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ABSTRACT  

Background: Little is known about the functional relationship of delaying second-line treatment initiation 

for HIV-positive patients and mortality, given a patient’s immune status.  

 

Methods: We included 7255 patients starting antiretroviral therapy between 2004-2017, from 9 South 

African cohorts, with virological failure and complete baseline data. We estimated the impact of switch 

time on the hazard of death using inverse probability of treatment weighting (IPTW) of marginal structural 

models. The non-linear relationship between month of switch and the 5-year survival probability, 

stratified by CD4 count at failure, was estimated with targeted maximum likelihood estimation (TMLE). 

We adjusted for measured time-varying confounding by CD4 count, viral load and visit frequency.  

 

Results: 5-year mortality was estimated as 10.5% (2.2%; 18.8%) for immediate switch and as 26.6% (20.9%; 

32.3%) for no switch (49.9% if CD4 count<100 cells/mm3). The hazard of death was estimated to be 0.40 

(95%CI: 0.33-0.48) times lower if everyone had been switched immediately compared to never. The 

shorter the delay in switching, the lower the hazard of death, e.g. delaying 30-60 days reduced the hazard 

0.52 (0.41-0.65) times, and 60-120 days 0.56 (0.47-0.66) times.  

 

Conclusions: Early treatment switch is particularly important for patients with low CD4 counts at failure. 

Keywords: HIV, treatment switching, second-line ART, causal inference, targeted learning 
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Introduction 

Anti-retroviral treatment (ART) was received by an estimated 4.4 million (61%) people living with HIV in 

South Africa in 20171. As the number of HIV-positive patients with access to ART has increased, so has the 

number of patients that have experienced failure of first-line ART. Patients with virological failure on first-

line ART should, in principle, switch to second-line therapy as soon as possible, as a delay in switching 

treatment regimens has been shown to lead to increased mortality 2-7. South African guidelines 

recommend switching from two nucleoside reverse transcriptase inhibitors (NRTIs) and one non-

nucleoside reverse transcriptase inhibitor (NNRTI) to two NRTIs and one protease inhibitor (PI) if two 

consecutive viral loads on first line therapy are greater than 1000 copies/mL.  However, in resource limited 

settings it is still common to delay the switch 8-10. Reasons for delays include doubts about adequate 

patient adherence, availability of viral load testing and the cost of second line regimens11,12.  

The effect of delayed switch to second-line therapy on mortality has been investigated in several 

observational studies which adjusted for measured time-varying confounders using causal inference 

methods. Gsponer et al. 5 showed the drastic reduction in mortality for patients switching to second-line 

compared to no switch based on an immunological criteria of failing, as well as the benefit of switching 

early. Petersen et al.6  estimated the effect of delayed switch after confirmed virological failure on survival 

and quantified the relative benefit of earlier switch based on the assumption of a linear relationship 

between timing of switch and probability of death. Other studies have looked into the impact of delayed 

switch in South Africa7, the effect of using different viral failure definitions2 and the relative efficacy of 

various monitoring strategies4. 

There have been few studies which have explored the functional relationship between time of switch and 

mortality13, and there is potential for further research into whether there may be a “breaking point” 

beyond which further delays could be particularly risky, especially for patients with an already 
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compromised immune system. In particular, it would be of interest to know whether the effect of delayed 

switch is modified by CD4 count at failure. Previous studies have looked at this, albeit in different 

contexts6,7. Moreover, from a programmatic perspective there may also be a benefit to minimising the 

time between first viral load greater than 1000 copies/mL and switch given that with new technologies 

like resistance testing, patients with adequate adherence and proven resistance could potentially be 

switched earlier. In addition, most of the studies to date had relatively small patient numbers and limited 

follow-up times.  

Our study aims at addressing these gaps. We assess the impact of delayed switch from first-line ART 

treatment to second-line ART treatment on mortality in 9 South African treatment programs; a large 

cohort with long follow-up. We use two related but distinct causal approaches; inverse probability of 

treatment weighting (IPTW) and targeted maximum likelihood estimation (TMLE), which allow us to 

present or findings on the hazard and incidence scales. The impact of delayed switch is flexibly modelled 

for patients with different disease severities based on CD4 count at time of viral load failure. We also 

investigate the importance of monitoring the delay between the first viral load (VL) measure over 1000 

copies/ml and confirmed failure (second VL measure >1000 copies /ml) as part of the delay in switch on 

mortality outcomes. 

Methods 

Study setting and definitions 

We included 9 HIV treatment facilities in Southern Africa that took part in the IeDEA-SA collaboration 

(http://www.iedeasa.org/), namely Desmond Tutu HIV Centre Gugulethu, Hlabisa HIV Treatment and Care 

Programme, Tygerberg, McCord Hospital, 3 treatment facilities at the Khayelitsha ART Programme, 
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Themba Lethu Clinic and Masiphumelele Clinic. The collaboration has been described in detail elsewhere 

14.  

Adult patients who that started treatment on a first-line treatment regime (2 NRTIs + 1 NNRTI) and failed 

first-line therapy after 1st January 2004, were included in the analysis. Failure was defined as two 

consecutive VL measurements greater than 1000 copies/mL and measured at least 4 weeks apart. If 

measures were taken less than 4 weeks apart the next measure was considered. We excluded patients 

without any record of receiving ART, those that experienced virological failure within 6 months of ART 

initiation, those that were not receiving ART at the time of first VL failure and those that switched before 

viral load failure.  In total, we included 7255 patients for the main complete case analysis, see Figure 1, 

and 8008 patients in the sensitivity analysis with multiple imputation for missing baseline data. Earliest 

entry date into our sample was 4th October 2004 and the database was closed on 16th August 2017. 

In the main analysis, baseline was defined at the time of first-line viral failure i.e. the date at which the 

second of the two consecutive viral loads were over 1000 copies per/ml. A secondary analysis was 

performed using the date at which the first of the two consecutive VLs was greater than 1000 copies 

per/mL as the baseline, which represents the earliest indication of viral failure. The sample of patients 

was the same regardless of the definition used because only patients with two elevated viral loads were 

included. A switch from first-line ART to second-line ART was broadly defined as a switch from 2 NRTIs 

and 1 NNRTI to 2 NRTIs and 1 PI. A detailed list of second-line regimens in our data is provided in 

Supplementary Table 1. Patients were defined as being lost to follow-up if there was no visit or event for 

9 months after their last recorded visit and before database closure.  

The primary endpoint was mortality which was recorded through clinic’s patient files and updated through 

data from the South African national vital registry where available (this approach is expected to give >96% 

completeness of mortality data 15).  
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Analysis 

Analysis time started at the date of first-line failure, defined as 2 VL>1000 copies/mL in the main analysis 

and 1 VL>1000 in the secondary analysis, as described above. Our primary exposure was the timing of 

switch to second-line ART, measured in months since the respective date of failure and we used this to 

assess the effect on both the hazard of death and 5-year survival.  

Measured and included baseline characteristics (at time of confirmed failure) are age, sex, highest and 

lowest CD4 count prior to failure, highest and lowest log VL measure prior to failure, an indicator whether 

a patient was ever suppressed prior to failure, WHO clinical stage at time of ART initiation, year of ART 

start and treatment facility. Time-varying variables which potentially determined the decision to switch 

as well as mortality, and were affected by prior treatment regimes, were CD4 count, VL and treatment 

frequency (measured as number of visits within the past 6 months). It is possible to adjust for confounding 

of these variables using appropriate causal inference methods 16. 

We estimated the effect of timing of switch on the hazard of death using inverse probability of treatment 

weighting (IPTW) of marginal structural models 2. To estimate the effect of treatment switch, as well as 

the non-linear relationship between month since failure and month of switch on the probability of 5-year 

mortality, stratified by CD4 count at failure, we used targeted maximum likelihood estimation (TMLE) for 

longitudinal marginal structural working models 17. 

 

For IPTW, we used 7 different switching delay strategies; no switch and delayed switch by <30 days, 30-

59 days, 60-119 days, 120-179 days, 180-359 days, and ≥ 360 days. We created 7 clones/replicates per 

patient, one for each treatment strategy, as described previously 7. A clone/replicate is censored after it 

ceases to follow the respective switching strategy. The remaining uncensored observations were 

weighted to represent what would have happened if the censored patients had continued to follow the 
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respective switching strategy. We used pooled logistic regression models weighted by the stabilized 

inverse probabilities of treatment and censoring to estimate the effect of the different strategies on the 

hazard of death. The logistic regression models used to derive the weights contained the above-

mentioned time-dependent and baseline variables in the denominator, and baseline variables only in the 

numerator. The Supplementary Material (Supplementary table 5, Technical Appendix) contains a detailed 

description of implementation of the method and model specifications. In sensitivity analyses, missing 

baseline CD4 count and WHO stage were imputed using multiple imputation by chained equations18. 

With TMLE, we first estimated 5-year mortality under immediate switch after confirmed failure and no 

switch using the R-package ltmle 19. The iterated outcome regressions, i.e. the relationship between 

mortality and the covariates at each point in time (based on 3-month intervals) were estimated using 

super learning. Super learning is a data-adaptive approach that combines different modelling approaches, 

such as logistic regression or other regression approaches, such that the expected prediction error 

(estimated via cross validation) is minimized, see the technical appendix (Supplementary Material) for 

more details. We then specified marginal structural working models to model the relationship between 

month since failure, month of switching, and survival, conditional on CD4 count at failure; see technical 

appendix and the footnote in Figure 3 for more details. The fitted models, calculated based on the 

approach described in Petersen et al. 17, were then used to visualize the relationship. 

 

All analyses were conducted in Stata 13 20 and R 3.5.1 21. 

 

Ethics 

This IeDEA-SA collaboration study was approved by the University of Cape Town and University of Bern 

human research ethics committees. At most sites, the requirement for informed consent was waived, as 
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only anonymized data that were already collected as part of routine monitoring contributed to the 

collaborative dataset. 

 

Results 

Median time from ART start to failure was 1218 days (about 3.3 years); median time from confirmed 

failure to switch was 121 days (1st quartile: 49 days; 3rd quartile: 288 days), with follow-up times from 

confirmed failure ranging between 1 and 4409 days (median 1835 days, IQR 1183-2470). During follow-

up 3765 patients (52%) switched, and 842 (12%) died.  

The included patients were mostly female (65%), and had advanced WHO stage at ART initiation (60%), 

see Table 1. Among patients that never switched, a substantial proportion (19%) had a viral load >100.000 

copies/mL at confirmed viral load failure.  

The probability of being switched was higher among patients with low current CD4 count, high VL, and a 

higher visit frequency (Table 2). These variables also predicted the probability of death, confirming that 

they are likely time-varying confounders.  

The effect of immediate switch compared to no switch on mortality, if confirmed failure was used as 

failure definition, was estimated as 0.49 (95% CI: 0.42-0.58) in a crude analysis, and as 0.37 (0.30-0.46) 

using IPTW. Results with multiple imputation were 0.47 (0.40-0.54) in a crude analysis, and 0.36 (0.30-

0.44) using IPTW. If first VL>1000 copies/mL was used as definition of failure the estimates were 0.52 

(0.45-0.61) and 0.42 (0.34-0.52) respectively. After imputation the results were 0.50 (0.43-0.58) and 0.41 

(0.34-0.51) (Supplementary Table 2). Figure 2 shows that the shorter the delay in switching, the lower the 

hazard of death. There are stronger benefits of early switch when considering one VL>1000 copies/mL as 

failure definition. Similar results are obtained after multiple imputation of baseline CD4 count and WHO 
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stage (Supplementary Table 2). Sensitivity analyses show that truncation of the stabilized weights at the 

1st and 99th quantile yields the most stable results (Supplementary Table 3).  

Using TMLE, 5-year mortality was estimated as 10.5% (2.2%; 18.8%) if everyone had been switched 

immediately, and as 26.6% (20.9%; 32.3%) if everyone had stayed on their failing regimen. The 

corresponding risk difference was -16.1% (-26.1%; -6.1%), and the odds ratio was 0.32 (0.13; 0.82). The 

working MSM’s, fitted with TMLE, are visualized in Figure 3. The black dashed line shows that the 

estimated 5-year mortality (i.e. 60 months after failure) to be about 25% under no switching (month of 

switch = 60). However, this varies considerably by immune status at failure. Almost 51% would have died 

among those who had a CD4 count <100 at failure (red line), but only a small proportion (17.5%) among 

those with a CD4 count > 200 cells/mm3 (green line). Moreover, the effect of delaying treatment was more 

severe (i.e. steeper ascent) among patients failing with CD4 count < 100 cells/mm3. Similar results are 

obtained when evaluating probabilities of death <5 years (Supplementary Figure 1). Overall, the estimated 

relationship between switch time and mortality was non-linear, as visualized in Figure 3. This is because 

the estimated coefficients of the non-linear switch time terms in the working MSMs were important, and 

also significant at the 5% level. 

Discussion 

Statement of principal findings 

Our study highlights that it often takes a long time to switch patients to second line treatment in Southern 

Africa. We have shown that an early switch of regimen is highly beneficial in terms of reduced mortality. 

Patients with low CD4 counts at time of failure are at particularly high risk of increased mortality, whereas 

a moderate delay in healthy patients comes with a comparatively lower risk. 
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Strengths and limitations  

Our study is based on a large data set, with a multitude of different treatment regimens and long follow-

up, which allowed us to model the relationships in the data in a flexible and robust way. Since our patients 

have relatively regular viral load measurements for the setting, we have been able to evaluate the effect 

of switching based on viral failure, rather than immunological failure; which is of great interest given that 

viral load monitoring is typically not available in public sector programs in resource limited settings, 

though it is currently being expanded. Another strength is the use of causal inference methods to adjust 

for time-dependent confounding affected by prior treatment, which would not be possible with 

traditional regression analyses 16. This helped us to contrast switching strategies under different viral 

failure definitions. We also used TMLE, which has desirable statistical properties (double robustness), to 

confirm and extend the MSM analysis. In contrast to previous studies, we have even been able to 

implement this method for a marginal structural model that postulated non-linear relationships between 

treatment strategies and survival.  

Our study has some limitations. Our analysis is based on routine data from South African treatment 

programs. It may well be possible that patients defined to be lost to follow-up are in fact cycling in and 

out of care, possibly in different provinces  22; or that the complication of capturing start and stop dates 

of different drugs may lead to inaccuracies that could potentially also affect our ability to accurately define 

switch dates. The diagnostics further suggested that there could be some positivity violations in our data 

which means that individuals may not have a positive probability of continuing to receive treatment 

according to a specific treatment rule, given that they have done so thus far and irrespective of the 

covariate history (Supplementary Table 4, Supplementary Figure 2). This could have affected our 

estimates. Another limitation is the unavailability of patient-level adherence data. 
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There are additional limitations associated with the first VL>1000 at baseline (secondary) analysis, which 

occur due to the definition of the sample. Eligibility for the sample is based on confirmed failure. After 

first VL>1000, those included cannot switch or die until after their next VL measurement, thus creating a 

period of immortal time. Table 1 indicates that the period of time between first VL>1000 and confirmed 

failure is greater, on average, for those with longer delays between confirmed failure and switch. Hence, 

this may cause some bias in the comparisons of delay strategies. Furthermore, the restriction of the first 

VL>1000 sample to patients that attained confirmed failure (VL>1000) at next VL measurement means 

that the secondary analysis can only be interpreted in reference to the confirmed-failure population, and 

therefore is not generalizable to the wider population.  

Interpretation of findings 

It is no surprise that delayed treatment switch may affect patient’s health. However, according to our 

results, earlier switch is of particular benefit when switching after the first sign of failure, i.e. the first viral 

load > 1000 copies/mL, for those that go on to confirmed failure. HIV specialists may be reluctant to switch 

patients that have adherence problems or are unstable, but for stable patients who fail because of 

resistance or toxicities, early switching after a first elevated viral load could be of benefit.  

Our results confirm that switching is partly determined by visit frequency, which may relate to clinician 

concern for patients based on health status, but also strongly relates to patient’s engagement in care and 

adherence. To reduce the risk of failure of another regimen, patients on second-line treatment should be 

adherent. We have shown the benefit of switching even under imperfect adherence, but ideally patients 

should be psychologically prepared to adhere to their new treatment regimen.  
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Results in context 

Our results comparing immediate switch to no switch yield similar conclusions to other studies which used 

other definitions of failure, which were done in different patient populations, for different follow-up 

times, and used different methodological approaches5-7,17. Like Rohr et al.7 we show the that the 

effectiveness of switching strategies depends on disease severity, though in a more refined way given that 

we modelled the relationship non-linearly for different patient groups. Similar to other studies we have 

shown that remaining on first-line therapy leads to an increase in mortality compared to switching, and 

that earlier switch is beneficial in terms of survival 6,17. Our marginal structural working models were more 

complex than the MSMs in these studies, which makes a more refined interpretation of the dose-response 

relationship between delay in switching and mortality possible; however, both previous studies13 and 

current research23 suggests that it may be important to allow for even more flexible approaches to model 

specification and fitting than ours. Nevertheless, whatever methodological approach is chosen, it is 

important to note that the beneficial effect of switching can be observed for different definitions of 

treatment failure 5,6. 

Our results have two direct implications for current programme guidance. Firstly, for stable virologically 

suppressed patients, it is no longer recommended in South Africa that they receive regular CD4 counts. 

However, once a patient is viraemic, our results demonstrate the critical importance of CD4 count in 

further risk stratifying patients. The value of dropping routine CD4 count testing in the interests of cost-

saving, needs to be considered alongside the benefits of the additional information it provides on disease 

severity and mortality risk, and could be used to highlight groups that are in more urgent need of early 

switch.  

In patients who subsequently fail virologically, we have demonstrated that the delay between the first 

and second elevated viral load contribute to the non-linear early increase in mortality resulting from 
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delayed switching, especially in patients with low CD4 counts. This points to the importance of either 

accelerating confirmation of virological failure in patients with advanced immunological suppression, or 

to consider switching at the first evidence of viraemia if cost and regimen-sparing are no longer important 

considerations driving the need to confirm virologic failure. 

Further research 

In the South-African context, and according to WHO guidelines, switching is permitted after confirmed 

failure. Hence, our analyses were restricted to a subgroup of patients with 2 consecutive VL>1000. The 

wider dataset, indicated in figure 1, shows that some patients switch onto second-line treatment prior to 

confirmed virologic failure. It would be interesting to investigate the impact of time to switch from first 

elevated VL using a sample defined with the eligibility criteria of one VL>1000. In this larger sample, the 

additional complication of the competing risk of virologic re-suppression would need to be considered in 

the analysis, as re-suppressing patients would no-longer be eligible for switch. 

Conclusions 

Our study highlights the importance of early treatment switch, particularly for patients with low CD4 

counts at failure.  
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Figure 1: Flow diagram for inclusion of patients in our analysis 

 

 

    
 All adult patients within 9 IeDEA-SA treatment facilities, who 

entered the database after 1st January 2004 
   

 N= 113,107    
 (ever death= 13,583 (12%))    
 

 

  Dropped patients that did not experience viral load (VL) failure  
 N= 10,531    
 (ever death= 1,299 (12%))    

 

 
 

 

Dropped patients that did not have any recorded ART drug data, or 
experienced VL failure within 6 months of initiation of ART 

 
 N= 9,735    
 (ever death= 1,161 (12%))    

 

  

 

Dropped patients that were recorded to start ART treatment after 
VL failure and patients that did not start treatment on a first-line 

regime (2 NRTIs + 1 NNRTI)  
 N= 8,830    
 (ever death= 1,084 (12%))    

 

  

 

Dropped patients who switched prior to first VL measure of 
confirmed VL failure   

 N= 8,284    
 (ever death= 1,020 (12%))    
 ever switch N= 3,910 (47%))    

 

  

 

Dropped patients who switched prior to second VL measure of 
confirmed  VL failure  

 N= 8,008    
 (ever death= 973 (12%))    
 ever switch N= 3,910 (49%))    

  

 

Dropped patients who had missing CD4 count at baseline, missing 
WHO stage at baseline and/or missing gender. 

N= 7,255   
(ever death= 842 (12%))   

ever switch N= 3,765 (52%))   
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Table 1: Characteristics of patients at confirmed viral load failure (second consecutive viral load measure greater than 1000 copies/ml) 
Categories Never switch Switch 0-30 days Switch 30-60 days Switch 60-120 days Switch 120-180 days Switch 180-360 days Switch 360 days Total 

Total 3490 627 619 624 442 701 752 7255 

number of switches 0 (0%) 627 (100%) 619 (100%) 624 (100%) 442 (100%) 701 (100%) 752 (100%) 3765 (52%) 

number of deaths 475 (14%) 61 (10%) 63 (10%) 59 (9%) 46 (10%) 76 (11%) 62 (8%) 842 (12%) 

Gender (female) 2247 (64%) 378 (60%) 420 (68%) 394 (63%) 282 (64%) 471 (67%) 509 (68%) 4701 (65%) 

Age at failure                 

         <30 624 (18%) 101 16(%) 124 (20%) 117 (19%) 76 (17%) 144 (21%) 209 28(%) 1395 (19%) 

         >=30 &<40 1611 (46%) 265 (42%) 264 (43%) 293 (47%) 205 (46%) 337 (48%) 344 (46%) 3319 (46%) 

         >40 1255 (36%) 261 (42%) 231 (37%) 214 (34%) 161 (36%) 220 (31%) 199 (26%) 2541 (35%) 

WHO at ART initiation                 

         I/II 1334 (38%) 324 (52%) 317 (51%) 263 (42%) 165 (37%) 267 (38%) 228 (30%) 2898 (40%) 

         III/IV 2156 (62%) 303 (48%) 302 (49%) 361 (58%) 277 (63%) 434 (62%) 524 (70%) 4357 (60%) 

CD4 count at failure               

         >0 & <50 337 (10%) 67 (11%) 45 (7%) 45 (7%) 31 (7%) 39 (6%) 37 (5%) 601 (8%) 

         >50 & <100 334 (10%) 56 (9%) 64 (10%) 46 (7%) 34 (8%) 54 (8%) 51 (7%) 639 (9%) 

         >=100 & <200 753 (22%) 151 (24%) 131 (21%) 156 (25%) 124 (28%) 165 (24%) 185 (25%) 1665 (23%) 

         >=200 & <350 1076 (31%) 221 (35%) 211 (34%) 218 (35%) 151 (34%) 262 (37%) 303 (40%) 2442 (34%) 

         >=350 & <500 567 (16%) 77 (12%) 110 (18%) 99 (16%) 61 (14%) 115 (16%) 126 (17%) 1155 (16%) 

         >=500 423 (12%) 55 (9%) 58 (9%) 60 (10%) 41 (9%) 66 (9%) 50 (7%) 753 (10%) 

RNA measure at failure                 

         >1000 & <5000 1152 (33%) 154 (25%) 214 (35%) 212 (34%) 159 (36%) 235 (34%) 308 (41%) 2434 (34%) 

         >=5000 & <10000 457 (13%) 97 (25%) 88 (14%) 79 (13%) 69 (16%) 130 (19%) 127 (17%) 1047 (14%) 

         >=10000 & <50000 913 (26%) 199 (32%) 168 (27%) 207 (33%) 121 (27%) 195 (28%) 194 (26%) 1997 (28%) 

         >=50000 & <100000 306 (9%) 62 (10%) 54 (9%) 49 (8%) 44 (10%) 54 (8%) 52 (7%) 621 (9%) 

         >=100000 662 (19%) 115 (18%) 95 (15%) 77 (12%) 49 (11%) 87 (12%) 71 (9%) 1156 (16%) 

RNA suppression prior to failure 2652 (76%) 432 (69%) 436 (70%) 469 (75%) 315 (71%) 534 (76%) 578 (77%) 5416 (75%) 

                 

Median days (IQR)                 

time from failure to switch - 28 (21-28) 49 (36-56) 85 (77-106) 145 (132-162) 245 (210-292) 638 (481-940) 121 (49-288) 

time from ART start to failure 1456 (893-165) 1021 (569-1679) 964 (568-1597) 986 (589-1678) 1107 (631-1724) 1064 (696-1728) 1028 (678-1516) 1218 (730-1916) 

time from RNA>1000 to confirmed failure 141(91-257) 84 (56-113) 91 (58-127) 90 (56-136) 112 (78-157) 115 (84-171) 134 (84-185) 115 (83-190) 

time from ART start to last contact 2425(1686-3108) 2762 (1884-3564) 2762 (1811-3447) 2808 (1995-3564) 2929 (2211-3661) 3009 (2266-3665) 3316 (2727-3981) 2688 (1898-3431) 

time from confirmed failure to last contact 592.5 (294-1175) 1435 (777-2080) 1306 (722-2008) 1481 (749-2132) 1538 (1013-21426) 1653 (1087-2109) 2110 (1556-2664) 1095 (481-1885) 

number of CD4A measures from failure to last contact 1 (0-3) 2 (1-5) 3 (1-5) 3 (1-6) 3 (2-6) 4 (2-6) 6 (3-9) 2 (1-5) 

number of RNA measures from failure to last contact 3 (1-5) 5 (3-9) 5 (3-8) 6 (3-9) 7 (5-10) 7 (5-10) 9 (7-13) 4 (2-8) 
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Table 2: Predictors of switch from first-line to second-line ART and predictors of death  

  switch     Death   

  
Odds 
Ratio 

P- 
value 

(95% CI) 
  

Odds 
Ratio 

P- 
value 

(95% CI) 
 

          
Time dependent          
 
CD4 cell count, per mm3 
Reference category (>0&<50)          
>=50&<100 0.90 0.38 (0.72-1.14)  0.44 0.00 (0.35-0.55) 
>=100&<200 0.83 0.10 (0.66-1.04)  0.21 0.00 (0.16-0.27) 
>=200&<350 0.82 0.11 (0.65-1.04)  0.13 0.00 (0.10-0.18) 
>=350&<500 0.95 0.71 (0.72-1.25)  0.06 0.00 (0.04-0.09) 
>=500 0.72 0.06 (0.52-1.02)  0.03 0.00 (0.02-0.06) 
 
RNA, copies/ml 
Reference category (>0&<250)          
>=250&<500 0.68 0.21 (0.37-1.24)  1.09 0.69 (0.71-1.68) 
>=500&<1000 2.29 0.00 (1.49-3.54)  1.59 0.06 (0.98-2.57) 
>=1000&<10000 12.56 0.00 (9.26-17.02)  2.40 0.00 (1.73-3.31) 
>=10000&<100000 17.84 0.00 (12.89-24.69)  3.04 0.00 (2.12-4.37) 
>=100000 16.62 0.00 (11.47-24.08)  4.37 0.00 (2.86-6.66) 
 
time-CD4 interaction 1.00 0.04 (1.00-1.00)  1.00 0.25 (1.00-1.00) 
time-RNA interaction 1.00 0.53 (1.00-1.00)  1.00 0.01 (1.00-1.00) 
number of visits within the past 6 months 1.27 0.00 (1.26-1.29)  0.94 0.00 (0.91-0.97) 
 
Baseline          
CD4 cell count, per mm3 
Reference category (>0&<50)          
>=50&<100 1.31 0.04 (1.01-1.69)  1.02 0.88 (0.78-1.34) 
>=100&<200 1.49 0.00 (1.16-1.91)  0.97 0.80 (0.73-1.27) 
>=200&<350 1.70 0.00 (1.30-2.22)  1.05 0.76 (0.77-1.44) 
>=350&<500 1.50 0.01 (1.11-2.04)  1.31 0.18 (0.88-1.95) 
>=500 1.58 0.01 (1.10-2.27)  1.73 0.05 (1.00-3.01) 
 
RNA, copies/ml 
Reference category (>0&<5000)          
>=5000&<10000 1.10 0.07 (0.99-1.22)  0.98 0.88 (0.76-1.27) 
>=10000&<50000 0.92 0.12 (0.82-1.02)  1.13 0.27 (0.91-1.40) 
>=50000&<100000 0.99 0.95 (0.85-1.16)  1.31 0.06 (0.99-1.71) 
>=100000 0.90 0.24 (0.77-1.07)  1.40 0.01 (1.09-1.81) 
 
pre-failure VL suppression 1.03 0.86 (0.71-1.51)  1.23 0.66 (0.48-3.15) 
WHO Stage III/IV at ART initiation 0.91 0.02 (0.85-0.99)  1.18 0.05 (1.00-1.40) 
age  1.00 0.02 (1.00-1.01)  1.02 0.00 (1.01-1.03) 
gender 1.07 0.10 (0.99-1.15)  0.91 0.20 (0.78-1.05) 

Adjusted for follow-up time using restricted cubic splines. Other controls include pre-failure highest and pre-failure lowest CD4 and RNA, binary indicator of clinic, and 
year of failure. 
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Figure 2: Hazard ratio of each switching delay duration subgroup vs no switch using IPW of MSM. 

a) Main analysis – Baseline: confirmed failure (Second VL>1000) 

 

b) Secondary analysis – Baseline: First VL>1000 

 

Duration of switching delay: Strategy 0: no switch (reference category), Strategy 1: Less than 30 days, Strategy 2: Greater than or equal to 30 and less than 60 days, 
Strategy 3: Greater than or equal to 60 and less than 120 days, Strategy 4: Greater than or equal to 120 and less than 180 days, Strategy 5: Greater than or equal to 180 
and less than 360 days, Strategy 6: Greater than or equal to 360 days 
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Figure 3: Probability of death 5 years after virologic failure, for different CD4 count categories at time of failure, and 
depending on month of switch (i.e. extent of delay). Estimates are based ‘on working MSM’s estimated with LTMLE as 
specified under the footnote*. 

 

*Footnote: Model specifications of the marginal structural working model. The working MSM’s specify the assumed relationship 
between the probability of death and follow-up time (t), switch time (st) and CD4 count at failure (CD4). 

Model 1: Irrespective of CD4 count: logit(P(Ytst=1)) = b0 + b1 log(t) + b2 (st-t) + b3 ([st-t]2) + b4 ([st-t]3) + b5 (log(t) * [st-t]) + b6 (log(t) * 
[st-t]2)  

Model 2: Conditional on CD4 count: logit(P(Ytst=1|CD4)) = b0 + b1 log(t) + b2 (st-t) + b3 ([st-t]2) + b4 ([st-t]3) + b5 (log(t) * [st-t]) + b6 

I(101<CD4<200) + b7 I(CD4>200) + b8 I(101<CD4<200)*(st-t)+ b9 I(CD4>200)*(st-t) + b10 I(CD4<100)*√t + b11 I(101<CD4<200) *√t + b12 

I(CD4>200)* √t 

Note that the causal quantity of interest is defined as a projection of the true causal dose–response curve, i.e. the true relationship 
between time/switch time and mortality, onto the specified working model. The working model has been specified as flexible as possible 
though computational and numerical constraints make an even more flexible approach unfeasible to estimate. 
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Supplementary Material 

Supplementary Table 1: Drug regimens for second-line treatment 

Regime at switch Frequency Percent Cum.     

3TC KLT TDF 1,232 31.51 99.92 
3TC AZT KLT 932 23.84 57.11 
AZT DDI KLT 760 19.44 20.2 
3TC AZT KLT TDF 125 3.20 61.05 
AZT KLT RTV 92 2.35 22.92 
3TC D4T KLT 83 2.12 65.52 
3TC D4T EFV KLT TDF 77 1.97 63.38 

3TC AZT EFV KLT TDF 74 1.89 33.22 
KLT RTV TDF 67 1.71 27.11 
3TC ABC KLT 51 1.3 28.67 
FTC KLT TDF 36 0.92 24.78 
3TC D4T KLT NVP TDF 29 0.74 66.29 

3TC AZT KLT NVP TDF 24 0.61 57.85 
3TC KLT SQV 22 0.56 68.41 
3TC AZT D4T EFV KLT 21 0.54 30.36 

KLT RTV SQV 18 0.46 25.4 
AZT KLT TDF 17 0.43 23.35 
3TC D4T KLT TDF 15 0.38 66.68 
3TC EFV KLT TDF 14 0.36 67.26 
3TC ATV AZT 11 0.28 28.98 
ABC KLT RTV 10 0.26 0.33 
3TC ATV TDF 10 0.26 29.64 
3TC D4T EFV KLT NVP TDF 10 0.26 61.41 

3TC KLT RTV 10 0.26 67.85 
Other* 170 4.00 100     

Total 3,910 100 
 

*Includes combinations of drugs that include 3TC, ATV NVP, D4T, DDI, EFV, TDF, ABC, FTC, RTV, DRV, RGV, KLT, ETV, NFV, SQV 
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Type of treatment Abbreviation Treatment name 
   
NRTI 3TC Lamivudine  
NRTI ABC Abacavir  
NRTI AZT Zidovudine  
NRTI D4T Stavudine  
NRTI DDC Zalcitabine  
NRTI DDI Didanosine  
NRTI FTC Emtricitabine  
NRTI TDF Tenofovir  
NRTI/NNRTI ATP Atripla  
NNRTI EFV Efavirenz  
NNRTI ETV Etravirine 
NNRTI NVP Nevirapine  
NNRTI RPV Rilpivirine 
PI ATV/r Atazanavir/Ritonavir 
PI DRV Darunavir) 
PI LPV/r Lopinavir/Ritonavir  
PI NFV Nelfinavir 
PI RTV Ritonavir  
PI SQV Saquinavir  
PI TPR Tipranavir  
CCR 5 antagonist MVC Maraviroc  
InSTI RGV Raltegravir  
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Supplementary Table 2: Complete case analysis and results after multiple imputation of missing baseline 
data of WHO stage at ART initiation and CD4 count 

Baseline 

Main analysis 
Second VL measurement 

of Confirmed failure 
 

 
Secondary analysis 

First VL measurement 
of Confirmed failure 

 
Time from baseline to switch*  HR 95% CIs  HR 95% CIs 

Results from complete case analysis  

Crude (switch vs no switch) 0.49 (0.42-0.58)  0.52 (0.45-0.61) 
IPTW (switch vs no switch) 0.37 (0.30-0.46)  0.42 (0.34-0.52) 
      
IPW (delay in switch vs no switch):      
No switch (reference category) 1 -  1 - 
Less than 30 days 0.45 (0.35-0.58)  0.28 (0.16-0.52) 
Greater than or equal to 30 and less than 60 days 0.53 (0.43-0.65)  0.37 (0.25-0.53) 
Greater than or equal to 60 and less than 120 days 0.58 (0.49-0.69)  0.49 (0.38-0.63) 
Greater than or equal to 120 and less than 180 days 0.66 (0.58-0.76)  0.54 (0.44-0.66) 
Greater than or equal to 180 and less than 360 days 0.76 (0.67-0.86)  0.67 (0.58-0.79) 
Greater than or equal to 360 days 0.86 (0.82-0.91)  0.86 (0.81-0.91) 

      
Results after multiple imputation of missing variables  
Crude (switch vs no switch) 0.47 (0.40-0.54)  0.50 (0.43-0.58) 
IPTW (switch vs no switch) 0.36 (0.30-0.44)  0.41 (0.34-0.51) 
      
IPW (delay in switch vs no switch):      
No switch (reference category) 1 -  1 - 
Less than 30 days 0.43 (0.34-0.55)  0.33 (0.18-0.62) 
Greater than or equal to 30 and less than 60 days 0.51 (0.42-0.61)  0.39 (0.26-0.58) 
Greater than or equal to 60 and less than 120 days 0.58 (0.50-0.68)  0.50 (0.39-0.63) 
Greater than or equal to 120 and less than 180 days 0.64 (0.56-0.73)  0.51 (0.42-0.62) 
Greater than or equal to 180 and less than 360 days 0.72 (0.64-0.81)  0.65 (0.56-0.76) 
Greater than or equal to 360 days 0.88 (0.83-0.92)  0.87 (0.83-0.91) 
            

*Note that in the first VL measurement analysis, an additional 30 days from baseline to the upper and lower limits of each delay category were 
included to account for the fact that patients in our sample were not permitted to switch until 4 weeks after first VL measure >1000copies/ml. 
Crude refers to a switch vs no switch analysis without inverse probability weighting.  
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Supplementary Table 3: stabilized weights diagnostics for the switch versus no switch analysis 

    
Estimated weights for the outcome Death  

  Estimates of effect of 
switch on Death       

Truncation 
percentiles 

  
Mean (SD) 

   
Minimum/maximum   Hazard/Odds 

ratio 
Standard 
Error 

        
            
Baseline: Confirmed failure (Main analysis)        
100   1.07 (1.82)   0.04/119.75   0.31 0.05 
99.5   1.02 (0.99)   0.04/10.71   0.37 0.04 
99   0.98 (0.68)   0.04/5.36   0.37 0.04 
97.5   0.94 (0.47)   0.04/2.67   0.38 0.04 
95   0.91 (0.38)   0.04/1.82   0.38 0.04 
90   0.88 (0.32)   0.04/1.43   0.39 0.04 
      
Baseline: First VL>1000 copies/mL (Secondary analysis) 
100   5692.25 (3940592)   0.02/3.247e+09   + + 
99.5   1.00 (1.03)   0.02/11.01   0.42 0.05 
99   0.97 (0.78)   0.02/6.75   0.42 0.05 
97.5   0.91 (0.44)   0.02/2.57   0.42 0.04 
95   0.88 (0.36)   0.02/1.75   0.42 0.04 
90   0.85 (0.31)   0.02/1.35   0.42 0.04 
                 

+ indicates that the outcome model did not converge. 
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Supplementary Figure 1: Probability of death 5 years after virologic failure, for different CD4 count 
categories at time of failure, and depending on month after failure and month of switch. Estimates are 
based on a working MSM as specified in the technical appendix and under the footnote*. Panel a) 
visualizes the results in a contour plot where the probability of death is represented by colours and panel 
b) plots the probability of death in a third dimension, on the z-axis. Note that for both a) and b) the curves 
at 60 months after failure equate to the results plotted in Figure 3 in the main text. Red colours refer to 
higher probabilities of death. 

a)  
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b)  

 

*Footnote: Model specifications of the marginal structural working model. The working MSM’s specify the assumed 
relationship between the probability of death and time (t), switch time (st) and CD4 count at failure (CD4). 

Model 1: Irrespective of CD4 count: logit(P(Ytst=1)) = b0 + b1 log(t) + b2 (st-t) + b3 ([st-t]2) + b4 ([st-t]3) + b5 (log(t) * 
[st-t]) + b6 (log(t) * [st-t]2)  

Model 2: Conditional on CD4 count: logit(P(Ytst=1|CD4)) = b0 + b1 log(t) + b2 (st-t) + b3 ([st-t]2) + b4 ([st-t]3) + b5 (log(t) 
* [st-t]) + b6 I(101<CD4<200) + b7 I(CD4>200) + b8 I(101<CD4<200)*(st-t)+ b9 I(CD4>200)*(st-t) + b10 I(CD4<100)*√t + 
b11 I(101<CD4<200) *√t + b12 I(CD4>200)* √t 

Note that the causal quantity of interest is defined as a projection of the true causal dose–response curve, i.e. the 
true relationship between time/switch time and mortality, onto the specified working model. The working model has 
been specified as flexible as possible though computational and numerical constraints make an even more flexible 
approach unfeasible to estimate. 
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Supplementary Material: Technical appendix 

Notation: Let Yt be the binary survival outcome measured at time t, Lt=(L1
t,…,Lq

t) the vector of time-

varying covariates at time t (CD4 count, log10 viral load, visit frequency [number of visits within the past 6 

months]), Ct a censoring indicator at time t, and At (antiretroviral) treatment at time t. The follow-up time 

is t=0,1,3,6,9,…,60 months. L0 is the vector of baseline covariates which contains are age, sex, highest and 

lowest CD4 count prior to failure, highest and lowest log VL measure prior to failure, an indicator whether 

a patient was ever suppressed prior to failure, WHO clinical stage, year of ART start and treatment facility, 

CD4 count, visit frequency and viral load.  We are interested in the intervention vector 

A=(a0,a1,a3,a6,…,a60) which is a multiple-time point intervention where at each time point antiretroviral 

therapy may be given or not. More generally, we refer to the intervention history (up to and including 

time t) as A�t = (a0,a1,a3,a6,…,a60). For example, immediate treatment initiation refers to A�60 =(1,1,1,…,1) 

and no treatment initiation to A�60 =(0,0,0,…..,0). With the superscript we denote counterfactuals. For 

example, Yt
A�t =(1,1,…,1) is the outcome that would have been observed at time t had everyone received 

(possibly contrary to the fact) immediate treatment initiation, i.e. ART at all time points. A rule d assigns 

treatment At such that it starts at a specific time point (and therefore determines the amount of delay in 

treatment initiation). Since the rule effectively determines the switch time (st) we write Yst to refer to the 

outcome that would have been observed under a rule that assigns treatment in line with a certain switch 

time. 

Target Quantities: We are interested in estimating  

i) how the counterfactual probability of death 60 months after first-line failure varies as a 

function of the assigned switch time (st); where switch time based on rule d determines how 

the treatment vector A looks like. That is, we are interested in  

a) P(Y60=1)st 
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where switch time st varies between 0 and 60 months; and 

b) a marginal structural working model to summarize how the counterfactual probability of 

death at follow-up time t varies as a function of t and assigned switch time (st) [and 

therefore treatment vector A]; see below for the model specification. 

 

ii) We are also interested in summarizing the effect of the delay strategy d on (the hazard λ of) 

mortality with marginal structural Cox models of the form 

λst(t|L0)= λ0(t)exp(β1 d + L0β2) 

The Cox model is approximated with a pooled logistic regression model containing (splines of) 

follow-up time and the (above mentioned) baseline variables L0. The exact model 

specification is given further below. 

Structural assumptions: As Petersen et al.1 we assume that CD4 count, HIV RNA (viral load) and clinic visit 

frequency influence decisions whether and when to switch therapy, as well as affecting mortality; since 

these variables are affected by prior switching decisions and mediate the effect of exposure to failing first-

line therapy on mortality, standard regression adjustment methods are not suitable, see below for our 

estimation approaches. We speculate that (unmeasured) patient adherence also affects decisions of when 

to switch, as well as mortality.  

Observed data & Identification: Our data contains O=(L,A,Y,C) as defined above under “notation”. The 

target quantities above [listed under i) and ii)] can be identified under the assumptions of sequential 

randomization (“no unmeasured confounders”), consistency (“well-defined intervention”) and 

positivity2,3. With positivity we mean that a patient who has not already switched should have some 

positive probability of both switching and not switching (regardless of his covariate history). With no 

unmeasured confounding, we essentially mean that those variables that affect the decision of when to 
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switch and mortality, and are themselves affected by prior treatment decisions, are all contained in Lt (see 

above point on adherence). More formal definitions of the above assumptions are given in Petersen et al. 

4 and Schomaker et al. 5. 

Estimation: 

To estimate the target quantities listed in i) we use longitudinal targeted maximum likelihood estimation 

as described in Petersen et al. 4 and implemented in the R-package ltmle and for ii) we use inverse 

probability weighting of marginal structural models following the approach in Rohr et al.6, see also Cain 

et al.7 for more details.  

For estimation of the targeted quantities in i) we follow exactly the approach described in detail in 

Petersen et al. 4. Briefly, we estimate P(Yt=1|L0)st for all possible switch times (i.e. delay strategies d that 

delay treatment by st = 0,1,3,6,9,…,60 months) and follow-up times t=0,1,3,6,9,…,60 and summarize the 

dose-response relationship between Y and t and st in two different working models: 

Model 1: Irrespective of CD4 count: logit(P(Yt
st=1)) = b0 + b1 log(t) + b2 (st-t) + b3 ([st-t]2) + b4 ([st-t]3) + b5 

(log(t) * [st-t]) + b6 (log(t) * [st-t]2)  

Model 2: Conditional on CD4 count: logit(P(Yt
st=1|CD4)) = b0 + b1 log(t) + b2 (st-t) + b3 ([st-t]2) + b4 ([st-t]3) 

+ b5 (log(t) * [st-t]) + b6 I(101<CD4<200) + b7 I(CD4>200) + b8 I(101<CD4<200)*(st-t)+ b9 I(CD4>200)*(st-t) 

+ b10 I(CD4<100)*√t + b11 I(101<CD4<200) *√t + b12 I(CD4>200)* √t 

Model 1 summarizes the dose-response relationship independent of CD4 count at time of viral failure; 

model 2 summarizes the relationship conditional on CD4 count (at time of failure). The transformations 

for follow-up time have been chosen such that the working MSM yields similar results as the (non-MSM) 

estimates for the probability of death at 5 years under A�60 =(1,1,1,…,1) and A�60 =(0,0,0,…..,0) respectively. 

The working models allow for an inflection point in the survival curve with respect to time of switch due 
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to the inclusion of a cubic polynomial of difference in switch time and follow-up time. Unfortunately, more 

complex working models that include switch time in a way that is more sophisticated could not be fitted 

due to technical constraints.  Figure 3 and supplementary Figure 1 have been produced based on the 

estimates of the above working MSMs.  

To estimate the above target quantity i)a), we have used the ltmle() function in the package ltmle. With 

this we estimated that 5-year mortality was 10.5% (2.2%; 18.8%) if everyone had been switched 

immediately, and as 26.6% (20.9%; 32.3%) if everyone had stayed on their failing regimen. The 

corresponding risk difference was -16.1% (-26.1%; -6.1%), and the odds ratio was 0.32 (0.13; 0.82).  

To estimate the target quantity i)b), we used the function ltmleMSM() in ltmle. To estimate the conditional 

(nested) outcome expectations needed for both a) and b), as well as the treatment and censoring 

models/mechansism we used super learning as recommended previously8. In more detail, we used the 

following learners: the arithmetic mean, (generalized linear) regression models with all main terms [GLM], 

GLMs based on an EM-algorithm-Bayesian model fitting, GLMs chosen by stepwise variable selection with 

Akaikes Information Criterion [AIC], GLMs containing interaction terms, as well as additive models; these 

learners have been partly fitted on the whole set of covariates as well as subsets based on screening with 

Cramer’s V 9 and Lasso estimation 10. 

For estimation of the targeted quantities in ii), we estimated the effect of immediate switch compared to 

no switch on mortality, if confirmed failure was used as failure definition, as 0.37 (0.30-0.46) using IPTW.  

If first VL>1000 copies/mL was used as definition of failure the estimates were 0.42 (0.34-0.52) 

respectively. For both analyses we needed models for the treatment and censoring mechanisms to 

calculate weights, for each patient at each time period. We applied stabilised weights (as defined and 

explained below) which require estimation of a numerator and a denominator. The models  we need are 

as follows: 
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• Models for the treatment (and artificial censoring in the delay analysis) mechanism: 

Denominator (M1):  logit(PTD(At=at | A�t-1=a̅t-1 , C�t-1=0, 𝑌𝑌t-1=0, L0, �̅�𝑳t)) 

Numerator (M2): logit(PTN(At=at | , C� t-1=0, 𝑌𝑌t-1=0, L0)) 

Model specification: Baseline covariates L0 included in the model were binary indicators of baseline 

CD4 (>=50 & <100, >=100 & <200, >=200 & <350, >=350 & <500, >=500) and binary indicators of 

baseline viral load (>250 & <500, >=500 & <1000, >=1000 & <10000, >=10000 & <100000, >=100000) 

as well as age, gender, clinic, and binary indicators for calendar year of failure (2003-2006, 2007-2009, 

2010-2012, 2013-2017). We also included a binary indicator of pre-failure VL suppression and 

categorical variables for pre-failure highest and pre-failure lowest CD4 and RNA. Time dependent 

variables Lt included binary indicators of categorical CD4 and viral load, linear CD4-time and viral load-

time interactions, and number of visits within the past 6 months. Supplementary Table 5 lists the 

fitted models in detail.  

• Models for the loss-to-follow censoring mechanism: 

Denominator (M3): logit(PCD(Ct=0 | A� t-1, C� t-1=0, 𝑌𝑌t-1=0, L0, 𝑳𝑳𝑳t)) 

Numerator (M4): logit(PCN(Ct=0 | C� t-1=0, 𝑌𝑌t-1=0, L0)) 

Model specification: The model specifications for the censoring mechanisms included L0 and  Lt as 

described above in the treatment models, except that we  excluded the (linear) time-CD4 and time-

RNA interactions. Supplementary Table 5 lists the fitted models in detail. 
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• Stabilised weights: 

For the simple “switch versus no switch” analysis (presented in manuscript text and in supplementary 

tables 2 and 3), treatment and censoring stabilised weights were derived from denominator and 

numerator of the treatment and loss-to-follow-up censoring models M1-M4. These weights were 

combined, as follows, to create a combined treatment and censoring stabilised weight, for each 

person, at each time point.   

𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖 = �∏ 𝑃𝑃𝑇𝑇𝑇𝑇
1−𝑃𝑃𝑇𝑇𝑇𝑇

 60
𝑖𝑖=0 �. �∏ 𝑃𝑃𝐶𝐶𝑇𝑇

𝑃𝑃𝐶𝐶𝑇𝑇
 60

𝑖𝑖=0 � 

For the “delay in switch versus no switch” analysis (presented in Figure 2), we followed the approach 

in Rohr et al.6 (and Cain et al.7) and described in the manuscript. Again, models for the treatment and 

censoring mechanisms were required and fitted in line with the model specifications given above. 

Treatment and censoring weights were estimated prior to the expansion and artificial censoring of 

the dataset.  

The dataset was expanded by replicating each person-time observation 6 times to create a set of 7 

clones; one clone to represent each of the 7 delay regimes. Within each regime, person time was 

artificially censored according to adherence to the delay regime. For instance, a person that switched 

at 75 days from baseline would be censored at 30 days in the switch within 30 days regime, would be 

censored at 60 days in the 30- 59 days regime, would not be censored in the 60-119 days regime, and 

would be censored at 75 days in the 120-179 days, 180-359 days, greater than 360 days and never 

switch regimes. The cloning allowed one person to follow multiple regimes simultaneously, therefore 

estimates become more efficient,7.  
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For the treatment weights, probabilities from the treatment models were used to generate weights 

for each person-time-regime observation. First, probabilities were assigned to each observation based 

on the following rules, where PT represents the probabilities derived from the 

numerator/denominator treatment model; 

• Treatment rules; PT at time of switch, 1 after switch, and 1- PT before switch 

• Artificial censoring rules; 1- PT if at time of artificial censoring if it is also time of switch, 

and PT at time of artificial censoring if it is not also time of switch. 

Second, cumulative probabilities for numerator and denominator were calculated for each person 

over time within each regime. Third, stabilised treatment weights were estimated using the 

cumulative numerator and denominator probabilities for each person at time point, for each regime.  

This follows the approach described in the supplementary materials of Cain, et al26. 

For loss-to-follow-up censoring, stabilised censoring weights were created using cumulative 

probabilities from the numerator and denominator lost-to-follow-up censoring models. Treatment 

and loss-to-follow-up stabilised weights were combined to create a combined treatment and 

censoring stabilised weight, for each person, at each time point, within each regime. 

Stabilized weight summaries are given in Supplementary Table 3. 

• Marginal structural Cox models were fitted in line with the model specification given in ii) under the 

above heading “Target quantities”, based on weighted pooled logistic regression. 

 

For the “switch versus no switch analysis”; 

Marginal Structural Cox model: logit(P(Yt=1| At, L0)) 
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For the “delay in switch versus no switch analysis”; 

Marginal Structural Cox model: logit(P(Yt=1 | dt, L0)) 

dt indicates a set of binary variables which represent the delay strategies/regimes. Baseline covariates L0 

included in the two models above were binary indicators of baseline CD4 (>=50 & <100, >=100 & <200, 

>=200 & <350, >=350 & <500, >=500) and binary indicators of baseline viral load (>250 & <500, >=500 & 

<1000, >=1000 & <10000, >=10000 & <100000, >=100000) as well as age, gender, clinic, and binary 

indicators for calendar year of failure (2003-2006, 2007-2009, 2010-2012, 2013-2017). We also included 

a binary indicator of pre-failure VL suppression and categorical variables for pre-failure highest and pre-

failure lowest CD4 and RNA. Confidence intervals were calculated using cluster robust standard error 

estimators. 

Diagnostics: 

The diagnostics for IPTW of marginal structural models are summarized in supplementary Table 3. 

For the LTMLE analyses we provide the percentage of truncated cumulative inverse treatment and 

censoring probabilities. We used a truncation level of 1%. Large percentages of truncation suggest limited 

data support for these interventions and possible positivity violations5. The working MSM is meant to 

extrapolate well for interventions where there is little data support4. The summary (rounded percentages) 

is as follows: 

Supplementary Table 4: LTMLE truncation 

Delay (months) 0 1 3 6 9 12 15 18 21 24 27 
% truncation 2 0 0 1 4 12 11 8 11 23 14 
Delay (months) 30 33 36 39 42 45 48 51 54 57 60 
% truncation 27 22 28 13 16 25 29 18 25 75 1 

 
One can see the limited data support for intervention strategies that delay switching by 12-57 month. 
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Note however that these interventions have a lower impact on the fitted working MSM 16. It is however 

important to stress that even under an MSM approach estimates remain vulnerable to positivity 

violations11. A particular concern is that standard errors may be anti-conservative, though recent 

developments suggest that it is possible to construct estimators that are somewhat more robust with 

respect to positivity violations.12 

 

The distributions of the fitted cumulative inverse treatment and censoring probabilities after 5 years of 

follow-up are visualized in Supplementary Figure 2.  One can again see the limited data support for 

intervention strategies that delay switching by 12-57 month. 
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Supplementary Figure 2: Kernel density plots of the distribution of cumulative fitted probabilities (after 
60 months of follow-up) for the different switch strategies.
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Supplementary Table 5: Output from the treatment and censoring models 

  Treatment – 2 VL>1000  Censor – 2 VL>1000 Treatment – VL>1000  Censor – VL>1000 

 denominator  numerator  denominator  numerator denominator  numerator  denominator  numerator 

  
Odds 
Ratio 

P- 
value 

 Odds 
Ratio 

P- 
value  

Odds 
Ratio 

P- 
value  Odds 

Ratio 
P- 

value 
 Odds 

Ratio 
P- 

value  Odds 
Ratio 

P- 
value 

 Odds 
Ratio 

P- 
value  Odds 

Ratio 
P- 

value 

                        
Time dependent                        
 
CD4 cell count, per mm3   

   
   

               

>=50&<100 0.90 0.38  - -  1.23 0.01  - -  1.07 0.52  - -  1.17 0.03  - - 
>=100&<200 0.83* 0.10  - -  1.25 0.00  - -  0.94 0.54  - -  1.21 0.00  - - 
>=200&<350 0.82 0.11  - -  1.37 0.00  - -  0.98 0.85  - -  1.33 0.00  - - 
>=350&<500 0.95 0.71  - -  1.37 0.00  - -  1.09 0.46  - -  1.33 0.00  - - 
>=500 0.72* 0.06  - -  1.43 0.00  - -  0.81 0.14  - -  1.33 0.00  - - 
 
RNA, copies/ml   

   
   

    
  

    
  

   

>250&<500 0.68 0.21  - -  0.92 0.08  - -  0.72 0.28  - -  0.93 0.17  - - 
>=500&<1000 2.29*** 0.00  - -  0.82 0.00  - -  2.30 0.00  - -  0.85 0.01  - - 
>=1000&<10000 12.56*** 0.00  - -  0.71 0.00  - -  12.01 0.00  - -  0.78 0.00  - - 
>=10000&<100000 17.84*** 0.00  - -  0.67 0.00  - -  16.67 0.00  - -  0.74 0.00  - - 
>=100000 16.62*** 0.00  - -  0.69 0.00  - -  15.18 0.00  - -  0.78 0.00  - - 
 
time-CD4 interaction 1.00** 0.04 

   
   

    
1.00 0.04 

         

time-RNA interaction 1.00 0.53  - -  - -  - -  1.00 0.92  - -  - -  - - 
number of visits within the 
past 6 months 1.27*** 0.00 

  
- 

 
-  

 
- 

 
- 

  
- 

 
- 

 
1.33 0.00 

  
- 

 
- 

  
- 

 
- 

  
- 

 
- 

 
Baseline   

   
   

    
  

    
  

   

CD4 cell count, per mm3                        
>=50&<100 1.31** 0.04  1.09 0.38  1.01 0.85  1.08 0.30  0.95 0.66  0.89 0.21  0.99 0.88  1.03 0.74 
>=100&<200 1.49*** 0.00  1.32 0.00  0.98 0.82  1.08 0.25  1.14 0.21  1.02 0.81  0.91 0.16  0.97 0.69 
>=200&<350 1.70*** 0.00  1.51 0.00  1.04 0.61  1.19 0.01  1.17 0.17  1.08 0.39  0.94 0.41  1.05 0.48 
>=350&<500 1.50*** 0.01  1.42 0.00  1.03 0.73  1.20 0.01  0.99 0.95  0.94 0.55  0.90 0.16  1.01 0.94 
>=500 1.58*** 0.01  1.21 0.09  0.90 0.21  1.07 0.41  1.08 0.62  0.80 0.05  0.78 0.00  0.88 0.11 
 
RNA, copies/ml   

 
     

 
  

 
  

 
  

 
  

 
  

>=5000&<10000 1.10* 0.07  1.21 0.00  0.99 0.74  0.97 0.47  0.90 0.04  1.03 0.59  1.05 0.19  1.04 0.34 
>=10000&<50000 0.92 0.12  1.26 0.00  1.06 0.07  1.03 0.34  0.89 0.02  1.08 0.07  1.02 0.66  1.00 0.97 
>=50000&<100000 0.99 0.95  1.35 0.00  1.03 0.53  1.00 0.93  0.78 0.00  0.97 0.70  1.00 0.98  0.98 0.65 
>=100000 0.90 0.24  1.12 0.07  0.99 0.87  0.97 0.51  0.64 0.00  0.77 0.00  1.04 0.34  1.02 0.65 
 
pre-failure VL suppression 1.03 0.86 

 
1.01 0.96  1.06 0.69 

 
1.02 0.88 

 
1.21 0.33 

 
1.06 0.77 

 
1.00 0.98 

 
1.00 0.97 

WHO Stage III/IV 0.91** 0.02  0.96 0.29  1.06 0.03  1.05 0.12  0.90 0.00  0.94 0.12  1.06 0.05  1.04 0.16 
age  1.00** 0.02  1.00 0.15  1.00 0.56  1.00 0.99  1.00 0.03  1.00 0.08  1.00 0.82  1.00 0.40 
gender 1.07* 0.10  1.07 0.07  1.04 0.19  1.06 0.04  1.08 0.03  1.09 0.03  1.07 0.03  1.08 0.01 

All models were adjusted for follow-up time using restricted cubic splines, and included binary categorical variables for pre-failure highest and pre-failure lowest CD4 and RNA, binary indicator of clinic, and 
binary indicator of year of failure (2003-2006, 2007-2009, 2010-2012, 2013-2017). VL suppression was defined as RNA below 400 copies per ml
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