model. 

Within the discordant cases, neither grade provided by TCGA nor Pathologist 1 was associated 

with OS (Figures 3B and 3C). Predicted grade was significantly associated with OS (crude model 

HR 2.01; 95% CI 1.14-3.54) and when adjusted for age and gender (HR 2.31; 95% CI 1.26-4.24). 

The association of predicted grade and OS among the discordant cases was attenuated when 

adjusted stage was included in the model (HR 1.83; 95% CI 0.98-3.41; Figure 3D; Table 3). 

 

Additional Pathological Review for Discordant Cases 

There was no effective agreement between TCGA, Pathologist 1 and Pathologist 2 

among the discordant cases (4-tiered grading: Fleiss’ kappa = -0.23; 2-tiered grading: Fleiss’ 

kappa = -0.33). When comparing between TCGA and Pathologist 2, there was no effective 

agreement (4-tiered grading: frequency of agreement = 0.33, Cohen’s kappa = -0.14; 2-tiered 
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grading: frequency of agreement = 0.39, Cohen’s kappa = -0.19). Despite assessing the same 

representative ROIs, the agreement between Pathologist 1 and Pathologist 2 was poor for 4-

tiered grading (frequency of agreement = 0.48, Cohen’s kappa = 0.11) and was slightly 

improved for 2-tiered grading (frequency of agreement=0.61, Cohen’s kappa = 0.20). 

Discordant cases between Pathologist 1 and Pathologist 2 were more likely to be assigned as 

high grade by Pathologist 2. Contingency tables between TCGA, Pathologist 1, and Pathologist 2 

are in Supplementary 6.  

 

Grades assigned by Pathologist 2 were not associated with OS (Table 3). Further 

analyses were explored to determine if the incorporation of manual grade by Pathologist 2 may 

improve prognostic efficacy. The grades for discordant cases were re-assigned as low or high by 

using the most frequent grade among TCGA, Pathologist 1, and Pathologist 2, and among 

Pathologist 1, Pathologist 2, and predicted grade (i.e., integrating manual and computer). Re-

assigned grades were not associated with OS (p>0.05; Supplementary 7). Next, these cases 

were spilt into cases that did and did not agree between Pathologist 1 and Pathologist 2. 

Manual grades were not associated with OS in cases that did and did not agree between 

Pathologist 1 and Pathologist 2 (p>0.05; Table 4). Predicted grade was only associated with OS 

in cases that agreed between Pathologist 1 and Pathologist 2 (Table 4). Supplementary 8 

contains the manual and predicted grades of these ccRCC cases. 
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Discussion 

This study utilized the large and diverse TCGA ccRCC dataset to extract quantitative 

morphometric features from ROIs and applied machine learning algorithms to develop an 

automated 2-tiered grading system. Using discordant cases as an independent validation set, 

our data-driven system stratified ccRCC cases into low and high grades that were significantly 

associated with OS; the prognostic efficacy of predicted grades outperformed the manual 

grades assessed by TCGA, Pathologist 1, and Pathologist 2. This proof-of-concept study 

demonstrated the potential of computational pathology to predict ccRCC grades via a more 

objective and quantitative pipeline, as well as address the issue of grade disagreement 

commonly encountered between pathologists. 

 

The grading of ccRCC is highly challenging and subjective, but the accurate assignment 

of ccRCC grade is important for clinical care and follow-up. To the best of our knowledge, this 

is the first computational pathology system created to predict 2-tiered ccRCC grade with 

prognostic significance. Previously, Yeh and colleagues developed an automated system to 

predict grade using a dataset of 39 patients and one feature (i.e., maximum nuclei size), and 

correlated their predicted grade with manual grade assessed by one pathologist 
28

. Our 

system, trained using a much larger and more diverse dataset of 277 cases from seven TCGA 

participating institutions, captures 72 nuclei details in addition to morphological features 

(i.e., nuclei size and shape) typically observed by pathologists. We showed that computer 

extracted morphological features were significantly associated with grade. We identified 18 

unique morphometric biomarkers to accurately classify ccRCC. These 18 features collectively 
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describe the nucleus, the uneven distribution of nucleus staining, and the granularity of 

chromatin and nucleoli. This highlights that the addition of computer textual and intensity-

related features to morphological features can improve the ability to predict ccRCC grade 

that correspond to Fuhrman’s grading system and with prognostic utility.  

 

Each TCGA grade is the consensus of at least two pathologists. One reason for grade 

disagreement between TCGA and Pathologist 1 can be explained by TCGA pathologists 

assessing different ROIs from the representative ROIs selected in our study. However, even 

when reviewing the same ROIs for discordant cases, there was very poor agreement between 

Pathologist 1 and Pathologist 2, reiterating the challenges of ccRCC grading. These discordant 

cases could be more diagnostically challenging or ambiguous. Since manual grades for 

concordant cases were significantly associated with OS, it could be argued that concordant 

cases were diagnostically less challenging where the tumors were overwhelmingly of a low or 

high grade and that our model was trained using more homogeneous ROIs. Predicted grades for 

discordant cases were significantly associated with survival, in contrast to manual assessments 

or using the most frequent manual grade. Therefore, our automated system has the ability to 

diagnose a range of ccRCC cases with consistency and objectivity. In practical application, such 

computational system could be useful as a tool to provide a second-opinion in diagnostically 

ambiguous cases for pathologists.  

 

Our study has some limitations. We did not use the WHO/ISUP grading system because 

the TCGA participating medical centers used the Fuhrman’s system. However, since our 
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computer system was constructed based on computer extracted nuclear features, it can be 

adapted to predict WHO/ISUP grades which also utilize nuclei/nucleoli features in the future. 

There are inherent limitations of reviewing cases using WSIs. Accurate grading may be hindered 

by the quality of WSIs and the lack of the Z-axis 
29

. Our study reviewed diagnostic WSIs and 

analyzed manually selected ROIs that may not be representative of the entire tumor. For future 

work, automating ROI detection and grade prediction will allow the review of multiple tumor 

sections more efficiently. Lastly, our nuclei segmentation relied on conventional image analysis 

techniques. While qualitative evaluation of the segmentation results revealed that our image 

processing pipeline produced reasonably good results, the nuclei segmentation may not be 

optimal in more challenging cases. A solution is to employ deep learning based techniques to 

improve nuclei segmentation in future studies 
28,30,31

.  

 

Conclusions 

We developed an automated 2-tiered Fuhrman’s grading system with prognostic 

significance. Our system demonstrated the potential of computational pathology to improve 

the reproducibility in the diagnosis and grading of ccRCC, and aid the clinical management of 

ccRCC patients. Future work may include adapting our computational system to predict 

WHO/ISUP grades; validating our system on other ccRCC cohorts; using deep learning methods 

to detect ROIs, segment nuclei and predict grade; and exploring whether morphometric 

features can predict prognosis independently of grade. This work is one step toward developing 

an artificial intelligence system for diagnostic pathology.    
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Figure 1. Examples of nuclei detection and segmentation in low and high grade clear cell renal 

cell carcinoma. The rightmost column shows computer-generated segmentation mask where 

cell nuclei are labelled white against a black background. The middle column shows the overlay 

of segmented nuclei (green spots) over each hematoxylin and eosin (H&E) patch. 

 

Figure 2. Cases predicted as high grade have significantly poorer overall survival rates 

compared to cases predicted as low grade in the extended test set (hazard ratio 2.07, 95% 

confidence interval of 1.25-3.43, p<0.01; 65 death events among 160 cases). The shaded areas 

reflect the 95% confidence interval for high or low grade. 

 

Figure 3. This set of Kaplan-Meier curves compared manual and predicted grades with overall 

survival in concordant and discordant cases. Grades assigned by TCGA/Pathologist 1 were 

significantly associated with overall survival within the concordant cases (A). In the discordant 

set, neither grades assigned by TCGA (B) nor Pathologist 1 (C) were associated with overall 

survival while predicted grade remained significantly prognostic (D). Please refer to Table 3 for 

hazard ratios and 95% confidence intervals for each analysis. The shaded areas reflect the 95% 

confidence interval for high or low grade.  
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Table 1. Demographic table of the 395 The Cancer Genome Atlas (TCGA) clear cell renal cell carcinoma cases with 2-tiered 

histological grade (low and high). Note that the TCGA grade for each patient in the discordant set is the opposite grade assigned by 

Pathologist 1. 

  
Concordant 

Cases 

Discordant cases 

(Grades by TCGA) 

Discordant cases 

(Grades by Pathologist 1) 

 Total n (%) Low n (%) High n (%) Low n (%) High n (%) Low n (%) High n (%) 

Cases, n 395 (100) 162 (58.5) 115 (41.5) 28 (23.7) 90 (76.3) 90 (76.3) 28 (23.7) 

Age group, n        

<50 80 (20.3) 36 (22.2) 22 (19.1) 4 (14.3) 18 (20.0) 18 (20.0) 4 (14.3) 

50-59 106 (26.8) 50 (30.9) 29 (25.2) 6 (21.4) 21 (23.3) 21 (23.3) 6 (21.4) 

60-69 109 (27.6) 37 (22.8) 33 (28.7) 10 (35.7) 29 (32.2) 29 (32.2) 10 (35.7) 

70-79 82 (20.8) 31 (19.1) 26 (22.6) 8 (28.6) 17 (18.9) 17 (18.9) 8 (28.6) 

>80 18 (4.6) 8 (4.9) 5 (4.3) 0 (0.0) 5 (5.6) 5 (5.6) 0 (0.0) 

Gender, n        

Female 130 (32.9) 67 (41.4) 28 (24.3) 10 (35.7) 25 (27.8) 25 (27.8) 10 (35.7) 

Male 265 (67.1) 95 (58.6) 87 (75.7) 18 (64.3) 65 (72.2) 65 (72.2) 18 (64.3) 

Race, n        

Asian 7 (1.8) 3 (1.9) 2 (1.7) 0 (0.0) 2 (2.2) 2 (2.2) 0 (0.0) 

Black 33 (8.4) 13 (8.0) 10 (8.7) 2 (7.1) 8 (8.9) 8 (8.9) 2 (7.1) 

White 349 (88.4) 142 (87.7) 102 (88.7) 25 (89.3) 80 (88.9) 80 (88.9) 25 (89.3) 

Not reported 6 (1.5) 4 (2.5) 1 (0.9) 1 (3.6) 0 (0.0) 0 (0.0) 1 (3.6) 

Stage, n        

Stage I 207 (52.4) 121 (74.7) 35 (30.4) 13 (46.4) 38 (42.2) 38 (42.2) 13 (46.4) 

Stage II 44 (11.1) 17 (10.5) 15 (13.0) 5 (17.9) 7 (7.8) 7 (7.8) 5 (17.9) 

Stage III 92 (23.3) 18 (11.1) 36 (31.3) 8 (28.6) 30 (33.3) 30 (33.3) 8 (28.6) 

Stage IV 52 (13.2) 6 (3.7) 29 (25.2) 2 (7.1) 15 (16.7) 15 (16.7) 2 (7.1) 

Type of Treatment, n        

Chemotherapy 7 (1.8) 3 (1.9) 4 (3.5) 0 (0.0) 0  (0.0) 0  (0.0) 0 (0.0) 

Immunotherapy 6 (1.5) 2 (1.2) 2 (1.7) 0 (0.0) 2 (2.2) 2 (2.2) 0 (0.0) 

Molecular therapy 79 (20.0) 31 (19.1) 24 (20.9) 5 (17.9) 19 (21.1) 19 (21.1) 5 (17.9) 

Radiation 10 (2.5) 2 (1.2) 4 (3.5) 2 (7.1) 2 (2.2) 2 (2.2) 2 (7.1) 

Mixed therapy 21 (5.3) 4 (2.5) 10 (8.7) 2 (7.1) 5 (5.6) 5 (5.6) 2 (7.1) 

Unknown 272 (68.9) 120 (74.1) 71 (61.7) 19 (67.9) 62 (68.9) 62 (68.9) 19 (67.9) 
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Table 2. Nuclear morphometric features associated with 2-tiered ccRCC grade selected in the 

final Lasso classification model (18 unique features; 26 total features). 

 

Feature 
Type Color 

Space 

Summary 

Function 

Biological 

Relevance 

Elongation Morphology 
- MAD 

Nuclear pleomorphism, 

nuclear shape (irregular) 

Minor axis of the Ellipse Fit Morphology 
- Median 

Nuclear pleomorphism, 

nuclear shape (irregular) 

Flatness Morphology - MAD Nuclear shape (irregular) 

Kurtosis Intensity HSV Median Uneven distribution of nucleus staining 

Skewness Intensity H&E MAD Uneven distribution of nucleus staining 

  HSV Median  

  Lab MAD  

Correlation Texture HSV MAD Granularity of chromatin  (a) 

Haralick Correlation Texture H&E Median Granularity of chromatin  (a) 

Energy Texture 
Lab 

Median & 

MAD 
Granularity of chromatin  (b) 

Inverse difference moment Texture 
H&E 

Median & 

MAD 
Granularity of chromatin  (b) 

  
HSV 

Median & 

MAD 
 

Inertia Texture H&E Median Granularity of chromatin  (b) 

  Lab Median  

Entropy Texture HSV Median Granularity of chromatin  (c) 

Low gray-level run emphasis Texture H&E MAD Granularity of chromatin  (c) 

Long run high gray-level emphasis Texture HSV MAD Granularity of chromatin  (c) 

Long run low gray-level emphasis Texture H&E MAD Granularity of chromatin  (c) 

Short run high gray-level emphasis Texture HSV MAD Granularity of chromatin  (c) 

Short run low gray-level emphasis Texture H&E MAD Granularity of chromatin  (c) 

Gray level non-uniformity Texture HSV Median Granularity of chromatin  (d) 

  Lab MAD  

High gray-level run emphasis Texture HSV MAD Granularity of chromatin  (d) 

a) Correlation is a co-occurrence based texture feature, describing roughness and repeated 

direction inside the nuclei. 

b) Co-occurrence based texture feature, describing roughness inside the nuclei. 

c) Co-occurrence based texture feature, describing randomness of gray-level distribution. 

d) Run-length based texture feature, describing coarseness inside nuclei. 

MAD: median absolute deviation; Lab: Lab color space; HSV: hue-saturation-value color space; H&E: 

Hematoxylin and Eosin color space 
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Table 3. The association of manual or computer predicted 2-tiered grade with overall survival in the concordant and discordant 

cases. 

 

Confidence Interval, CI 

  

 Manual Grade Computer Predicted Grade 

 

Hazard 

Ratio 
(95% CI) p-value 

Hazard 

Ratio 
(95% CI) p-value 

A. Concordant cases between TCGA and Pathologist 1 (85 events out of 277 cases)    

Model A: Crude 3.12 (2.00, 4.86) <0.01 NA NA NA 

Model B: Adjusted for Age and Gender 3.00 (1.91, 4.71) <0.01 NA NA NA 

Model C: Adjusted for Age, Gender, and Stage 1.59 (0.99, 2.57) 0.06 NA NA NA 

B. Discordant cases between TCGA and Pathologist 1 (52 events out of 118 cases)    

Grade assigned by TCGA       

Model A: Crude 1.16 (0.59, 2.25) 0.67 2.01 (1.14, 3.54) 0.02 

Model B: Adjusted for Age and Gender 1.09 (0.56, 2.13) 0.80 2.31 (1.26, 4.24) <0.01 

Model C: Adjusted for Age, Gender, and Stage 1.08 (0.55, 2.11) 0.83 1.83 (0.98, 3.41) 0.06 

Grade assigned by Pathologist 1       

Model A: Crude 0.86 (0.44, 1.68) 0.67 NA NA NA 

Model B: Adjusted for Age and Gender 0.92 (0.47, 1.79) 0.80 NA NA NA 

Model C: Adjusted for Age, Gender, and Stage 0.93 (0.47, 1.82) 0.83 NA NA NA 

Grade assigned by Pathologist 2       

Model A: Crude 1.09 (0.63, 1.89) 0.75 NA NA NA 

Model B: Adjusted for Age and Gender 1.21 (0.70, 2.10) 0.50 NA NA NA 

Model C: Adjusted for Age, Gender, and Stage 1.15 (0.66, 2.00) 0.62 NA NA NA 
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Table 4. The association of manual or computer predicted 2-tiered grade with overall survival in 118 discordant cases. 

 

Confidence Interval, CI 

 

 Manual Grade Computer Predicted Grade 

 

Hazard 

Ratio 
(95% CI) p-value 

Hazard 

Ratio 
(95% CI) p-value 

A. Cases with identical grades between Pathologist 1 and Pathologist 2 (31 events out 

of 76 cases) 
   

Model A: Crude 0.99 (0.44, 2.23) 0.99 2.05 (1.00, 4.21) 0.05 

Model B: Adjusted for Age and Gender 1.04 (0.46, 2.34) 0.93 2.42 (1.13, 5.20) 0.02 

Model C: Adjusted for Age, Gender, and Stage 1.18 (0.52, 2.68) 0.69 1.89 (0.87, 4.12) 0.11 

B.  Cases with different grades between Pathologist 1 and Pathologist 2 (21 events out 

of 46 cases) 
   

Grade assigned by Pathologist 1       

Model A: Crude 0.64 (0.19, 2.20) 0.48 2.49 (0.83, 7.45) 0.10 

Model B: Adjusted for Age and Gender 0.63 (0.18, 2.17) 0.46 2.49 (0.72, 7.28) 0.16 

Model C: Adjusted for Age, Gender, and Stage 0.59 (0.17, 2.03) 0.40 2.03 (0.62, 6.66) 0.24 

Grade assigned by Pathologist 2       

Model A: Crude 1.56 (0.46, 5.31) 0.48 NA NA NA 

Model B: Adjusted for Age and Gender 1.58 (0.46, 5.44) 0.46 NA NA NA 

Model C: Adjusted for Age, Gender, and Stage 1.70 (0.49, 5.89) 0.40 NA NA NA 
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