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Abstract

The applicability of computational analysis to paleontological images ranges from the
study of the animals, plants and evolution of microorganisms to the simulation of the
habitat of living beings of a given epoch. It also can be applied in several niches, such
as oil exploration, where there are several factors to be analyzed in order to minimize
the expenses related to the oil extraction process. One factor is the characterization of
the environment to be explored. This analysis can occur in several ways: use of probes,
extraction of samples for petrophysical components evaluation, the correlation with logs
of other drilling wells and so on. In the samples extraction part the Computed
Tomography (CT) is of importance because it preserves the sample and makes it
available for several analyzes. Based on 3D images generated by CT, several analyzes
and simulations can be performed and processes, currently performed manually and
exhaustively, can be automated. In this work we propose and validate a method for
fully automated microfossil identification and extraction. A pipeline is proposed that
begins in the scanning process and ends in an identification process. For the
identification a Deep Learning approach was developed, which resulted in a high rate of
correct microfossil identification (98% of Intersection Over Union). The validation was
performed both through an automated quantitative analysis based upon ground truths
generated by specialists in the micropaleontology field and visual inspection by these
specialists. We also present the first fully annotated MicroCT-acquired publicly
available microfossils dataset.

Introduction 1

The applicability of computational image analysis to paleontological data encompasses 2

the possibility of identifying, reconstructing and visualizing microfossils in rock samples 3

not recovered by traditional extraction methodologies. It can also allow the taxonomic 4
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microfossil identification even before the physical extraction from the rock sample. In 5

addition, it is also pertinent to verify the microfossil position in a given sedimentary 6

stratum, which can help in taxonomic inference, whereas detailed positional information 7

is lost in the traditional preparation method [8]. Computational analysis of samples can 8

be applied in several niches, e.g. oil exploration, habitat reconstruction and geology and 9

paleontology research. 10

On the other side, in the oil exploration field, there are many factors to be taken 11

into consideration in order to minimize oil prospecting expenses. One factor are the 12

environmental conditions, which can be analyzed in multiple ways: use of probes, 13

extraction of samples for petrophysical components evaluation and correlation with logs 14

from other drilling wells. 15

In the area of samples extraction it is possible to perform different analyzes on a 16

given sample. Here Computed Tomography (CT) plays a central role. More specifically, 17

samples are analyzed with X-ray micro-tomography (MicroCT), which is a radiographic 18

imaging technique that produces 3D images of the material’s internal structure with a 19

spatial resolution of around 1 micrometer [11]. MicroCT is of significance because it 20

preserves the sample and makes it available for different studies. Based on MicroCT 21

generated data volumes, various 3D data analyzes and simulations can be performed 22

and several analysis processes can be computationally carried out and automated using 23

state-of-the-art Computer Vision (CV) techniques. These processes are currently 24

performed manually and in a time-consuming manner. One of these processes that can 25

undergo automation through CV is the microfossils identification and localisation in 26

rock samples, which is the focus of this study. 27

Objective and Strategy 28

In this work, we propose a CV workflow composed of computational methods that 29

starts with the MicroCT scanning process of a sample and ends with the fully 30

automated identification and localisation of individual microfossils in this sample. The 31

main research question we try to answer is: Is it possible to fully automatically and 32

reliably identify microfossils in carbonatic rock samples? 33

The novelty in our approach is the use of Deep Learning Convolutional Neural 34

Network (CNN) approaches for the identification and 3D segmentation of microfossils 35

directly in their deposition place. Our approach works directly on MicroCT data gained 36

from carbonatic rocks, without the need of any preparation or physical extraction. For 37

this purpose we developed an identification and segmentation strategy that employs a 38

special category of CNN models, namely Semantic Segmentation (SS) neural networks 39

and extends this model in order to be able to process whole 3D MicroCT sample 40

volumes. In order to identify the best model, we extend, train, test and compare a series 41

of different state-of-the art SS models. For the validation our approach we employ a 42

validation strategy where we compare our results to ground truths that were manually 43

generated by experienced micropaleontologists employing state-of-the-art automated 44

image segmentation validation algorithms. 45

State of the Art 46

Paleontology is a well-established science and its methodological intersection with the 47

computational field started to grow in the 1990’s. In the late 1980’s, most main 48

paleontology journals still show an irregular presence of computational methods: some 49

journal issues contained one article describing some computational method application, 50

others presented 2 or 3 articles and very few offered a larger number of them [24]. In 51
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the majority of journals and books the insertion of computational methods in the 52

paleontology field still looked uneven. 53

In the late 1990s, however, with the widespread use of medical CT, a growth in 54

research activities employing tomographic images occurred [24]. This boosted the 55

development of specialized software applications such as: DRISHTI, SPIERS, SEG3D, 56

IMAGEJ, MIMICS, VGSTUDIO MAX, AVIZO, AMIRA, Geomagic, Rhinoceros, 57

Imaris, ITK-SNAP and TurtleSEG. These specialized tools helped change how 58

researchers deal with specific problems in several fields, including geology and 59

paleontology, frequently with applications to oil and gas exploration. The applicability 60

of the set of tools and techniques that came to be called Virtual Paleontology (VP) 61

range from animal, plant and microorganisms evolution analysis until the virtual 62

reconstruction of a specific extinct environment [23]. 63

On the other side, the application of the study of microfossils to the area of oil 64

prospection had its first appearance in 1890 in Poland [21], but it was in the USA, in 65

1920, with the use of microfossils to identify the age of probes extracted from drilling 66

rigs, that a bigger advance in the development of the field of Applied Micropaleontology 67

was attained [14]. 68

In the last decade multiple research works contributed to improve the 69

micropaleontology field. The latest efforts aim at the use of VP associated with CNNs 70

in order to identify microfossils [5]. With this in mind, our research is focusing on 71

pursuing techniques that can identify microfossils on their deposition place, i.e., without 72

the need of previous physical isolation. For this purpose we research some CV fields 73

such as 3D segmentation applied to tomographic image and 3D object recognition, in 74

order to apply them to microfossil identification. 75

In the next subsections we summarize the results of the systematic literature reviews 76

(SLR) we performed in order to identify the state-of-the-art of the methods and 77

procedures that potentially could be used in microfossil image studies. These reviews 78

followed the approach originally proposed by [10] for SLRs in Computer Sciences, where 79

first we defined a research question: Is it possible to fully automatically and reliably 80

identify microfossils in carbonatic rock samples?. This broad question, in order to be 81

more manageable, was split into 2 topics, each of which was explored in depth in a 82

separate SLR: 83

• Analysis of 3D segmentation methods applied to tomographic images, which could 84

possibly be used to segment microfossils [3]; 85

• Analysis of methods used for 3D object recognition in a general context, aiming to 86

evaluate which methods could be applied to the microfossils field [4]. 87

The results of these two SLRs will be briefly summarized below. Since a detailed 88

description would exceed the scope of this paper, we refer to the referenced SLRs for 89

more details. 90

3D segmentation applied to tomographic images and 3D object 91

recognition 92

An initial analysis of image processing methods employed in the fossil identification area 93

showed difficulty in finding any works that explore microfossils. So we generalized our 94

search for methods in other similar areas. We started by performing a systematic 95

literature review on 3D segmentation methods applied to tomographic images [3]. 96

Several works were analyzed which comprehended a vast group of segmentation 97

methods. In our review, we noticed a tendency on the use of 3D segmentation methods 98

based on models and region growing. However, its use for fossil/microfossil 99

segmentation wasn’t noticed in the literature. 100
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We also analysed the field of 3D object recognition employing the same SLR 101

methodology [4]. In this SLR for 3D object recognition we could identify two general 102

pipelines. Both pipelines start with the data acquisition, which can basically vary 103

between 3D data (MRI, CT) or 2D data (RGB and RGBD cameras), pre-processing, 104

where methods for artifact removal, image enhancement and image simplification and 105

data representation, wherein several authors proposed a varying amount of different 106

object representations. Then, it comes the stage where both pipelines differ: In the first 107

pipeline, the data representation stage is used to describe and storage the object 108

representation chosen, which is later used for similarity calculation and object 109

identification; In the second pipeline, the data representation is employed for training a 110

specific recognition architecture, such as a CNN, which is afterwards used for other 111

objects recognition. Despite having found two general approaches for 3D object 112

recognition, we could not identify, in our review, the application of these approaches on 113

fossil identification. 114

Deep learning, object recognition and paleontology 115

The 3D object recognition area has, in the last few years, experienced a growing 116

boosted by the increased availability of new algorithms and models, 3D data and the 117

popularization of a varied palette of 3D sensors. Methods developed in this area find 118

application in a wide range of areas, from the field of robotics to the security and 119

surveillance domain. The general tendency in this area has been the use of Deep 120

Learning (DL) techniques. 121

DL is a form of machine learning that enables computers to learn from experience 122

and understand the world in terms of a hierarchy of concepts [6]. DL employs very deep 123

CNNs, with neural networks that sometimes consist of more than 100 layers, in contrast 124

to the Artificial Neural Networks (ANNs) employed between the 1980’s and 2000’s, that 125

typically employed only three layers. One key concept here is the Convolutional Layer 126

(CL), a feature extraction structure, first presented in [12], that allows the hierarchical 127

learning and representation of complex knowledge. Because DL CNNs gather knowledge 128

from examples, there is no need for a human computer operator to formally specify all 129

the knowledge that the computer needs. The capacity to represent a hierarchy of 130

concepts in a network dozens of CLs deep allows a DL CNN to learn complicated 131

concepts by building them out of simpler ones; a graph of these hierarchies would be 132

many layers deep [6]. 133

One work that employs DL for object recognition is the 3D Object Recognition with 134

Deep Belief Nets approach [15], where a network of symmetrically connected neuron-like 135

units, that performs stochastic decisions about whether to be on or off, is presented. In 136

the Convolutional-Recursive Deep Learning for 3D Object Classification, where 137

Socher [22] presents a model based on the combination of convolutional and recursive 138

neural networks for the feature learning and classification in RGB-D images. Another 139

approach is the Vision-based Robotic Grasping System Using Deep Learning for 3D 140

Object Recognition and Pose Estimation, where Jincheng Yu [30] presents a robotic 141

vision-based system, which can not only recognize different objects, but also estimate 142

their pose through the use of a deep learning model. The deep learning model used is 143

the Max-pooling Convolutional Neural Network (MPCNN).The 3D Object Recognition 144

and Pose estimation System Using Deep Learning Method is an approach where Dong 145

Liang [13] presents a 3D object recognition and pose estimation method using a deep 146

learning model. Recognizing multi-view objects with occlusions using a deep 147

architecture, where a method for efficient 3D object recognition with occlusion is 148

presented [26]. In the Convolutional neural network for 3D object recognition based on 149

RGB-D dataset, Jianhua Wang [25] employs a convolutional neural network model to 150

learn features from a RGBD dataset which are given to a linear SVM to classify objects. 151
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In the Convolutional Neural Network for 3D object recognition using volumetric 152

representation Xiaofan Xu [29] presents an efficient 3D object volumetric representation, 153

called Volumetric Accelerator (VOLA), which requires much less memory than a normal 154

volumetric representation. Properly, VOLA can reduce the computational complexity of 155

Convolutional Neural Networks (CNNs). None of these approaches tackles the problem 156

of identification of fossils embedded in rocks or any remotely similar problem. 157

Material and Methods 158

This section describes our datasets and the CV approach we developed for fully 159

automated microfossil identification and segmentation in carbonatic rock samples. 160

Figure 1. Sergipe Basin map with the exact rock samples extraction location marked
with a red cross. The sample was collected at a depth of approximately 2,500 meters.
Source: the authors.

Material 161

We employed two datasets: a scanned carbonatic rock sample obtained from a drilling 162

rig probe and a set of manually isolated microfossil specimens that were afterwards 163

obtained from this sample. The sample was collected at the Sergipe Basin Quaternary 164

sediments (Fig. 1): 165

• A carbonatic rock sample was the material for which we developed our CV 166

approach. The MicroCT scanner used to digitise the sample is a Versa XRM-500 167

(ZEISS/XRadia) with the following specifications: best resolution (pixel size) 168

0.7 µm, voltage 30-160 kV, power 2-10 W, CCD cameras 2048x2048 pixel, optical 169

lenses 0.4X, 4X, 10X, 20X and 40X, a set of 12 filters for beam hardening 170

correction, maximum sample mass capacity 15 kg and sample size limit (diameter 171

/ height) 80/300 mm. The sample acquisition parameters we employed are: 172

Spatial resolution 1.08 mm, image size 956x1004x983, no filtering for beam 173

correction hardening, 10X optical lens, 30 kV / 2W, angular step 0.255 (1600 174
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projections) and exposure time 11 seconds. Figure 2 shows the rock sample and 175

an excerpt of one slice of its digitised result. 176

• A set of manually isolated microfossil specimens, gained from the sample above, 177

was employed in this work for illustration purposes and as a guide in order to 178

allow us to know how the specimens in the rock sample would look like if cleanly 179

segmented. These microfossils were prepared in the laboratory, following specific 180

precautions so that there were no chemical and/or mechanical changes: (i) the 181

sediment was first immersed in deionized water for approximately 24hrs, aiming 182

the chemical disaggregation; (ii) then, it was washed with running water in a 183

63 µm sieve; (iii) next, the material was dried at 40degreeC for approximately 48 184

hours. After drying the samples, the main representative microfossils in the 185

sample were selected through a magnifying glass. In this work, the microfossils 186

specimens were stamped with the help of a multidimensional acquisition with the 187

Zeiss Discovery V20 stereoscope (Z-stak mode in AxioVision 4.8 software). Figure 188

3 presents these microfossils. 189

The dataset containing the MicroCT data and and the manually segmented images 190

annotated by specialists is available at: 191

http://www.lapix.ufsc.br/microfossil-segmentation 192

Figure 2. Analyzed rock sample (A) and one of its microtomography 2D sections image
(B). Source: the authors.
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Figure 3. Analyzed foraminifera specimens. Planktonic Foraminifera:1) Globogeri-
noides ruber; 2a-b) Candeina nitida; 3) Orbulina universa; 4) Globigerinoides trilobus
saculifera; 5) Globigerinoides trilobus; 6a-b) Globorotalia truncatulinoides. Genus of
benthic foraminifera: 1) Bulinina; 2a-c) Bolivinita; 3a-c) Cibicidoides; 4) Laticarinina; 5)
Uvigerina; 6) Sphaeroidina; 7) Siphonaperta; 8) Quinqueloculina. Source: the authors.
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Methods 193

The CV approach we present here is intended to be embedded into a broader workflow. 194

Figure 4 presents a general overview of this workflow. 195

Figure 4. General workflow. Source: the authors and [18].

Non-CNN Computer Vision Methods 196

As part of a prospective search for CV methods for the microfossils segmentation, before 197

we started investigating the use of CNNs, we performed a series of experiments using 198

non-CNN, i.e. conventional CV methods for the segmentation of the MicroCT volume. 199

We analysed an extensive list of conventional CV algorithms, searching for a 200

segmentation algorithm which, with the most appropriate input parameters, would 201

potentially generate satisfactory results. We identified as interesting and selected the 202

following classical segmentation algorithms: active contours [9], simple threshold and 203

threshold with OTSU [16], all taking into account the complete tomographic volume. In 204

order to find the best possible parameters for each segmentation algorithm, we 205

performed a broad parameter values search running the algorithms with varied 206

parameter sets. For the active contour algorithm, in order to find the best parameter 207

set, we employed a genetic algorithm to search through possible input parameters. For 208

this purpose we considered 5 input parameters: Number of steps, Sigma, Alpha, 209

Smoothing and Theta, in a broad range of values. 210

The results of these conventional CV algorithms were initially analysed through 211

visual inspection. For the conventional CV method that presented the best results to the 212

visual inspection, we subsequently analysed its results also quantitatively employing the 213

method described below. 214
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CNN-based Segmentation Methods 215

In the 3D object identification and segmentation field, the most successfully and 216

commonly used SS models in the last years have been the UNET and its variations. 217

The UNET architecture was presented in [19], where the authors show its use for 218

medical image segmentation. UNETs provide a general framework that can be 219

parameterized with a specific image classification CNN model. The UNET then 220

employs two slightly modified instances of this CNN, an encoder and a decoder, one for 221

image recognition and another, employed in reverse mode, for the segment mask 222

generation [1]: it uses the encoder to map raw inputs to feature representations and the 223

decoder to take this feature representation as input, process it to make its decision and 224

produce an output. As the UNET produces state of art semantic segmentation we 225

choose it as our starting point. 226

In our work, we initially employed the UNET model associated with a ResNet34 [7], 227

as our initial structure and added several state of art improvement methods. These 228

methods were: nearest neighbour interpolation and pixel shuffling [20], Leaky Relu [28] 229

for activation function and batchnorm [2] for batch normalization. This complete 230

structure is available at the fastai 1 framework, which is a framework over Pytorch that 231

contains several models, methods and state of art improvements. 232

Evaluation metrics 233

We evaluated each employed segmentation method comparing our results to the 234

ground-truths generated by the micropaleontologists using the Intersection Over Union 235

(IOU) [17] score, which quantifies similarity between finite sample sets, and is defined as 236

the size of the intersection divided by the size of the union of the sample sets. The 237

predicted labels were evaluated against a specialist generated ground truth. 238

Results 239

This section presents the results we obtained with the different algorithms and CNN 240

models we tested. 241

Conventional CV algorithms 242

The best results under the conventional CV algorithms we obtained employing the 243

active contours method. For this method we obtained an IOU score of 20%. The 244

obtained active contour segmentation result is shown in figure 5. 245

The results we obtained indicated that conventional CV methods may not be 246

indicated for the task of microfossil segmentation in rock samples. 247

CNN-based Semantic Segmentation 248

For our initial tests with SS CNN models, we started with the following structure: 249

UNET associated with ResNet34 and the binary cross entropy as its loss function, a 250

carbonatic rock sample with several microfossil specimens, scanned with the MicroCT 251

previously described resulting in a total of 1000 slices. We employed an Intel Core 252

i7-7700 CPU3.60GHz, 32GB memory computer and an NVIDIA GeForce GTX 1080 Ti 253

11GB GPU. 254

With this initial structure, our first experiment used only the microfossil annotation, 255

performing a binary classification between microfossil and everything else. To improve 256

1https://www.fast.ai/
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Figure 5. Best microfossil segmentation that we could obtain using 3D active contours
(IOU = 20%). Source: the authors.

initial results some strategies such as data augmentation and transfer learning were 257

applied aiming to minimize the effect of having a small database. However, the obtained 258

IOU coefficient, used for the results evaluation, stopped in 40-45%. Trying to improve 259

the obtained result, we increased the number of classes to four, which divided the 260

everything else class into porous space, rock and background. With this number of 261

classes, the obtained IOU value went from 40-45 % to 75-76 % and stopped. One 262

problem with this approach is the data balance [31], i.e., the existence, in the samples, 263

of more annotations from the rock class in comparison with the microfossils. The figure 264

6 shows the result obtained after marking and training for the 4 classes setup for a 265

selected slice. 266

Still using the 4-classes approach, we adjusted the hyper-parameters and applied a 267

few performance-enhancing strategies [27], such as the progressive input image 268

resolution enhancing approach (Jeremy Howards, informal communication during 269

lecture at https://course.fast.ai/videos/?lesson=1 ) and explored data 270

augmentation and batch size in order to obtain a 98% IOU. The microfossil GT and its 271

resulting segmentation with this best IOU is shown in figure 7. 272

Our experiments resulted in an experimental environment, where we employed the 273

UNET as base model associated with other models in the decoder part (restnet18, 274

ResNet34, ResNet50, ResNet101), the Cross entropy as loss function and IOU for quality 275

assessment. Table 1 shows the IOU value for each method employed and figure 8 shows 276

the original image, its GT and the prediction results for all architectures we tested.

Method IOU score

UNET + ResNet34 0.76
UNET + ResNet18 + hyper-parameter optimization 0.97
UNET + ResNet101 + hyper-parameter optimization 0.97
UNET + ResNet34 + hyper-parameter optimization 0.98
UNET + ResNet50 + hyper-parameter optimization 0.98

Table 1. Segmentation performance in terms of IOU value. Each method was evaluated
in a set of 1000 images from annotate microfossil data.

277

After segmenting we took the predicted mask for resnet34 and applied to the original 278

image. The result of this process is the easy identification of several microfossils. Figure 279

9 shows the mask overlap result, the identification of one microfossil specimen 280
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Figure 6. Obtained microfossil segmentation results with the 4-classes approach. (A)
Original digitalised image. (B) Ground Truth manually generated by paleontologists.
(C) UNET + ResNet34. Source: the authors.

(highlighted with the red rectangle) followed by its magnified version and the correlation 281

of this the magnified version with other two versions of the same specimen (physically 282

isolated and digitized with the Versa XRM-500 MicroCT and the Zeiss Discovery V20 283

stereoscope). 284

Discussion and Conclusions 285

In this paper we present a new nondestructive processing pipeline for the identification 286

of microfossils in carbonatic rocks that allows for the fully automated segmentation of 287

these fossils without the need of previous physical separation. Furthermore, we 288

developed and validated the CV methods for this identification and segmentation. The 289

validation was quantitatively and automatically performed against a ground truth 290

manually generated by expert micropaleontologists. 291

An extremely relevant aspect of the developed pipeline for the field of paleontology, 292

more specifically micropaleontology, resides in the nondestructive character of the 293

method. In the micropaleontological study process an essential step is the samples 294

preparation, aiming to separate the microfossils from the other rock and/or sediment 295

constituents. In the traditional laboratory process, the samples are physically 296

disaggregated (ground or milled) and subsequently performed chemical disaggregation, 297

with addition of reagents (e.g., hydrogen peroxide and acetic acid). Both physical or 298

chemical disaggregation can alter or even destroy microfossils characteristics. In this 299
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Figure 7. The ground truth (A) and the obtained microfossil segmentation result (B)
with 4 classes, automated hyper-parameters search and additional data augmentation.
Source: the authors.

Figure 8. (A) Original digitalised image. (B) Ground Truth manually generated by
paleontologists. (C) UNET + ResNet18 + hyper-parameter optimization. (D) UNET +
ResNet101 + hyper-parameter optimization. (E) UNET + ResNet34 + hyper-parameter
optimization. (F) UNET + ResNet50 + hyper-parameter optimization Source: the
authors.

premise, the imaging method is crucial for the morphological characteristics 300

visualization as reliable as possible, allowing the individuals taxonomic recognition [8]. 301

Another relevant factor that makes this method interesting is that it allows the 302

microorganisms’ preservation analysis throughout geological time, as well as aspects of 303

fossilization, preservation and even position in which the microfossils are deposited 304

(preserved) in the rocks. It should be emphasized that studies with the taphonomic 305

approach are fundamental for paleoenvironmental conditions and/or diagenetic 306

alteration processes reconstitution over geological time. Also, the use of this tool is 307

strongly indicated in cases where it is extremely difficult to recover microfossils along 308

specific sections and/or intervals where the material (rock) is very compact and even 309

when it presents incipient diagenetic alteration. The microfossils identification is 310

strategic for the exploration of petroleum due to the use in biostratigraphy, which refers 311

to the use of microfossils from different groups to perform the temporal characterization 312

of sedimentary rock strata, fundamental for the petroleum industry. 313

A few observations can be performed from the obtained results: (i) the importance of 314

employing appropriate hyper-parameters such as learning rate, weight decay, momentum 315
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Figure 9. Result of applying the obtained segmentation mask over the digitized image.
(A) contrast-enhanced 2D section image masked from the digitized MicroCT volume
with one specific microfossil highlighted in red. (B) Highlighted microfossil extracted
and magnified for visualisation. (C) Physically isolated microfossil digitized with The
Versa XRM-500 MicroCT. (D) Cibicidoides multidimensional acquisition with the Zeiss
Discovery V20 stereoscope. Source: the authors.

and batch size: with that hyper-parameters optimization we obtained an improvement 316

of 20 %. (ii) a network architecture grown does not imply in better results. It is 317

possible to observe that the ResNet34 shows the same results that the ResNet50 and a 318

better result when compared with a ResNet101. However, here we have a hardware 319

limitation: both, ResNet50 and ResNet101, couldn’t run with the full image resolution 320

on the 11 GB GeForce, even with a batch size of 1. Even so, the ResNet34 requires less 321

execution time and hardware. (iii) Analyzing the obtained result images and comparing 322

the visually against their Ground Truth (Figure 8), we still notice some small errors, 323

however, we understand that this can be be mitigated by adding more training samples, 324

together with GTs from experts, to the training set when applying this pre-trained 325

network to other, new, samples. Also, there are always new state of art improvements 326

that could by tried aiming to reduce even more this small errors. Figure 9 shows the 327

isolated microfossil digitalized and its correlated identification into the sample. 328

We understand that this process of microfossil identification without the need of 329

physically isolate the microfossil has the potential to allow the paleontologist to analyze 330

specific aspects of a sample such as the microfossils deposition. This is important for 331

some applications in the oil and gas industry. It also has the potential to improve the 332

paleontologist’s work, because instead of losing time to physically isolate the microfossil 333

he receives the microfossil already identified and can perform other analysis such as 334

class identification and orientation. 335

Threats to validity 336

We employed a dataset that, even if it consisted of a very large quantity of images and 337

presented a wide variety of microfossils, was gained from a sample obtained from a 338

singular drill probe. On the other side, the samples digitisation and annotation afford a 339

set of requirements such as: having a MicroCT working and available; the cost of the 340

MicroCT digitisation process; a storage to keep the amount of generated data; and a 341

paleontologist group to analyze and annotate each digitised sample. As the workflow we 342
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suggest in this paper is new, it was not in place on any of the partners that participated 343

in this work and to obtain more scanned and annotated samples was not possible at this 344

point of our research. 345

This could jeopardize the generalizability of this work, as we have not enough data 346

to claim that our approach will be successfully applicable to any carbonatic rock sample. 347

On the other side, our identification and segmentation results were extremely successful 348

and we understand that they are promising. From the authors’ knowledge there is not 349

any other publicly available carbonatic rock probe dataset, with or without 350

specialist-annotated microfossils. 351

In this context, we understand our work as pioneering and pointing to a promising 352

direction of research that can potentialize both, micropaleontological research and 353

associated economical activities, such as oil prospection. Our publicly available fully 354

annotated MicroCT database has also the potential to support research activities to be 355

performed by other groups. 356

Conclusions 357

Summarizing, this work presents: 358

• the first fully annotated MicroCT-acquired publicly available microfossils dataset; 359

• a baseline for microfossil segmentation and the comparison with deep 360

learning-based semantic segmentation and other segmentation architectures; 361

• a methodology for microfossil studies through MicroCT-acquired digital models; 362

• a tool for cases where it is extremely difficult to recover microfossils along specific 363

sections. 364

With the improvement in the available hardware some future works aim to reduce 365

even more the obtained errors by increasing the batch size and image resolution and 366

employ more state of art deep learning improvements. 367
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