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Abstract 7 
Aging is characterized by a progressive loss of physiological integrity, leading to 8 
impaired function and increased vulnerability to death1. Despite rapid advances over 9 
recent years, many of the molecular and cellular processes which underlie progressive 10 
loss of healthy physiology are poorly understood2. To gain a better insight into these 11 
processes we have created a single cell transcriptomic atlas across the life span of Mus 12 
musculus which includes data from 23 tissues and organs. We discovered cell-specific 13 
changes occurring across multiple cell types and organs, as well as age related changes 14 
in the cellular composition of different organs. Using single-cell transcriptomic data we 15 
were able to assess cell type specific manifestations of different hallmarks of aging, such 16 
as senescence3, genomic instability4 and changes in the organism’s immune system2. This 17 
Tabula Muris Senis provides a wealth of new molecular information about how the most 18 
significant hallmarks of aging are reflected in a broad range of tissues and cell types.  19 
 20 
 21 
We performed single cell RNA sequencing on 529,823 cells from male and female 22 
C57BL/6JN mice belonging to six age groups ranging from one month (human early 23 
childhood equivalent) to thirty months (human centenarian equivalent) (Figure 1a). We 24 
prepared single cell suspensions of the bladder, bone marrow, brain (cerebellum, cortex, 25 
hippocampus and striatum), fat (brown, gonadal, mesenteric and subcutaneous), heart and 26 
aorta, kidney, large intestine, limb muscle and diaphragm, liver, lung, mammary gland, 27 
pancreas, skin, spleen, thymus, tongue and trachea for all mice. Data were collected for 28 
all six age groups using microfluidic droplets (droplet), while the 3m, 18m and 24m time 29 
points were also analyzed using single cells sorted in microtiter well plates (FACS) 30 
(Extended Data Figure 1, Extended Data Figure 2a; Supplementary Tables 1&2; 31 
Supplementary Figures 1-3). The droplet data allow large numbers of cells to be analyzed 32 
using 3’ end counting, while the FACS data allow for higher sensitivity measurements 33 
over smaller numbers of cells as well as sequence information across the entire transcript 34 
length. Analyzing multiple organs from the same animal enabled us to create data 35 
controlled for age, environment, and epigenetic effects. 36 
 37 
The previously published 3m time point, referred to as the Tabula Muris5, represents 38 
~20% of the cells in the entire dataset and was used as a basis to perform semi-automated 39 
cell type annotation of the additional time points (Figure 1b, Extended Data Figure 2b). 40 
Using this approach, we were able to automatically annotate over 70% of the cells. All 41 
the automated cell annotations were reviewed and approved by human experts, and the 42 
remaining cells were annotated by hand, creating one of the largest manually curated 43 
single cell transcriptomic resources in existence. Many of these cell types have not 44 
previously been obtained in pure populations, and these data provide a wealth of new 45 
information on their characteristic gene-expression profiles. To demonstrate that the 46 
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annotations performed separately for each tissue were consistent across the entire 47 
organism, we clustered all cells using an unbiased, graph-based clustering approach6,7 48 
(Figure 1c,e) and showed that cell types such as B cells and endothelial cells which are 49 
shared across different organs and tissues occupy the same clusters irrespectively of the 50 
tissue of origin (Figure 1d,f).  51 
 52 
Tabula Muris Senis provides a powerful resource with which to explore aging related 53 
changes in specific cell types. The entire dataset can be explored interactively at tabula-54 
muris-senis.ds.czbiohub.org.  Gene counts and metadata are available from figshare 55 
(https://figshare.com/projects/Tabula_Muris_Senis/64982) and GEO (GSE132042), the 56 
code used for the analysis is available from GitHub (https://github.com/czbiohub/tabula-57 
muris-senis) and the raw data are available from AWS Public Datasets 58 
(https://s3.console.aws.amazon.com/s3/buckets/czb-tabula-muris-senis/). An important 59 
use of the single cell data is to resolve whether gene expression changes observed in bulk 60 
experiments are due to changes in gene expression in each cell of the population, or 61 
whether the gene expression in each cell stays constant but the number of cells of that 62 
type changes, or both.  In a global analysis of gene expression changes using the Tabula 63 
Muris Senis and bulk RNAseq from tissues8, we observed that in many cases changes in 64 
gene expression are due to both changes in the numbers of cells in a population and to 65 
changes in the gene expression levels in each cell (Extended Data Figure 3).  As a 66 
specific example of this approach, we investigated how the expression of Cdkn2a 67 
changes with age. As Cdkn2a/p16 is one of the most commonly used markers of 68 
senescence9 and an important hallmark of aging10, we computed the fraction of cells 69 
expressing Cdkn2a at each age. The fraction of cells expressing the gene more than 70 
doubled in older animals in both FACS (Figure 2a) and droplet (Figure 2b), accompanied 71 
by a 2-fold increase in the actual expression level of p16 by those cells that did express it 72 
(Figure 2c,d).  73 
 74 
As another example of how the dataset can be used, we investigated how the cellular 75 
composition of each tissue changes with age by evaluating how the relative cell type 76 
proportions within a tissue change with age (Supplementary Table 3). The overall cell 77 
composition for all tissues is in Extended Data Figure  4. When interpreting 78 
compositional data, one must bear in mind that dissociation does not affect all of the cell 79 
types in a tissue equally, so changes in the relative composition of a given cell type with 80 
age are more meaningful than trying to compare proportions of different cell types at a 81 
single age11–13. Nonetheless, the changes in relative proportion of cell types provide 82 
important information on the effects of aging in a variety of tissues. 83 
 84 
The bladder has pronounced changes in cell type composition with age (Figure 2e).  85 
While the mesenchymal compartment of this tissue decreases by a factor of three over the 86 
lifetime of the mouse (Figure 2e left), the urothelial compartment increases by a similar 87 
amount (Figure 2e right). The observation that the bladder urothelial cells increase with 88 
age is concordant with known age-related urothelial changes14. Differential gene 89 
expression analysis of overall tissue changes with age revealed that stromal-associated 90 
genes (Col1a1, Col1a2, Col3a1, Dcn) are downregulated while epithelial-associated 91 
genes (Krt15, Krt18, Sfn) are upregulated, supporting the compositional observations 92 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 18, 2019. ; https://doi.org/10.1101/661728doi: bioRxiv preprint 

https://doi.org/10.1101/661728
http://creativecommons.org/licenses/by-nc-nd/4.0/


 3

(Figure 2f,g; Supplementary Table 4). The decline of the endothelial population suggests 93 
that bladder aging in mice may be associated with lower organ vascularization, consistent 94 
with recent findings15,16 and with the observed downregulation of vasculature associated 95 
genes Htra1 and Fos (Figure 2f,g; Supplementary Table 4). The increase in the leukocyte 96 
population could be indicative of an inflammatory tissue microenvironment, a common 97 
hallmark of aging which is consistent with literature on overactive bladders17 and 98 
supported by a significant overexpression of Lgals3, Igfbp2 and Ly6d (Figure 2f,g; 99 
Supplementary Table 4). 100 
 101 
Age-dependent changes in the kidney include a decrease in the relative abundance of 102 
mesangial cells, capillary endothelial cells, loop of Henle ascending limb epithelial cells 103 
and loop of Henle thick ascending limb epithelial cells (Figure 2h). Both mesangial cells 104 
and capillary endothelial cells are core glomerular cells and their relative abundances 105 
reduction (Figure 2h top panels), together with downregulation of Egf and Atp1a1 106 
(Figure 2i,j; Supplementary Table 4) suggest impaired glomerular filtration rate18,19. This 107 
finding is reinforced by the differential gene expression results indicating that 108 
uromodulin (Umod), the most abundant protein in urine20, is downregulated. Umod is 109 
produced by the epithelial cells that line the thick ascending limb, and therefore given the 110 
relative decrease in the proportion of epithelial cells in the ascending  and thick ascending 111 
limb, our results suggest that normal kidney functions are impaired21 (Figure  2h bottom 112 
panels, Figure 2i,j; Supplementary Table 4). 113 
 114 
The liver is yet another tissue for which we observed changed tissue compositions with 115 
age, namely that the relative amount of hepatocytes decreases with age (Extended Data 116 
Figure 5a), which is supported by the reduction in the expression of albumin (Alb; 117 
Extended Data Figure 5b,c; Supplementary Table 4). Differential gene expression 118 
showed an increased immune signature, as illustrated by overexpression of H2-Aa, H2-119 
Ab1, H2-D1, H2-Eb1, Cd74, Lyz2 and others. Previous findings suggested that pro-120 
inflammatory macrophages drive cellular senescence and identified Il1b as a gene whose 121 
liver expression was remarkably different with age22. We stained liver Kupffer cells 122 
(Extended Data Figure 5d) with Clec4f (canonical Kupffer cell marker) and found the 123 
number of Clec4f+ cells do not change with age, consistent with the results of the tissue 124 
composition analysis (Supplementary Table 5; Extended Data Figure 5e). However, when 125 
co-staining with Il1b, we found an increase with age in the number of cells expressing 126 
Clec4f and Il1b (Extended Data Figure 5f,g). Il1b has low expression in normal 127 
physiological conditions23. Specific blocking of IL1-RI (Il1b receptor) in hepatocytes has 128 
been shown to attenuate cell death upon injury, supporting the idea that increased 129 
expression of Il1b in Kupffer cells is typically a poor prognostic24. Regarding immune 130 
defense within the liver, sinusoidal endothelial cells (LSECs) play a unique role, being 131 
the main carriers of the mannose receptor (Mrc1) in the liver. Mrc1 expression in LSECs 132 
mediates endocytosis of pathogen and damage related molecules. Our findings identify 133 
increased Mrc1 age-related expression. Inflammatory signals have been found to up 134 
regulate Mrc1 expression and endocytosis 25. Staining for Mrc1 alongside classical LSEC 135 
marker Pecam1 (Supplementary Table 5; Extended Data Figure 5h,i) found the number 136 
of Mrc1 expressing LSECs increase over age (Extended Data Figure 5j,k). LSECs have a 137 
been found to have a reduced endocytic capacity in aged livers, while it has been 138 
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suggested that LSECs proliferate after injury or that bone-marrow derived LSECs 139 
progenitors are recruited to the liver. This suggests that changes in LSEC gene signatures 140 
with age are linked closely with their function in immune response. 141 
 142 
In the case of spleen our results show that with age the proportion of T cells decreases 143 
while the relative amount of plasma cells increases (Figure 2k). This is supported by 144 
upregulation of B cell/plasma cell markers (Cd79a, Igj; Figure 2l,m; Supplementary 145 
Table 4) and downregulation of Cd3d (Figure 2m; Supplementary Table 4). Similarly, in 146 
mammary gland we also observed a significant decline of the T cell population (Extended 147 
Data Figure 6a). Age-related decline of T cell populations has been associated with an 148 
increased risk of infectious disease and cancer26 and our results suggest that this may also 149 
happen in the spleen and mammary gland. We found that members of the AP1 150 
transcription factors27 (Junb, Jund and Fos) were upregulated with age (Extended Data 151 
Figure 6b,c; Supplementary Table 4); this result is consistent with the observation that 152 
normal involution of the mammary gland is accompanied by significantly increased 153 
expression of many of these AP1-related transcription factors28.  154 
 155 
Genomic instability is among the most widely studied aging hallmarks1 and the full-156 
length transcript data from the FACS data allows the analysis of somatic mutation 157 
accumulation with age. We used the Genome Analysis ToolKit (GATK)29 to perform 158 
SNP discovery across all FACS samples simultaneously (Supplementary Table 6), using 159 
GATK Best Practices recommendations30,31. We focused on genes expressed in at least 160 
75% of cells for each age group within a particular tissue. We observed an age-related 161 
increase in the number of mutations across all of the organs we analyzed (Figure 3; 162 
Extended Data Figure 7a,8a,9a), with tongue and bladder being the most affected. Our 163 
analysis controls for sequencing coverage and gene expression levels (Figure 7b, 8b, 9b). 164 
The number of mutations observed at each age are larger than technical errors due to 165 
amplification and sequencing errors, which can be estimated using ERCC controls that 166 
were spiked into each well of the microtiter plates32 (Figure 3; Extended Data Figure 7c-167 
d, 8c-d, 9c-d). Despite the fact that it is difficult to infer genome-wide mutation rates 168 
from the transcriptome, which is known to inflate apparent mutational rates for a variety 169 
of reasons32, the observed trend is a useful indirect estimate of mutational frequency and 170 
genome stability. 171 
 172 
A final hallmark of aging which we investigated was the effect of age-induced changes 173 
on the immune system2. Analyzing a complete set of tissues from the same individual 174 
animal using the full-length transcripts obtained in the FACS data enabled us to analyze 175 
clonal relationships between B-cells and T-cells throughout the organism. We 176 
computationally reconstructed the sequence of the B-cell receptor (BCR) and T-cell 177 
receptor (TCR) for B cells and T cells present in the FACS data using singlecell-ige and 178 
TraCeR, respectively33,34. BCRs were assembled for 6,050 cells (Figure 4a) and TCRs for 179 
6,000 cells (Figure 4b). The number of cells with assembled BCRs was 1,818 for 3m, 180 
1,356 for 18m and 2,876 for 24m old mice. We parsed the singlecell-ige33 output to 181 
define B-cell clonotypes based on the sequence of the assembled BCR (Supplementary 182 
Table 7; see Extended Methods) and found that while most of the cells at 3m were not 183 
part of a clone (9% were part of a clonal family), the number of B-cells belonging to a 184 
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clonotype doubled at 18m (20%) when compared to 3m and doubled again from 18m to 185 
24m (~38%). 186 
 187 
The number of cells with assembled TCRs were roughly equal between 3m, 18m and 188 
24m (2,076, 2,056 and 1,868 cells, respectively). Clonotype assignment is part of the 189 
output obtained by TraCeR34 (Supplementary Table 7). Interestingly, only 55 out of 190 
1,895 cells at 3m were part of a clone. For 18m, 479 out of 2,056 cells were part of a 191 
clone and for 24m, 348 out of 1,780 cells were part of a clone, indicating again an 192 
increase in clonality of the T-cell repertoire at later ages. These changes in clonality for 193 
both B and T cell repertoires are noteworthy because they suggest that the immune 194 
system of a 24m mouse will be less likely to respond to new pathogens, corroborating 195 
literature suggesting that older individuals have higher vulnerability to new infections 196 
and lower benefits from vacination35,36.  197 
 198 
As a final example of how the Tabula Muris Senis can be used to discover how cell types 199 
change with age, we computed an overall diversity score to identify which cell types 200 
were more susceptible to changes with age (Extended Data Figure 10). The diversity 201 
score is computed as the Shannon entropy of the cluster assignment and then regressed 202 
against age to provide a p-value (see Methods). We observed significant changes in 203 
diversity affecting cells of the immune system originating from the brain and in the 204 
kidney (Figure 4c, Extended Data Figure 11a,b). These results were not confounded by 205 
the number of genes expressed per cell (Extended Data Figure  11c,d). We found that in 206 
brain myeloid microglial cells, the majority of young (3m) microglia occupy clusters 1 207 
and 6, while old (18m, 24m) microglia constitute the vast majority of cells in clusters 10, 208 
12 and 14 (Figure 4d). Trajectory analysis suggests that young microglia go through an 209 
intermediate state, represented by the clusters mostly occupied by 18m microglial cells 210 
before acquiring the signature of old microglia (Extended Data Figure  11e). Clusters 10, 211 
12 and 14 are mainly comprised of 18- and 24-month old microglia. These cells up-212 
regulate MHC class I genes (H2-D1, H2-K1, B2m), along with genes associated with 213 
degenerative disease (e.g. Fth1)37,38. When contrasting with clusters 1 and 6, which 214 
contain mostly 3m microglia, clusters 10, 12 and 14 gene expression is enriched with 215 
interferon responsive or regulatory genes (e.g. Oasl2, Oas1a, Ifit3, Rtp4, Bst2, Stat1, Irf7, 216 
Ifitm3, Usp18, Ifi204, Ifit2), suggesting an expansion of this small pro-inflammatory 217 
subset of microglia in the aging brain39. Moreover, the list of differentially expressed 218 
genes between “young” and “old” clusters resembled the Alzheimer’s disease specific 219 
microglial signature previously reported37, with 55 out of the top 200 differential 220 
expressed genes being shared between the two differential gene expression lists (Figure 221 
4e; Supplementary Table 8). Regarding kidney macrophages, we found two clusters that 222 
remarkably changed their composition with age.  Cluster 10 is primarily composed of 223 
cells of 1m- and 3-month old mice while cluster 13 is mostly composed of cells of 18-, 224 
21-, 24- and 30-month old mice (Figure 4f). Differential gene expression revealed that 225 
cluster 10 is enriched for an M2-macrophage gene signature (e.g. Il10, H2-Eb1, H2-Ab1, 226 
H2-Aa, Cd74, C1qa, Cxcl16, Hexb, Cd81, C1qb, Cd72) while cluster 13 resembles a M1-227 
proinflammatory macrophage state40 (e.g. Hp, Itgal, Spex1, Gngt2) (Extended Data 228 
Figure 11f; Supplementary Table 8). 229 
 230 
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The Tabula Muris Senis is a comprehensive resource for the cell biology community 231 
which offers a detailed molecular and cell-type specific portrait of aging.  We view such 232 
a cell atlas as an essential companion to the genome: the genome provides a blueprint for 233 
the organism but does not explain how genes are used in a cell type specific manner or 234 
how the usage of genes changes over the lifetime of the organism. The cell atlas provides 235 
a deep characterization of phenotype and physiology which can serve as a reference for 236 
understanding many aspects of the cell biological changes that mammals undergo during 237 
their lifespan.   238 
  239 
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Figure Legends 240 
Figure 1. Overview of Tabula Muris Senis. 241 
a, 23 organs from 19 male and 11 female mice were analyzed at 6 different time points. 242 
The bar plot shows the number of sequenced cells per organ prepared by FACS (n=23 243 
organs) and microfluidic droplets (n=16 organs). For the droplet dataset the Fat 244 
subtissues were processed together (Fat = BAT+GAT+MAT+SCAT). b, Annotation 245 
workflow. Data were clustered together across all time points. We used the Tabula Muris 246 
(3m time point) as a reference for the automated pipeline and the annotations were 247 
manually curated by tissue experts. c, UMAP plot of all cells collected by FACS, colored 248 
by organ (Extended Data Figure 2c), overlaid with the Louvain cluster 249 
numbers; n = 110,824 individual cells. d, B cells (top) and endothelial cells (bottom) 250 
independently annotated for each organ cluster together by unbiased whole-transcriptome 251 
Louvain clustering, irrespectively of the organ they originate from. e, UMAP plot of all 252 
cells collected by droplet, colored by organ (Extended Data Figure 2c), overlaid with the 253 
Louvain cluster numbers; n = 245,389 individual cells. f, B cells (and endothelial cells) 254 
independently annotated for each organ cluster together by unbiased whole-transcriptome 255 
Louvain clustering, irrespectively of the organ where they were found. 256 
 257 
 258 
Figure 2. Cellular changes during aging. 259 
a,b, Bar plot showing the fractions of cells expressing Cdkn2a at each age group for 260 
FACS (a) and droplet (b). c,d, Bar plot of the median expression of Cdkn2a for the cells 261 
that do express the gene at each age group for FACS (c) and droplet (d). The p-value was 262 
obtained using a Mann-Whitney-Wilcoxon rank-sum two-sided test. e, Bladder cell (left) 263 
and bladder urothelial cell (right) relative abundances change significantly with age (p-264 
value<0.05 and r2>0.7 for a hypothesis test whose null hypothesis is that the slope is zero, 265 
using two-sided Wald Test with t-distribution of the test statistic). f,g, Top 10 upregulated 266 
and downregulated genes in bladder FACS (f) and droplet (g) using age as a continuous 267 
covariate while controlling for sex. Genes were classified as significant under an FDR 268 
threshold of 0.01 and an age coefficient threshold of 0.005 (corresponding to ~10% fold 269 
change). h, Kidney capillary endothelial cell (top-left), mesangial cell (top-right), loop 270 
of Henle ascending limb epithelial cell (bottom-left) and loop of Henle thick ascending 271 
limb epithelial cell (bottom-right) relative abundances change significantly with age (p-272 
value<0.05 and r2>0.7 for a hypothesis test whose null hypothesis is that the slope is zero, 273 
using two-sided Wald Test with t-distribution of the test statistic). i,j, Top 10 upregulated 274 
and downregulated genes in kidney FACS (i) and droplet (j) using age as a continuous 275 
covariate while controlling for sex. Genes were classified as significant under an FDR 276 
threshold of 0.01 and an age coefficient threshold of 0.005 (corresponding to ~10% fold 277 
change). k, Spleen plasma cell (left) and T cell (right) relative abundances change 278 
significantly with age (p-value<0.05 and r2>0.7 for a hypothesis test whose null 279 
hypothesis is that the slope is zero, using two-sided Wald Test with t-distribution of the 280 
test statistic). l,m, Top 10 upregulated and downregulated genes in spleen FACS (l) and 281 
droplet (m) using age as a continuous covariate while controlling for sex. Genes were 282 
classified as significant under an FDR threshold of 0.01 and an age coefficient threshold 283 
of 0.005 (corresponding to ~10% fold change).  284 
 285 
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 286 
 287 
Figure 3. Mutational burden across tissues in the aging mice.  288 
Distribution of the difference of the mean mutation in the gene set (and ERCC spike-in 289 
controls) per cell between 24m and 3m and 18m and 3m for all tissues and cells (a) and 290 
with the cell types split in five functional groups, endothelial (b), immune (c), 291 
parenchymal (d), stem/progenitor cell (e) and stromal (f). 292 
 293 
 294 
Figure 4. The aging immune system. 295 
a, B-cell clonal families. The pie chart shows the proportion of singleton B cells and B 296 
cells that are part of clonal families at 3m, 18m and 24m. For each time point, the clonal 297 
families are represented in a tree structure for which the central node is age. Connected to 298 
the age node there is an additional node (dark gray) that represents each animal and the 299 
clonal families are depicted for each animal.  For each clonal family, cells that are part of 300 
that family are colored by the organ of origin. b, T-cell clonal families. The pie chart 301 
shows the proportion of singleton T cells and T cells that are part of clonal families at 302 
3m, 18m and 24m. For each time point, clonal families are represented in a tree structure 303 
for which the central node is age. Connected to the age node there is an additional node 304 
(dark gray) that represents each animal and the clonal families are depicted for each 305 
animal. For each clonal family, cells that are part of that family are colored by the organ 306 
of origin. c, Diversity score for the two cell types that significantly change with age. d, 307 
UMAP plot of the brain myeloid microglial cell Leiden clusters (numbers) colored by 308 
age. Faded clusters do not change their relative age cell composition; colored clusters 309 
change their relative cell composition. e, UMAP plot of the brain myeloid microglial 310 
cells when scored using the microglia Alzheimer’s disease signature (Supplementary 311 
Table 8). f, UMAP plot of the kidney macrophage Leiden clusters (numbers) colored by 312 
age group. 313 
 314 
 315 
 316 
 317 
Extended Data Figure Legends 318 
Extended Data Figure 1. Overview of Tabula Muris Senis (cont.) 319 
a,b, UMAP plot of all cells collected for FACS colored by tissue (a) or age (b). c, Pie 320 
chart with the summary statistics for FACS. d,e, UMAP plot of all cells collected for 321 
droplet colored by tissue (d) or age (e). f, Pie chart with the summary statistics for 322 
droplet. 323 
 324 
 325 
Extended Data Figure 2. Overview of Tabula Muris Senis (cont.) 326 
a, Balloon plot showing the number of sequenced cells per sequencing method per organ 327 
per sex per age. b, Schematic analysis workflow. c,d, Tabula Muris Senis color 328 
dictionary for organs and tissues (c) and ages (d). 329 
 330 
 331 
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Extended Data Figure 3. Comparison of bulk and single-cell datasets. Aging patterns 332 
from bulk and single-cell data are consistent. Strong changes in bulk gene expression 333 
with aging can be either explained by cell or read count-based changes in single-cell data 334 
FACS (a) and droplet (b). Wilcoxon–Mann–Whitney indicates that single-cell data based 335 
log2 fold-changes of cell or read counts distinguish between up and down regulated genes 336 
in bulk data. 337 
 338 
 339 
Extended Data Figure 4. Tissue cell compositions. a-p, Alphabetically sorted tissue bar 340 
plot showing the relative abundances of cell types in each tissue across the entire age 341 
range for the droplet dataset. The tissue cell composition is also available at our online 342 
browser tabula-muris-senis.ds.czbiohub.org 343 
 344 
 345 
 346 
Extended Data Figure 5. Cellular changes during aging in the liver. 347 
a, Liver hepatocyte relative abundances change significantly with age (p-value<0.05 and 348 
r2>0.7 for a hypothesis test whose null hypothesis is that the slope is zero, using two-349 
sided Wald Test with t-distribution of the test statistic). b,c, Top 10 upregulated and 350 
downregulated genes in liver FACS (b) and droplet (c) using age as a continuous 351 
covariate while controlling for sex. Genes were classified as significant under an FDR 352 
threshold of 0.01 and an age coefficient threshold of 0.005 (corresponding to ~10% fold 353 
change). d-g, Staining of Kupffer cells across age (d) and respective quantification (e-g). 354 
h-k, Staining of liver endothelial cells across ages (h) and respective quantification (i-k). 355 
The white scale bar corresponds to 100µm. 356 
 357 
 358 
Extended Data Figure 6. Cellular changes during aging (cont.) 359 
a, Mammary gland T cell relative abundances change significantly with age (p-360 
value<0.05 and r2>0.7 for a hypothesis test whose null hypothesis is that the slope is zero, 361 
using two-sided Wald Test with t-distribution of the test statistic). b,c, Top 10 362 
upregulated and downregulated genes in mammary gland FACS (b) and droplet (c) using 363 
age as a continuous covariate while controlling for sex. Genes were classified as 364 
significant under an FDR threshold of 0.01 and an age coefficient threshold of 0.005 365 
(corresponding to ~10% fold change). d, Marrow precursor B cell relative abundances 366 
change significantly with age (p-value<0.05 and r2>0.7 for a hypothesis test whose null 367 
hypothesis is that the slope is zero, using two-sided Wald Test with t-distribution of the 368 
test statistic). e,f, Top 10 upregulated and downregulated genes in marrow FACS (e) and 369 
droplet (f) using age as a continuous covariate while controlling for sex. Genes were 370 
classified as significant under an FDR threshold of 0.01 and an age coefficient threshold 371 
of 0.005 (corresponding to ~10% fold change). g, Skin keratinocyte stem cell relative 372 
abundances change significantly with age (p-value<0.05 and r2>0.7 for a hypothesis test 373 
whose null hypothesis is that the slope is zero, using two-sided Wald Test with t-374 
distribution of the test statistic). h, Top 10 upregulated and downregulated genes in skin 375 
FACS using age as a continuous covariate while controlling for sex. Genes were 376 
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classified as significant under an FDR threshold of 0.01 and an age coefficient threshold 377 
of 0.005 (corresponding to ~10% fold change).  378 
 379 
 380 
Extended Data Figure 7. Mutational burden across tissues in the aging mice (cont. 381 
24m vs 3m). 382 
a,b, Mean number of somatic mutations (a) and raw expression (b) across all tissues per 383 
age group (3m and 24m). c,d, Mean number of mutations in ERCC spike-in (c) and 384 
ERCC raw expression (d) across all tissues per age group (3m and 24m).  Mutations are 385 
presented as the mean number of mutations per gene per cell.  386 
 387 
 388 
Extended Data Figure 8. Mutational burden across tissues in the aging mice (cont. 389 
18m vs 3m). 390 
a,b, Mean number of somatic mutations (a) and raw expression (b) across all tissues per 391 
age group (3m and 18m). c,d, Mean number of mutations in ERCC spike-in (c) and 392 
ERCC raw expression (d) across all tissues per age group (3m and 18m).  Mutations are 393 
presented as the mean number of mutations per gene per cell. 394 
 395 
 396 
Extended Data Figure 9. Mutational burden across tissues in the aging mice (cont. 397 
24m vs 18m). 398 
a,b, Mean number of somatic mutations (a) and raw expression (b) across all tissues per 399 
age group (18m and 24m). c,d, Mean number of mutations in ERCC spike-in (c) and 400 
ERCC raw expression (d) across all tissues per age group (18m and 24m).  Mutations are 401 
presented as the mean number of mutations per gene per cell. 402 
 403 
 404 
Extended Data Figure 10. Diversity score summary. 405 
a,b, Heatmap summary of the overall tissue diversity score for FACS (a) and droplet (b). 406 
c,d, Heatmap summary of the tissue cell-type diversity score for FACS (c) and droplet 407 
(d). 408 
 409 
 410 
Extended Data Figure 11. The aging immune system (cont.) 411 
a,b, Diversity score at different cluster resolutions for FACS brain myeloid microglia cell 412 
(a) and droplet kidney macrophage (b). c,d, Diversity score correlation with the number 413 
of genes expressed per tissue (c) or tissue cell-type (d). e, PAGA41 trajectory for brain 414 
myeloid microglia cell. f, Differential gene expression analysis of cluster 10 (mostly 415 
young macrophages) versus clusters 13 (mostly old macrophages). For the complete gene 416 
list please refer to Supplementary Table 8. 417 
 418 
 419 
 420 
 421 
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Supplementary Figure Legends 422 
Supplementary Figure 1. FACS sequencing statistics. 423 
a, Box plot of the number of genes detected per cell for each organ and age. b, Box plot 424 
of the number of reads per cell (log-scale) for each organ and age. 425 
 426 
Supplementary Figure 2. Droplet sequencing statistics. 427 
Box plot of the number of genes detected per cell for each organ and age.  428 
 429 
Supplementary Figure 3. Droplet sequencing statistics (cont.) 430 
Box plot of the number of UMIs per cell (log-scale) for each organ and age. 431 
 432 
 433 
 434 
 435 
Supplementary Tables 436 
Supplementary Table 1. Summary of the FACS dataset. 437 
a, Number of cells grouped by age, sex, mouse id and tissue. b, Number of cells grouped 438 
by tissue, cell ontology class and age. c, Number of cells grouped by Louvain cluster 439 
number, cell ontology class, tissue and age. d, Number of cells grouped by cell ontology 440 
class, Louvain cluster number, tissue and age. e, Fraction of cells in each Louvain cluster 441 
per cell ontology class and tissue. f, Fraction of cells in each Louvain cluster per tissue. g, 442 
Fraction of cells in each Louvain cluster per cell ontology class. 443 
 444 
Supplementary Table 2. Summary of the droplet dataset. 445 
a, Number of cells grouped by age, sex, mouse id and tissue. b, Number of cells grouped 446 
by tissue, cell ontology class and age. c, Number of cells grouped by Louvain cluster 447 
number, cell ontology class, tissue and age. d, Number of cells grouped by cell ontology 448 
class, Louvain cluster number, tissue and age. e, Fraction of cells in each Louvain cluster 449 
per cell ontology class and tissue. f, Fraction of cells in each Louvain cluster per tissue. g, 450 
Fraction of cells in each Louvain cluster per cell ontology class. 451 
 452 
Supplementary Table 3. Cellular fraction changes. This supplementary table supports 453 
Figure 2e,h,k; Extended Data Figure 4; Extended Data Figure  5a and Extended Data 454 
Figure 6a,d,g. 455 
 456 
Supplementary Table 4. Differential gene expression analysis. This supplementary 457 
table supports Figure 2f,g,i,j,l,m; Extended Data Figure 5b,c and Extended Data Figure 458 
6b,c,e,f,h. 459 
 460 
Supplementary Table 5. Quantification of Liver in-situ staining. This supplementary 461 
table supports Figure 5d-k. fov stands for field of view. 462 
 463 
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Supplementary Table 6. Summary statistics for the GATK analysis. Cell is the 464 
unique cell identifier; ercc is the average number of mutations per cell found in the 465 
ERCC spike-in, adata is the average number of mutations per cell in the gene set of the 466 
tissue; ercc_raw_counts are the average number of ERCC spike-in counts per cell and 467 
ercc_counts are the log(ercc_raw_counts+1);  adata_raw_counts are the average 468 
number of gene counts per cell and adata_counts are the log(adata_raw_counts+1); 469 
tissue, age and cell_ontology_class are the metadata of the respective cell id and 470 
agenum is the age as a numerical variable; functional_annotations is a categorical 471 
variable binning each cell type as endothelial, immune, parenchymal, stem 472 
cell/progenitor or stromal. 473 
 474 
Supplementary Table 7. B-cell and T-cell repertoire analysis raw data. This table 475 
supports Figure 4a,b. 476 
 477 
Supplementary Table 8. Differential gene expression for the tissue cell type whose 478 
diversity significantly changes with age. a, FACS brain myeloid microglia 479 
differentially upregulated genes between clusters 10, 12 and 14 versus clusters 1 and 6. b, 480 
FACS brain myeloid microglia differentially upregulated genes between clusters 1 and 6 481 
versus clusters 10, 12 and 14. c, Droplet kidney macrophage differentially upregulated 482 
genes between cluster 13 and cluster 10. d, Droplet kidney macrophage differentially 483 
upregulated genes between cluster 10 and cluster 13. e, Alzheimer’s disease microglia 484 
signature from37. This table supports Figure 4d,e and Extended Data Figure 11f. 485 
 486 
 487 
 488 
 489 
 490 
  491 
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Methods 492 
All data, protocols, analysis scripts and an interactive data browser are publicly available. 493 
 494 
 495 
Experimental Procedures 496 
Mice and organ collection 497 
Male and virgin female C57BL/6JN mice were shipped from the National Institute on 498 
Aging colony at Charles River (housed at 67–73 °F) to the Veterinary Medical Unit 499 
(VMU; housed at 68–76 °F)) at the VA Palo Alto (VA). At both locations, mice were 500 
housed on a 12-h light/dark cycle and provided food and water ad libitum. The diet at 501 
Charles River was NIH-31, and Teklad 2918 at the VA VMU. Littermates were not 502 
recorded or tracked, and mice were housed at the VA VMU for no longer than 2 weeks 503 
before euthanasia, with the exception of mice older than 18 months, which were 504 
housed at the VA VMU beginning at 18 months of age. Before tissue collection, mice 505 
were placed in sterile collection chambers at 8 am for 15 min to collect fresh fecal 506 
pellets. After anaesthetization with 2.5% v/v Avertin, mice were weighed, shaved, and 507 
blood was drawn via cardiac puncture before transcardial perfusion with 20 ml PBS. 508 
Mesenteric adipose tissue was then immediately collected to avoid exposure to the 509 
liver and pancreas perfusate, which negatively affects cell sorting. Isolating viable 510 
single cells from both the pancreas and the liver of the same mouse was not possible; 511 
therefore, two males and two females were used for each. Whole organs were then 512 
dissected in the following order: large intestine, spleen, thymus, trachea, tongue, brain, 513 
heart, lung, kidney, gonadal adipose tissue, bladder, diaphragm, limb muscle (tibialis 514 
anterior), skin (dorsal), subcutaneous adipose tissue (inguinal pad), mammary glands 515 
(fat pads 2, 3 and 4), brown adipose tissue (interscapular pad), aorta and bone marrow 516 
(spine and limb bones). Organ collection concluded by 10 am. After single-cell 517 
dissociation as described below, cell suspensions were either used for FACS of 518 
individual cells into 384-well plates, or for preparation of the microfluidic droplet 519 
library. All animal care and procedures were carried out in accordance with 520 
institutional guidelines approved by the VA Palo Alto Committee on Animal Research. 521 
 522 
Tissue dissociation and sample preparation 523 
All tissues were processed as previously described5. 524 
 525 
Sample size, randomization and blinding 526 
No sample size choice was performed before the study. Randomization and blinding 527 
were not performed: the authors were aware of all data and metadata-related variables 528 
during the entire course of the study. 529 
 530 
Single-cell methods 531 
All protocols used in this study are described in detail elsewhere5. Those include: i) 532 
preparation of lysis plates, ii) FACS sorting, iii) cDNA synthesis using the Smart-seq2 533 
protocol42,43, iv) library preparation using an in-house version of Tn544,45,v) library 534 
pooling and Quality control and vi) sequencing. For further details please refer to 535 
http://dx.doi.org/10.17504/protocols.io.2uwgexe 536 
 537 
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 538 
Microfluidic droplet single-cell analysis 539 
Single cells were captured in droplet emulsions using the GemCode Single-Cell 540 
Instrument (10x Genomics) and scRNA-seq libraries were constructed as per the 10x 541 
Genomics protocol using GemCode Single-Cell 3′ Gel Bead and Library V2 Kit. In 542 
brief, single cell suspensions were examined using an inverted microscope, and if 543 
sample quality was deemed satisfactory, the sample was diluted in PBS with 2% FBS 544 
to a concentration of 1000 cells per μl. If cell suspensions contained cell aggregates or 545 
debris, two additional washes in PBS with 2% FBS at 300gfor 5 min at 4 °C were 546 
performed. Cell concentration was measured either with a Moxi GO II (Orflo 547 
Technologies) or a haemocytometer. Cells were loaded in each channel with a target 548 
output of 5,000 cells per sample. All reactions were performed in the Biorad C1000 549 
Touch Thermal cycler with 96-Deep Well Reaction Module. 12 cycles were used for 550 
cDNA amplification and sample index PCR. Amplified cDNA and final libraries were 551 
evaluated on a Fragment Analyzer using a High Sensitivity NGS Analysis Kit 552 
(Advanced Analytical). The average fragment length of 10x cDNA libraries was 553 
quantitated on a Fragment Analyzer (AATI), and by qPCR with the Kapa Library 554 
Quantification kit for Illumina. Each library was diluted to 2 nM, and equal volumes of 555 
16 libraries were pooled for each NovaSeq sequencing run. Pools were sequenced with 556 
100 cycle run kits with 26 bases for Read 1, 8 bases for Index 1, and 90 bases for Read 557 
2 (Illumina 20012862). A PhiX control library was spiked in at 0.2 to 1%. Libraries 558 
were sequenced on the NovaSeq 6000 Sequencing System (Illumina). 559 
 560 
 561 
Computational methods 562 
Data extraction 563 
Sequences from the NovaSeq were de-multiplexed using bcl2fastq version 2.19.0.316. 564 
Reads were aligned using to the mm10plus genome using STAR version 2.5.2b with 565 
parameters TK. Gene counts were produced using HTSEQ version 0.6.1p1 with 566 
default parameters, except ‘stranded’ was set to ‘false’, and ‘mode’ was set to 567 
‘intersection-nonempty’. Sequences from the microfluidic droplet platform were de-568 
multiplexed and aligned using CellRanger version 2.0.1, available from 10x Genomics 569 
with default parameters. 570 
 571 
Data pre-processing 572 
Gene count tables were combined with the metadata variables using the Scanpy46 573 
Python package version 1.4. We removed genes not expressed in at least 3 cells and 574 
then cells that did not have at least 250 detected genes. For FACS we removed cells 575 
with less than 5000 counts and for droplet cells with less than 2500 UMIs. The data 576 
was then normalized using size factor normalization such that every cell has 10,000 577 
counts and log transformed. We computed highly variable genes using default 578 
parameters and then scaled the data to a maximum value of 10. After we computed 579 
PCA, neighborhood graph and clustered the data using Louvain6 and Leiden7 methods. 580 
The data was visualized using UMAP projection. Step-by-step instructions to 581 
reproduce the pre-processing of the data are available from GitHub. 582 
 583 
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Cell type annotation 584 
To define cell types we analyzed each organ independently but combining all ages. In a 585 
nutshell, we performed principal component analysis on the most variable genes between 586 
cells, followed by Louvain and Leiden graph-based clustering. Next we subset the data 587 
for 3m (Tabula Muris5) and compute how many cell types map to each individual cluster. 588 
For the clusters that we had a single 1:1 mapping (cluster:cell type) we propagate the 589 
annotations for all ages; in case there is a 1:many mapping we flagged that cluster for 590 
manual validation. Step-by-step instructions to reproduce this method are available from 591 
GitHub. For each cluster, we provide annotations in the controlled vocabulary of the cell 592 
ontology47 to facilitate inter-experiment comparisons. Using this method, we were able to 593 
annotate automatically (~1min per tissue) over 70% of the dataset. The automatic 594 
annotations were then reviewed by each of the tissue experts leading to a fully curated 595 
dataset for all the cell types in Tabula Muris Senis. 596 
 597 
Tissue cell composition analysis 598 
For each tissue and age, we computed the relative proportion of each cell type. Next we 599 
used scipy.stats linregress to regress the relative tissue-cell type changes against age 600 
and considered significant the changes with p-value<0.05 for a hypothesis test whose null 601 
hypothesis is that the slope is zero, using two-sided Wald Test with t-distribution of the 602 
test statistic and a r2>0.5. 603 
 604 
Differential gene expression 605 
We performed differential gene expression analysis on each tissue with a well-powered 606 
sample size (>100 cells in both young (1m and 3m) and old age group (18m, 21m, 24m 607 
and 30m)). We use a linear model48 treating age as a numerical variable while controlling 608 
for sex. We apply a false-discovery rate (FDR) threshold of 0.01 and an age coefficient 609 
threshold of 0.005 (corresponding to ~10% fold change). 610 
 611 
In Situ RNA Hybridization and quantification. 612 
In situ RNA hybridization was performed using the Advanced Cell Diagnostics 613 
RNAscope® Multiplex Fluorescent Detection kit v2 (323110, Bio-techne) according to 614 
the manufacturer’s instructions. Staining of mouse liver specimens was performed using 615 
5μm paraffin-embedded thick sessions. Mouse livers were fixed in 10% formalin buffer 616 
saline (HT501128, Sigma Aldrich) for 24h at room temperature before paraffin 617 
embedding. For multiplex staining the following probes were used; Clec4f (Mm-Clec4f 618 
480421, Il1b (Mm-Il1b 316891-C2), Pecam1 (Mm-Pecam-1 316721), Mrc1 (Mm-Mrc1 619 
437511-C3). Slides were counter stained with Prolong gold antifade reagent with DAPI 620 
(P36931, Life technologies). Mounted slides were imaged on a Leica DM6 B fluorescent 621 
microscope (Leica Biosystems). Image quantification was performed using the starfish 622 
open source image-based transcriptomics pipeline (please refer to Starfish: Open Source 623 
Image Based Transcriptomics and Proteomics Tools available from 624 
http://github.com/spacetx/starfish and 49). 625 
 626 
Comparison between bulk and single-cell datasets 627 
The differential gene analysis was defined on a per tissue basis. First, we investigated 628 
genes based on the single-cell data. We only considered cells from male animals and 629 
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perform our analysis on the log (1 + CPM) transformed single-cell count matrices. Note 630 
that normalization of the single-cell data was done on a per cell basis. We defined two 631 
group of cells based on age: young cells with age <= 3 months (Y) and old cells with age 632 
> 3 months (O). For each gene we compute the log2 fold-change of cell and read counts 633 
between O and Y. We defined cell count as the fraction of cells that express the gene. 634 
Similarly, we defined read count as the mean read count of the gene in the cells that 635 
express it. The calculated log2 fold-changes of a gene reflect its expression changes with 636 
aging within the single-cell data. Next we analyze each gene based on the bulk data. We 637 
computed the Spearman (Sp) correlation of bulk DESeq2 normalized gene expression 638 
with aging. We defined two groups of genes based on the bulk data, increasing with age 639 
Sp > 0.7 (U) and decreasing with age Sp < -0.7 (D). Finally, we compared the single-cell 640 
data based log2 fold-changes between the bulk data defined groups U and D. Specifically, 641 
we run Wilcoxon–Mann–Whitney test in order to understand if log2 fold-changes of cell 642 
or read counts could distinguish between the two groups. We used the U statistic for 643 
effect size. 644 
 645 
T-Cell processing 646 
We used TraCeR34 version 0.5 to identify T-Cell clonal populations. We ran tracer 647 
assemble with --species Mmus set. We then ran tracer summarise with –species Mmus 648 
to create the final results. We used the following versions for TraCeR dependencies: 649 
igblast version 1.7.0, kallisto version v0.43.1, Salmon version 0.8.2, Trinity version 650 
v2.4.0, GRCm38 reference genome. Step-by-step instructions to reproduce the 651 
processing of the data are available from GitHub. 652 
 653 
B-Cell processing 654 
We used singlecell-ige33 version eafb6d126cc2d6511faae3efbd442abd7c6dc8ef 655 
(https://github.com/dcroote/singlecell-ige) to identify B-Cell clonal populations. We 656 
used the default configuration settings except we set the species to mouse. Step-by-step 657 
instructions to reproduce the processing of the data are available from GitHub. 658 
 659 
Mutation analysis 660 
We used samtools50 version 1.9 and GATK29 version v4.1.1.0 for mutation analysis. 661 
We used samtools faidx to create our index file. Then we used GATK 662 
CreateSequenceDictionary and GRCm38, as the reference, to create our sequence 663 
dictionary. Next we used GATK AddOrReplaceReadGroups to create a single read 664 
group using parameters -RGID 4 -RGLB lib1 -RGPL illumina -RGPU unit1 -RGSM 665 
20. Finally we used GATK HaplotypeCaller to call the mutations. We disabled the 666 
following read filters: MappingQualityReadFilter, GoodCigarReadFilter, 667 
NotSecondaryAlignmentReadFilter, MappedReadFilter, 668 
MappingQualityAvailableReadFilter, NonZeroReferenceLengthAlignmentReadFilter, 669 
NotDuplicateReadFilter, PassesVendorQualityCheckReadFilter, and 670 
WellformedReadFilter, but kept all other default settings. The results were 671 
summarized per gene in the form of a mutation count per cell table. We started by 672 
removing genes mutated in over 60% of cells, to eliminate the possible bias of 673 
germline mutations. Then for each tissue we selected genes expressed in at least 75% 674 
of the cells for all the time points to avoid confounding the mutation results with 675 
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differential gene expression associated with age. Next we computed the average 676 
number of mutations in the gene set (or ERCC spike-in controls) per cell and also the 677 
average number of raw counts (Supplementary Table 6) and plotted the different 678 
distributions. Step-by-step instructions to reproduce the processing of the data are 679 
available from GitHub. 680 
 681 
Diversity score 682 
The raw FACS or droplet dataset were used as the input. We filtered genes expressed 683 
in fewer than 5 cells, filtered cells if expressing fewer than 500 genes and discarded 684 
cells with total number of counts less than 5000. Next we performed size factor 685 
normalization such that every cell had 1e4 counts and performed a log1p 686 
transformation. This was followed by clustering, where we clustered every tissue and 687 
every tissue-cell type for every mouse separately using 6 different configurations: 688 
resolution parameters (0.3, 0.5, 0.7) * clustering method (Louvain, Leiden). This is to 689 
provide a robust clustering result. For each combination (each tissue-mouse and each 690 
tissue-cell_type-mouse), we computed the clustering diversity score as the Shannon 691 
entropy of the cluster assignment. We then regressed the diversity score against age to 692 
detect the systematic increase/decrease of clustering diversity with respect to age. FDR 693 
was used to correct for multiple comparisons. A tissue or a tissue-cell type was 694 
selected if the slope was consistent (having the same sign) in all 6 clustering 695 
configurations and at least 2 out of 6 clustering configurations had FDR<0.3. For each 696 
selected tissue or tissue-cell type, a separate UMAP was computed using cells from all 697 
mice for visualization using Leiden clustering with resolution parameter 0.7. 698 
 699 
Code availability 700 
All code used for analysis is available on GitHub (https://github.com/czbiohub/tabula-701 
muris-senis) 702 
 703 
Interactive Data Browsers 704 
tabula-muris-senis.ds.czbiohub.org 705 
https://tabula-maris-senis.cells.ucsc.edu 706 
 707 
 708 
  709 
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