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Abstract 38 

Metabolomics examines the small molecules involved in cellular metabolism. Approximately 50% of 39 

total phenotypic differences in metabolite levels is due to genetic variance, but heritability estimates 40 

differ across metabolite classes and lipid species. From the literature we aggregate > 800 class-specific 41 

metabolite loci that influence metabolite levels. In a twin-family cohort (N = 5,117) these metabolite loci 42 

were leveraged to simultaneously estimate total heritability (h
2

total), SNP-based heritability (h
2

SNP) and 43 

the proportion of heritability captured by known metabolite loci (h
2

GW-loci) for 309 lipids and 52 organic 44 

acids. Our study revealed significant differences in h
2

SNP and h
2

GW-loci among different classes of lipids and 45 

organic acids. Furthermore, phosphatidylcholines with a higher degree of unsaturation had higher h
2

GW-46 

loci estimates. This study highlights the importance of common genetic variants for metabolite levels and 47 

elucidates the genetic architecture of metabolite classes and lipid species.  48 
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Metabolites are the small molecules involved in cellular metabolism, while the metabolome is typically 49 

defined as the collection of metabolites produced by cells
1
. Metabolomics aims at providing a holistic 50 

overview of the metabolome
1
, and allows for the elucidation of underlying biological mechanisms and 51 

metabolic disturbances in diseases. At the same time metabolomics may offer potential new therapeutic 52 

targets or new biomarkers for disease diagnosis
2
. Variation in metabolite levels can arise due to gender

3
, 53 

and age
4
, as well as physiologic effects, behavior, and lifestyle, such as diet

5
. Genetic differences may be 54 

a source of direct variation in metabolomics profiles or may exert their effects on metabolite profiles 55 

through the genetic influences on behavior or physiology.  56 

Systematic investigations of common genetic variants in human metabolism by genome- and 57 

metabolome-wide analysis successfully identified genetically influenced metabotypes (GIMs)
6
. The first 58 

genome-wide association study (GWAS) in 2008 (N = 284 participants) identified four genetic variants 59 

associated with metabolite levels
7
. Thereafter, GWAS with increasing sample sizes, and in diverse 60 

populations, have resulted in the identification of hundreds of Single Nucleotide Polymorphism (SNP) 61 

associations with metabolites from a wide range of metabolite classes
6
. Additional metabolite loci have 62 

been identified by leveraging low-frequency and rare-variant analyses using (exome-) sequencing. We 63 

conducted a comprehensive review of all quantitative trait locus (QTL) discovery for metabolites and 64 

supply the complete reference list in Supplementary Note 1.  65 

Twin and family studies estimated the heritability (h
2
; proportion of phenotypic variance due to 66 

genetic variance) for metabolite levels at around 50%, ranging from a heritability of 0% to 80% 
5,8–15

. 67 

Several studies reported differences in heritability estimates among different classes of lipid species
12,14

 68 

or lipoprotein subclasses
13

. For example, Rhee et al. (2013) reported higher heritability estimates for 69 

amino acids than for lipids
11

. Essential amino acids, which cannot be synthesized by an organism de 70 

novo
16

, had lower heritability than non-essential amino acids
11

 that are synthesized within the body
16

. 71 
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Intriguingly, phosphatidylcholines
10

 and triglycerides (TGs)
15

 show increasing heritability as the number 72 

of carbon atoms and/or double bonds in their fatty acyl side chains increases. Draisma et. al speculated 73 

this might be attributed to differences in the number of metabolic conversion rounds for 74 

phosphatidylcholines or TGs with a variable number of carbon atoms
10

. 75 

An improved understanding of the genetic architecture of intermediate phenotypes such as 76 

metabolites may benefit insight into the aetiology of diseases and traits, such as cardiometabolic 77 

diseases
17

, migraine
18

, psychiatric disorders
19

, and cognition
20

. We aim to expand our understanding of 78 

the contribution of genetic factors to variation in fasting blood metabolic measures (referred to as 79 

metabolites in the remainder of the text for brevity) and analyzed data from multiple metabolomics 80 

platforms from a large cohort of twins and family members (N = 5,117). Combining SNP and family data 81 

allows for the simultaneous estimation of SNP heritability (h
2

SNP) and total heritability (h
2

total)
21

. We 82 

further extended this approach to estimate the proportion of variance explained by metabolite loci 83 

identified by GWAS or rare-variant analysis (h
2

GW-loci; Supplementary Data 1). The h
2

GW-loci consisted of 84 

two sub-fractions, a fraction composed of all metabolite loci associated with metabolites of a specific 85 

superclass (h
2 

GW-Class) and a fraction composed of all other metabolite loci (h
2 

GW-Notclass).  86 

After characterizing all published metabolite-SNP associations by metabolite classification, we 87 

present the h
2

total, h
2

SNP and h
2

GW-loci results for 361 metabolites (Figure 1). Next, we further expand on 88 

the current knowledge of the genetic aetiology of metabolite classes by employing mixed-effect meta-89 

regression models to test for differences in heritability estimates among metabolite classes and among 90 

lipid species. To distinguish between the effects of the number of carbon atoms or number of double 91 

bonds in the fatty acyl side chains of phosphatidylcholines and TGs additional univariate follow-up 92 

analyses were conducted.  93 
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Results 94 

Metabolite classification 95 

In the period of November 2008 to October 2018, 40 GWA and (exome-) sequencing studies have 96 

identified 242,580 metabolite-SNP or metabolite ratio-SNP associations (see Supplementary Note 1). 97 

These associations included 1,804 unique metabolites or ratios and 49,231 unique SNPs (43,830 after 98 

converting all SNPs to build 37; Supplementary Data 1). For all metabolites their Human Metabolome 99 

Database (HMDB)
22–24

 identifiers were retrieved in order to extract information with regards to their 100 

hydrophobicity and chemical classification (see Methods). Excluding the ratios and unidentified 101 

metabolites, 953 metabolites could be classified into 12 ‘super classes’ (Table 1), 43 ‘classes’, or 77 102 

‘subclasses’ based on the HMDB classification (Supplementary Data 1). The majority of the metabolites 103 

were classified as ‘lipids’ and ‘organic acids’. The ‘lipids’ could be subdivided into 8 classes, with 1 to 104 

95,795 metabolite-SNP associations per class (mean = 17,589; SD = 32,553), and in 32 subclasses, with 1-105 

40,440 metabolites-SNP associations of per subclass (mean = 4,673; SD = 9,124). The ‘organic acids and 106 

derivatives’ could be divided in 9 classes, with 1 to 26,832 metabolite-SNP associations per class (mean = 107 

3,374; SD = 8,832), and 17 ‘organic acid’ subclasses, including 1 to 26,448 metabolite-SNP associations 108 

per subclass (mean = 1,786; SD = 6,371; Supplementary Data 1).  109 

 For 5,117 individuals, data were available from four different metabolomics platforms: the 110 

Nightingale Health 
1
H-NMR platform, a UPLC-MS Lipidomics platform, the Leiden 

1
H-NMR platform and 111 

the Biocrates Absolute-IDQ
TM

 p150 platform. All participants were registered with the Netherlands Twin 112 

Register (NTR)
25

 and came from 2,445 nuclear families. Metabolomics and SNP data were available for 113 

all participants. Background and demographic characteristics for the sample can be found in Table 2. 114 

Across all four platforms 427 metabolites were assessed. After excluding the ratios (17) and the 115 

metabolites of super classes not included in the curated metabolite-SNP association list (8), data were 116 
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available for 402 metabolites. The 402 metabolites could be classified as 336 ‘lipids’, 53 ‘organic acids’, 9 117 

‘organic oxygen compounds’, 3 ‘proteins’ and one ‘organic nitrogen compound’. In the remainder of this 118 

paper we solely focus on the 369 metabolites classified as ‘lipids’ or ‘organic acids and derivatives’. The 119 

full list of metabolites, with their classifications and the quartile values of the untransformed levels, are 120 

included in Supplementary Table 1. 121 

Characterization of the heritable influences on lipid and organic acid levels 122 

For the 369 metabolites that passed QC, we estimated total heritability (h
2

total), the proportion of 123 

phenotypic variance explained by measured SNPs (h
2

SNP), the proportion attributable to metabolite 124 

superclass-specific loci (h
2 

GW-Class) and the proportion of variance attributable to non-superclass 125 

metabolite loci (h
2 

GW-Notclass) in twin and family members. The four-variance component analyses were 126 

performed in the genome-wide complex trait analysis (GCTA) software
26

. The analyses were performed 127 

separately for ‘lipids’ and ‘organic acids’, using unique superclass-specific and non-superclass genetic 128 

relationship matrices (GRMs; created in LDAK
27,28

) in both sets of analyses (Figure 1). The ‘lipid’ analyses 129 

employed a superclass-specific GRM of 479 ‘lipid’ loci and a non-superclass GRM including 596 SNPs 130 

(Figure 1). The ‘organic acid’ analyses included a superclass-specific GRM with 397 loci and a non-131 

superclass GRM with 683 SNPs (Figure 1). Before analyses, the metabolite data were normalized (log-132 

normal or inverse rank; see Methods). All models included age at blood draw, sex, the first 10 principal 133 

components (PCs) from SNP genotype data, genotyping chip and metabolomics measurement batch as 134 

covariates. 135 

Supplementary Table 2 includes the estimates for h
2

total , h
2

SNP, and h
2

GW-loci from the four-136 

variance genetic component model for all 369 metabolites. The genomic relatedness matrix residual 137 

maximum likelihood (GREML) algorithm converged successfully for 361 (97.8%) of the 53 ‘organic acids’ 138 

and 316 ‘lipids’. Poor convergence of the GREML algorithm was observed for 6 metabolites (1.6%). The 139 
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analyses for 2 metabolites (0.5%) were not completed due to non-invertible variance-covariance 140 

matrices. The estimates for h
2

total of the 309 ‘lipids’ ranged from 0.11 to 0.66 (mean = 0.47; mean s.e. = 141 

0.04). The h
2

SNP estimates ranged from -0.54 to 0.71 (mean = 0.05; mean s.e. = 0.24). The estimates for 142 

h
2

GW-loci ranged from -0.05 to 0.16 (mean = 0.06; mean s.e. = 0.03; Table 3). The 52 ‘organic acids’ had 143 

h
2

total estimates ranging from 0.14 to 0.72 (mean = 0.41; mean s.e. = 0.04). The estimates for h
2

SNP ranged 144 

from -0.42 to 0.46 (mean = 0.05; mean s.e. = 0.24) and for h
2

GW-loci ranged from -0.08 to 0.11 (mean = 145 

0.01; mean s.e. = 0.02; Table 3). On average, for both ‘lipids’ and ‘organic acids’ the h
2

class was higher 146 

than the h
2

Notclass, with h
2

GW-Class ranging from -0.02 to 0.16 (0.06; mean s.e. = 0.02) for ‘lipids’ and from -147 

0.04 to 0.14 for ‘organic acids’ (mean = 0.01; mean s.e. = 0.02). For both ‘lipids’ and ‘organic acids’ h
2

GW-148 

Notclass was zero (mean s.e. = 0.02), ranging from -0.06 to 0.12 for ‘lipids’ and from -0.06 to 0.05 for 149 

‘organic acids’ (Table 3).  150 

Including multiple metabolomics platforms allowed for a comparison of metabolites as 151 

measured on multiple platforms. An earlier study showed 29 out of 43 overlapping metabolites across 152 

two platforms to exhibit moderate heritability on both platforms
29

. In the current study, 61 metabolites 153 

were measured on multiple platforms, with moderate h
2

total on each of the platforms and on average a 154 

medium positive correlation between the h
2

total of the same metabolite assessed on different platforms 155 

(mean r h
2

total = 0.36; Supplementary Table 3).  156 

Differential heritability among metabolite classes and lipid-species  157 

Figure 2 shows variation in median heritability among the different classes of ‘organic acids’: ‘keto 158 

acids’, ‘hydroxy acids’ and ‘carboxylic acids’ (see Supplementary Table 1 for metabolites per class). ‘Keto 159 

acids’, followed by ‘carboxylic acids’, had the highest median h
2

total, h
2

SNP and h
2

GW-Class estimates (Figure 160 

2). While ‘hydroxy acids’ had the highest median h
2

GW-Notclass and h
2

GW-loci estimates, the lowest median 161 

h
2

total, h
2

SNP and h
2

GW-Class estimates were observed for these metabolites (Figure 2). To investigate 162 
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whether heritability differs significantly among classes of ‘organic acids’, we applied multivariate mixed-163 

effect meta-regression, corrected for metabolite platform effects (see Methods). The multivariate 164 

mixed-effect meta-regression models showed that h
2

total and h
2

GW-Class for the ‘organic acid’ classes did 165 

not differ significantly. Significant differences among the ‘organic acid’ classes, though, were observed 166 

for the h
2

SNP estimates (F(4, 47) = 7.48, FDR-adjusted p-value = 0.02), the h
2

GW-loci estimates (F(4, 47) = 167 

3.44, FDR-adjusted p-value = 0.03), and the h
2

GW-Notclass estimates (F(4,47) = 19.95, FDR-adjusted p-value 168 

= 1.25x10
-08

; Supplementary Table 4).  169 

The multivariate mixed-effect meta-regressions were also applied to assess the significance of 170 

heritability differences among essential and non-essential amino acids (subdivision of ‘carboxylic acids’; 171 

see Supplementary Table 5) and among ‘lipid’ classes (see Supplementary Table 1 for metabolites per 172 

‘lipid’ class). None of the observed mean differences among essential and non-essential amino acids 173 

(Table 4) were significant in the meta-regressions (Supplementary Table 4). Small but significant median 174 

heritability differences were observed among the different classes of ‘lipids’ (Figure 3). For ‘lipid’ classes 175 

the h
2

GW-loci estimates differed significantly (F(8, 300) = 8.47; FDR-adjusted p-value = 0.004; 176 

Supplementary Table 4). 177 

Finally, we explored whether heritability of phosphatidylcholines and TGs increases with a larger 178 

number of carbon atoms and/or double bonds in their fatty acyl side chains. To this end we employed 179 

both uni- and multivariate mixed-effect meta-regression models separately for the TGs, diacyl 180 

phosphatidylcholines (PCaa) and acyl-alkyl phosphatidylcholines (PCae; see Methods). The platform 181 

specific heritability estimates for each of these lipid species has been depicted in Supplementary Figure 182 

1. Variation in the number of carbon atoms and double bonds was significantly associated with h
2

GW-loci 183 

estimates for PCaa’s (F(3, 52) = 7.05; FDR-adjusted p-value = 0.009) and PCae’s (F(3, 45) = 3.41; FDR-184 

adjusted p-value = 0.05; Supplementary Table 4). Phosphatidylcholines with a larger number of carbon 185 
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atoms showed lower heritability estimates and phosphatidylcholines with a larger number of double 186 

bonds had higher heritability estimates (Supplementary Table 4). The differences among the 187 

phosphatidylcholines with a variable number of carbon atoms and/or double bonds could be 188 

contributed to differential h
2

Class estimates. Univariate models confirmed the pattern for the number of 189 

double bonds in PCaa’s and PCae, though they were not significant after correction for multiple testing 190 

(Supplementary Table 6).  191 

Discussion 192 

We carried out a comprehensive assessment of GWA-metabolomics studies and created a repository of 193 

all studies reporting on associations of SNPs and blood metabolites in European ancestry samples. This 194 

led to 241,965 genome-wide associations that were curated, lifted to NCBI build 37 and for which all 195 

associated metabolites were classified. The complete, categorized, overview of all blood metabolite-SNP 196 

associations is provided in Supplementary Data 1, with the complete list of references in 197 

Supplementary Note 1. The information from the repository served to construct six GRMs which then 198 

served as predictors in the analysis of 369 metabolites. The metabolite data in our study derived from 199 

four metabolomics platforms and two metabolite super classes. By mapping all metabolites to the 200 

Human Metabolome Database (HMDB)
22–24

 we were able to classify both the measured metabolites and 201 

all previously published metabolites as either ‘lipids’ or ‘organic acids’. Because the participants in the 202 

study (N = 5,117) came from a large cohort of MZ and DZ twin-families we could evaluate the total 203 

heritability (h
2

total) and the contributions of genome-wide SNPs (h
2

SNP) on ‘lipids’ and ‘organic acids’. A 204 

unique feature of the study was the ability to disentangle the role of superclass-specific (h
2 

GW-Class) and 205 

non-superclass (h
2 

GW-Notclass) metabolite loci on heritability differences among metabolite classes and 206 

lipid species.  207 
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To evaluate differences among metabolite classes and lipid species in the estimates for h
2

total, 208 

h
2

SNP, h
2

GW-loci, h
2

GW-Class, and h
2

GW-Notclass multivariate mixed-effect meta-regression models were applied. 209 

No significant differences in h
2

total estimates existed among any of the metabolite classes. Congruent 210 

with a previous twin-family study
9
, none of the heritability estimates differed significantly among 211 

essential and non-essential amino acids. Both h
2

SNP and h
2

GW-loci showed significant differences among 212 

the different classes of ‘organic acids’. ‘Keto acids’ had significantly higher h
2

SNP and significantly lower 213 

h
2

GW-loci estimates as compared with ‘carboxylic acids’. Class-specific metabolite loci heritability 214 

estimates for ‘fatty acyls’, ‘lipoproteins’ and ‘steroids’ were significantly higher. Similarly, significant 215 

heterogeneity in lipid class heritability, with lower h
2

total and h
2

SNP for phospholipids than for 216 

sphingolipids or glycerolipids has been described
12,14,30

. Lastly, we assessed whether heritability 217 

increases with added complexity in lipid species
10,15

. We found that this indeed held for h
2

GW-loci 218 

estimates in more complex diacyl and acyl-alkyl phosphatidylcholines but not for more complex TGs. 219 

Previous research reported significant higher h
2

SNP estimates in polyunsaturated fatty acid containing 220 

lipids
14

. Furthermore, loci of traditional lipid measures explained 2% to 21% of the variance in lipid 221 

levels
14

. Together these results suggest that higher heritability in phosphatidylcholines is driven by a 222 

lower number of carbon atoms and higher number of double bonds, e.g. a larger degree of 223 

unsaturation.  224 

Evaluating the mean heritability differences among ‘lipids’ and ‘organic acids’ it appears that 225 

‘lipids’ have higher h
2

total, h
2

GW-Class and h
2

GW-loci estimates than ‘organic acids’ (Table 3). However, as the 226 

GRMs used in the calculation of the heritability estimates differed among these classes, we were unable 227 

to empirically compare mean differences. Comparison of our findings with those of previous twin-family 228 

studies indicates that the heritability difference among ‘lipids’ and ‘organic acid’ is infrequently 229 

investigated
8–11

. A possible explanation for the lack of comparisons may be the shortage of balanced 230 

metabolomics platforms. The majority of metabolomics platforms have a strong focus on either ‘lipids’ 231 
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or ‘organic acids’, which complicates such comparisons. The disproportion of metabolite classes on 232 

metabolomics platforms also affects the known metabolite loci, where ‘lipid’ studies have been 233 

overrepresented as well. As a consequence, especially the h
2

GW-Class and h
2

GW-loci estimates of the ‘organic 234 

acids’ will be underpowered due to this imbalance. For multi-component GREML our platform-specific 235 

sample sizes were relatively small
31

. Only the Nightingale Health 
1
H-NMR platform was sufficiently 236 

powered to obtain small s.e.’s in single-component GREML using unrelated individuals with common 237 

SNPs
32

. New
30,33–35

 and future studies will increase the number of variants identified as metabolite loci. 238 

The investment in UK Biobank
36

 is expected to dramatically increase sample sizes for large-scale 239 

genomic investigations of the human metabolome and subsequently the number of metabolite loci.  240 

Applications such as two-sample Mendelian Randomization benefit greatly from the 241 

comprehensive overview of metabolite loci we identified. The identified loci are interesting to explore as 242 

instruments for metabolome-wide Mendelian Randomization studies of complex traits. Our work further 243 

offers valuable insights into the role of common genetic variants in class specific differences among 244 

metabolite classes and lipids species. Further research is required to elucidate the contribution of rare 245 

genetic variants to metabolite levels and differences among metabolite classes. A reasonable approach 246 

to tackle this issue could be to carry out a similar study in a large sample of whole-genome sequencing 247 

(WGS) data. Such an approach, using MAF- and LD-stratified GREML analysis
31

, identified additional 248 

variance due to rare variants for height and BMI
37

. The extent to which our findings might generalize to 249 

populations of non-European ancestry is uncertain, with replication among different ethnicities being 250 

more likely for loci of common human metabolism pathways
38

. 251 

In conclusion, we contributed to the further elucidation of the genetic architecture of fasting 252 

blood metabolite levels and to differences in the genetic architecture among metabolite classes. 253 

Extending the GREML framework with the inclusion of known metabolite loci allowed us to 254 
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simultaneously estimate h
2

total, h
2

SNP, h
2

GW-Class and h
2

GW-Notclass for 361 metabolites. Significant differences 255 

in h
2

SNP or h
2

GW-loci estimates were observed among different classes of ‘lipids’ and ‘organic acids’ and for 256 

more complex diacyl and acyl-alkyl phosphatidylcholines. Future studies need to also elucidate the 257 

proportion of metabolite variation influenced by heritable and non-heritable lifestyle factors, which may 258 

help delineate new personalized disease prevention or treatment strategies for complex disorders. 259 

Methods 260 

Participants 261 

At the Netherlands Twin Register (NTR)
39

 metabolomics data for twins and family members as measured 262 

in blood samples were available for 6,011 individuals of whom 5,667 were genotyped. The blood 263 

samples for the four metabolomics experiments described in this study were mainly collected in 264 

participants of the NTR biobank project
25,40

. Blood samples were collected after a minimum of two hours 265 

of fasting (1.3%), with the majority of the samples collected after overnight fasting (98.7%). Fertile 266 

women were bled in their pill-free week or on day 2-4 of their menstrual cycle. For the current paper, 267 

we excluded participants if they were not of European ancestry, were on lipid-lowering medication at 268 

the time of blood draw or if they had not adhered to the fasting protocol. The exact number of 269 

exclusions per dataset is listed in Supplementary Table 7. After completing the preprocessing of the 270 

metabolomics data, the separate subsets (e.g., different collection and measurement waves; see 271 

Supplementary Table 7) of each platform were merged into a single per platform dataset, randomly 272 

retaining a single observation per platform whenever multiple observations were available. 273 

Supplementary Table 8 gives an overview of the overlap in participants among the different platforms, 274 

with the overlap among each metabolite that survived quality control (QC) for all four platforms 275 

available in Supplementary Table 9. The final number of participants included in the study was 5,117, 276 
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with platform specific sample size ranging from 1,448 to 4,227 individuals from 946 to 2,179 families. 277 

Characteristics for the individuals included in the analyses can be found in Table 2. Informed consent 278 

was obtained from all participants. Projects were approved by the Central Ethics Committee on 279 

Research Involving Human Subjects of the VU University Medical Centre, Amsterdam, an Institutional 280 

Review Board certified by the U.S. Office of Human Research Protections (IRB number IRB00002991 281 

under Federal-wide Assurance- FWA00017598; IRB/institute codes, NTR 03-180 and EMIF-AD 2014.210). 282 

Metabolite profiling 283 

Nightingale Health 
1
H-NMR platform 284 

Metabolic biomarkers were quantified from plasma samples using high-throughput proton nuclear 285 

magnetic resonance spectroscopy (
1
H-NMR) metabolomics (Nightingale Health Ltd, Helsinki, Finland; 286 

formerly Brainshake Ltd.). This method provides simultaneous quantification of routine lipids, 287 

lipoprotein subclass profiling with lipid concentrations within 14 subclasses, fatty acid composition, and 288 

various low-molecular weight metabolites including amino acids, ketone bodies and glycolysis-related 289 

metabolites in molar concentration units. Details of the experimentation and epidemiological 290 

applications of the NMR metabolomics platform have been reviewed previously
41,42

. 291 

UPLC-MS lipidomics platform 292 

Plasma lipid profiling was performed at the division of Analytical Biosciences at the Leiden Academic 293 

Center for Drug Research at Leiden University/Netherlands Metabolomics Centre. The lipids were 294 

analyzed with an Ultra-High Performance Liquid Chromatograph directly coupled to an Electrospray 295 

Ionization Quadruple Time-of-Flight high resolution mass spectrometer (UPLC-ESI-Q-TOF; Agilent 6530, 296 

San Jose, CA, USA) that uses reference mass correction. For liquid chromatographic separation a 297 

ACQUITY UPLC HSS T3 column (1.8μm, 2.1 ∗ 100mm) was used with a flow of 0.4 ml/min over a 16 298 

minute gradient. Lipid detection was done using a full scan in the positive ion mode. The raw MS data 299 
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were pre-processed using Agilent MassHunter Quantitative Analysis software (Agilent, Version B.04.00). 300 

Detailed descriptions of lipid profiling and quantification have been described previously
43,44

.  301 

Leiden 
1
H-NMR platform (for small metabolites) 302 

The Leiden 
1
H-NMR spectroscopy experiment of EDTA-plasma samples used a 600 MHz Bruker Advance 303 

II spectrometer (Bruker BioSpin, Karlsruhe, Germany). The peak deconvolution method used for this 304 

platform has been previously described
45

.  305 

Biocrates Absolute-IDQ
TM

 p150 platform 306 

The Biocrates Absolute-IDQ
TM

 p150 (Biocrates Life Sciences AG, Innsbruck, Austria) metabolomics 307 

platform on serum samples was analysed at the Metabolomics Facility of the Genome Analysis Centre at 308 

the Helmholtz Centre in Munich, Germany. This platform utilizes flow injection analysis coupled to 309 

tandem mass spectrometry (MS/MS) and has been described in detail elsewhere
3,46,47

.  310 

Metabolomics data preprocessing  311 

Preprocessing of the metabolomics data was done for each of the platforms and measurement batches 312 

per platform separately. Metabolites were excluded from analysis when the mean coefficient of 313 

variation exceeded 25% and the missing rate exceeded 5%. Metabolite measurements were set to 314 

missing if they were below the lower limit of detection or quantification or could be classified as an 315 

outlier (five standard deviations greater or smaller than the mean). Metabolite measurements that were 316 

set to missing because they fell below the limit of detection/quantification were imputed with half of 317 

the value of this limit, or when this limit was unknown with half of the lowest observed level for this 318 

metabolite. All remaining missing values were imputed using multivariate imputation by chained 319 

equations (‘mice’)
48

. On average, 9 values had to be imputed for each metabolites (SD = 12; range: 1-320 

151). Data for each metabolite on both 
1
H-NMR platforms were normalized by inverse normal rank 321 

transformation
45,49

, while the imputed values of the Biocrates metabolomics platform and the UPLC-MS 322 
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lipidomics platform were normalized by natural logarithm transformation
10,50

, conform previous 323 

normalization strategies applied to the data obtained using these platforms. The complete lists with full 324 

names of all detected metabolites that survived QC and preprocessing for all platforms can be found in 325 

Supplementary Table 1, these tables also include the quartile values of the untransformed metabolites. 326 

Genotyping, imputation and ancestry outlier detection 327 

Genotype information was available for 21,001 NTR participants for 6 different genotyping arrays (Affymetrix 328 

6.0 [N = 8,640], Perlegen-Affymetrix [N = 1,238], Illumina Human Quad Bead 660 [N = 1,439], Affymetrix 329 

Axiom [N = 3,144], Illumnia GSA [N = 5,938] and Illumina Omni Express 1M [N =238]), as well as sequence 330 

data from the Netherlands reference genome project GONL (BGI full sequence at 12x (N = 364)
51

. For each 331 

genotyping array samples were removed if they had a genotype call rate above 90%, gender-mismatch 332 

occurred or if heterozygosity (Plink F statistic) fell outside the range of -0.10 – 0.10. SNPs removed if they 333 

were palindromic AT/GC SNPs with a minor allele frequency (MAF) range between 0.4 and 0.5, when the MAF 334 

was below 0.01, when Hardy Weinberg Equilibrium (HWE) had p < 10
-5

, when the number of Mendelian 335 

errors was greater than 20 and the genotype call rate was < 0.95. After QC the six genotyping arrays were 336 

aligned to the GONL reference set (V4) and SNPs were removed if the alleles mismatched with this reference 337 

panel or the allele frequency different more than 0.10 between the genotyping array and this reference set. 338 

The data from the six genotyping chips were subsequently merged into a single dataset (1,781,526 339 

SNPs). Identity-by-decent (IBD) was estimated with PLINK
52

 and KING
53

 for all individual pairs based on the 340 

~10.6K SNPs in common across the arrays, next IBD was compared to expected family relations and 341 

individuals were removed if this mismatched. Prior to imputation to the GONL reference data
54,55

 the 342 

duplicate monozygotic pairs (N = 3,032) or trios (N = 7) and NTR GONL samples (N = 364) were removed and 343 

the data was cross-array phased using MACH-ADMIX
56

. Post-imputation the NTR GONL samples and the 344 

duplicated MZ pairs and trios were re-added to the data. Filtering of the imputed dataset included the 345 

removal of SNPs that were significantly associated with a single genotyping chip (p < 10
-5

), had HWE p < 10
-5

, 346 
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the Mendelian error rate > mean + 3 SD or if the imputation quality (R
2
) was below 0.90. The final cross-347 

platform imputed dataset included 1,314,639 SNPs, including 20,792 SNPs on the X-chromosome.  348 

The cross-platform imputed data was aligned with PERL based "HRC or 1000G Imputation preparation 349 

and checking" tool (version 4.2.5; https://www.well.ox.ac.uk/~wrayner/tools). The remaining 1,302481 SNPs 350 

were phased with EAGLE
57

 for the autosomes, and SHAPEIT
58

 for chromosome X and then imputed to 1000 351 

Genomes Phase 3 (1000GP3 version 5)
59

 on the Michigan Imputation server using Minimac3 following the 352 

standard imputation procedures of the server
60

. Principal Component Analysis (PCA) was used to project the 353 

first 10 PCs of the 1000 genomes references set population on the NTR cross-platform imputed data using 354 

SMARTPCA
61

. Ancestry outliers (non-Dutch ancestry; N = 1,823) were defined as individuals with PC values 355 

outside the European/British population range
62

. After ancestry outlier removal the first 10 PCs were 356 

recalculated.  357 

Curation of metabolite loci  358 

In October 2018 PubMed and Google Scholar were searched to identify published GWA and (exome-) 359 

sequencing studies on metabolomics or fatty acid metabolism in blood samples using 
1
H-NMR, mass 360 

spectrometry or gas chromatography-based methods. In the period of November 2008 to October 2018 361 

40 GWA or (exome-) sequencing studies on blood metabolomics in European samples have been 362 

published (Supplementary Note 1). For all studies the genome-wide significant (p < 5x10
-8

) metabolite-363 

SNP associations were extracted, including only those observations for autosomal SNPs and reporting 364 

SNP effect sizes and p-values based on the summary statistics excluding NTR samples were relevant
49,50

. 365 

Across the 40 studies, 242,580 metabolite-SNP or metabolite ratio-SNP associations were reported, 366 

these associations included 1,804 unique metabolites or ratios and 49,231 unique SNPs (Supplementary 367 

Data 1). For all metabolites their Human Metabolome Database (HMDB)
22–24

, PubChem
63

, Chemical 368 

Entities of Biological Interest (ChEBI)
64

 and International Chemical Identifier (InChiKey)
65

 identifiers have 369 

been retrieved. Information with regards to the ‘super class’, ‘class’ and ‘subclass’ of metabolites was 370 
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extracted from HMDB, whenever no HMDB identifier was available and categorization information could 371 

not be extracted, ‘super class’, ‘class’ and ‘subclass’ were provided based on expert opinion. Excluding 372 

the ratios and unidentified metabolites, 953 metabolites could be classified into 12 ‘super classes’, 43 373 

‘classes’ or 77 ‘subclasses’ (Supplementary Data 1). Based on the metabolite identifiers we also 374 

extracted the log(S) value for each metabolite to assess the hydrophobicity of the metabolites. The 375 

log(S) value represents the log of the partition coefficient between 1-octanol and water, two fluids that 376 

hardly mix. The partition coefficient is the ratio of concentrations in water and in octanol when a 377 

substance is added to an octanol-water mixture and hence indicates the hydrophobicity of a compound. 378 

Thus, we classify a metabolite as hydrophobic if it is more hydrophobic than 1-octanol itself and 379 

hydrophilic otherwise (Supplementary Data 1). 380 

The 49,231 unique SNPs reported their rsIDs or chromosome-base pair positions by different 381 

genome builds or dbSNP maps
66

, therefore we lifted all SNPs to HG19 build 37
67

, after which 43,830 382 

unique SNPs remained (Figure 1; Supplementary Data 1). All bi-allelic metabolite SNPs were extracted 383 

from our 1000GP3 data, which excluded 295 tri-allelic SNPs and 4,256 SNPs could not be retrieved from 384 

1000GP3. Next, MAF > 1% (2,067 SNPs removed), R
2
 > 0.70 (2,002 SNPs) and HWE P < 10

-4
 (72 SNPs) 385 

filtering was performed, resulting in 35,138 metabolite SNPs for NTR participants (Figure 1). Next, we 386 

created two ‘super class’-specific lists of metabolite loci and two ‘not-superclass’ lists of metabolite loci. 387 

To create a list of loci for the 652 unique metabolites classified as ‘lipids and lipid-like molecules’ (e.g., 388 

‘lipids’), in 2,500 unrelated individuals we clumped (PLINK version 1.9) all 112,760 lipid-SNP associations 389 

using an LD-threshold (r
2
) of 0.10 in a 500kb radius (Figure 1). Clumping identified 482 lead SNPs, or loci, 390 

for ‘lipids’ and an additional 12,169 SNPs were identified as LD-proxies for the lipid-loci (Figure 1). To 391 

obtain the ‘not-superclass’ list of lipid loci the 12,651 lipid loci and proxies were removed from the list of 392 

all metabolite-SNP associations and the resulting list was clumped to obtain the 598 ‘non-superclass’ loci 393 
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(Figure 1). The same clumping procedure was applied to the 26,352 organic acid-SNP associations, 394 

identifying 398 organic acids loci, 10,781 organic acid LD-proxies and 687 ‘non-superclass’ loci (Figure 1). 395 

Construction of genetic relationship matrices 396 

In total six weighted genetic relationship matrixes (GRMs) were constructed, which were corrected for 397 

uneven and long-range LD between the SNPs (LDAK version 4.9
27,28

; Figure 1). In Supplementary Note2 the 398 

use of weighted versus unweighted GRMs is compared using simulations. Two of the GRMs used the cross-399 

platform imputed dataset as backbone and the other four GRMs were based on SNPs extracted from the 400 

1000GP3 imputed data. For inclusion in the first GRM, after removal of ancestry outliers, the autosomal SNPs 401 

of the cross-platform imputed dataset were filtered on MAF (<1%) and all lipid and organic acid loci, their LD-402 

proxies and 50kb surrounding both types of SNPs were removed (see curation of metabolite loci; Figure 1). 403 

The resulting LDAK GRM included 434,216 SNPs and the V(G1) variance component in the genomic 404 

relatedness matrix residual maximum likelihood (GREML) analyses is based on this GRM (see heritability 405 

analyses; Figure 1). The V(G2) variance component in the GREML analyses is based on the LDAK GRM 406 

including all autosomal SNPs with a MAF greater than 1% included on the cross-platform imputed dataset 407 

(447,794 SNPs), where ancestry outliers were removed and for all individual pairs sharing less than 0.05 of 408 

their genome their sharing was set to zero
21

 (Figure 1). Depending on the metabolite the V(G3) variance 409 

component in the GREML analyses was either based on an LDAK GRM of the 1000GP3 extracted lipid loci (479 410 

SNPs) or the organic acid loci (397 SNPs; Figure 1). Finally, depending on the metabolite either the ‘not-lipid’ 411 

LDAK GRM (596 SNPs) or the ‘not-organic acid’ LDAK GRM (683 SNPs) underlay the V(G4) variance component 412 

in the GREML analyses (Figure 1). Supplementary Data 1 indicates for each listed SNP if it was included in any 413 

of the LDAK GRMs. 414 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 14, 2019. ; https://doi.org/10.1101/661769doi: bioRxiv preprint 

https://doi.org/10.1101/661769
http://creativecommons.org/licenses/by-nc-nd/4.0/


20 

 

Statistical analyses 415 

Heritability analyses 416 

Mixed linear models
21

, implemented in the genome-wide complex trait analysis (GCTA) software 417 

package (version 1.91.7)
26

, were applied to compare three models including a variable number of 418 

covariates. Supplementary Table 10 gives the three different models, full descriptions of the covariates 419 

and model comparison have been given in Supplementary Note 3. The mean and median h
2

total and h
2

SNP 420 

estimates and standard errors were highly similar across the different models, as such the most sparse 421 

model was chosen for further analyses (Supplementary Table 11). This final model included the first 10 422 

genetic PCs for the Dutch population, genotyping chip, sex and age at blood draw as covariates. For 423 

metabolites of the Nightingale Health 
1
H-NMR and Biocrates platform, measurement batch was included 424 

as covariate.  425 

The final four-variance component model including four GRMs, allowing the estimation of the 426 

proportion of variation explained by superclass-specific significant metabolite loci (h
2 

GW- Class) and non-427 

superclass significant metabolite loci (h
2 

GW-Notclass) in addition to estimating the h
2

SNP and total h
2
 (h

2
total; 428 

Figure 1). In this extension, the total variance explained by significant metabolite loci (h
2

GW-loci) consists 429 

of the sum of 
�����

��
 and 

�����

��
, where Vp is the phenotypic variance and h

2
SNP is defined as the sum of 430 

�����

��
, 

�����

��
 and 

�����

��
 (Figure 1). To calculate the standard errors (s.e.’s) for the composite variance 431 

estimates, we have randomly sampled 10,000 instances from the parameter variance-covariance 432 

matrices for each metabolite. The s.e.’s of the specific ratio of interest were then based on the standard 433 

deviation of the ratio of interest across 10.000 samples. The four-variance component models obtained 434 

the unconstrained variance components which allowed for negative h
2

SNP and h
2

GW-loci estimates. All four-435 

variance component models applied the --reml-bendV flag where necessary to invert the variance-436 

covariance matrix V if V was not positive definite, which may occur when variance components are 437 
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negative
68

. Finally, we calculated the log likelihood of a reduced model with either V(G3), V(G4) or both 438 

dropped from the full model and calculated the LRT and p-value (Supplementary Table 2). 439 

Mixed-effect meta-regression analyses 440 

To investigate differences in heritability estimates among metabolites of different classes we applied 441 

mixed-effect meta-regression models as implemented in the ‘metafor’ package (version 2.0-0) in R 442 

(version 3.5.1)
69

. Here we tested for the moderation of heritability estimates by metabolite class and 443 

metabolomics platform on all 361 successfully analyzed metabolites while including a matrix combining 444 

the phenotypic correlations (Supplementary Table 12) and the sample overlap (Supplementary Table 9) 445 

between the metabolites as random factor to correct for dependence among the metabolites and 446 

participants. This matrix includes the sample size of the metabolite on the diagonal, with the off-447 

diagonal computed by 
	�,�

√��� ��

� � (Supplementary Table 13), where N1,2 is the sample overlap between 448 

the metabolites, n1 is the sample size of metabolite one, n2 is the sample size of metabolite two and r is 449 

the phenotypic correlation between the metabolites as calculated with Spearman’s Rho. For all mixed-450 

effect meta-regression models we obtained the robust estimates based on a sandwich-type estimator, 451 

clustered by the metabolites included in the models to correct for the sample overlap among the 452 

different metabolites
70

. First, we used multivariate mixed-effect meta-regression models to 453 

simultaneously estimate the effect of metabolite class and metabolomics platform on the h
2

total, h
2

SNP 454 

and the h
2

GW-loci, as well as the h
2 

GW-Class and h
2 

GW-Notclass estimates. Subsequently, to separately assess the 455 

effect of the number of carbon atoms or double bonds in the fatty acyls chains of phosphatidylcholines 456 

and triglycerides univariate models were conducted as follow-up. To account for multiple testing the p-457 

values were adjusted with the with the False Discovery Rate (FDR)
71

 using the ‘p.adjust’ function in R. 458 

Multiple testing correction was done separately for the univariate and the multivariate models.  459 
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Data availability 460 

The curated list of all published metabolite-SNP associations is included in Supplementary Data 1 and is 461 

publicly available through the BBMRI – omics atlas (http://bbmri.researchlumc.nl/atlas/#data). All 462 

information on the metabolites in this study are in Supplementary Table 1; with full summary statistics 463 

for the four-variance component models included in Supplementary Table 2. The Nightingale Health 464 

metabolomics data may be requested through BBMRI-NL (https://www.bbmri.nl/Omics-metabolomics). 465 

All (other) data may be accessed, upon approval of the data access committee, through the Netherlands 466 

Twin Register (ntr.fgb@vu.nl). A reporting summary for this Article is available as Supplementary 467 

Information file. 468 
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Figures 

Figure 1. Flowchart describing the filtering of metabolite SNPs, GRM construction and 4-variance 

component models. 

This flowchart describes how the 242,580 metabolite-SNP associations as identified from GWA and rare-

variant analyses (Supplementary Note 1; Supplementary Data 1) were converted to NCBI build 37, 

extracted for NTR participants from the 1000GP3 imputed data and filtered on MAF, HWE and R
2
 (blue 

boxes at top of the figure indicated by the red curly bracket). The metabolite-SNP associations of the 

filtered SNPs were clumped (r
2
 = 0.10) to obtain the metabolite loci and LD-proxies of the lipid and the 

organic acids, respectively (blue). To obtain the non-superclass loci, the superclass-specific loci and LD-

proxies were removed from the overall list of metabolite-SNP associations and prior to clumping (blue). 

The lipid-loci, not-lipid loci, organic acid loci and not-organic acid loci give rise to four GRMs, 

respectively, as indicated by the black boxes and arrows in the flowchart. The two additional GRMs 

included in the 4-variance component GREML models are based on the cross-platform imputed SNPs 

(see Methods), where the lipid and organic acid loci, LD-proxies and 50 kb surrounding these SNPs have 

been removed from one of the cross-platform GRMs (black boxes in flowchart). The bottom part (in 

orange) of the flowchart describes the 4-variance component GREML model separately for the lipid and 

organic acid analyses (indicated by red curly brackets). To indicate which GRMs are used to calculate 

which variance components orange arrows have been drawn from the GRMs to the variance 

components. The different (combinations) of variance components give rise to the five different 

heritability estimates (h
2

total, h
2

SNP, h
2

GW-Class, h
2

GW-Notclass and h
2

GW-loci), the final part of the flowcharts 

provides an overview of how these heritability estimates are derived (orange).  
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Figure 2. Heritability of all 52 ‘carboxylic acids and derivatives’ successfully analyzed across all four 

metabolomics platforms by class.  

Box- and dotplots of the h
2

total, h
2

SNP and h
2

GW-loci for all 52 successfully analyzed ‘carboxylic acids and 

derivatives’ by class. The left-hand side of the figure is a close-up of the -0.08 – 0.15 part of the 

heritability range, focusing on the h
2 

GW-Class and h
2 

GW-Notclass estimates. The boxes denote the 25th and 

75th percentile (bottom and top of box), and median value (horizontal band inside box). The whiskers 

indicate the values observed within up to 1.5 times the interquartile range above and below the box. 
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Figure 3. Heritability of all 309 ed ‘lipids’ successfully analyzed across all four metabolomics platforms by 

class.  

Box- and dotplots of the h
2

total, h
2

SNP and h
2

GW-loci for all 309 successfully analyzed ‘lipids’ by class. The 

left-hand side of the figure is a close-up of the -0.06 – 0.17 part of the heritability range, focusing on the 

h
2 

GW-Class and h
2 

GW-Notclass estimates. The boxes denote the 25th and 75th percentile (bottom and top of 

box), and median value (horizontal band inside box). The whiskers indicate the values observed within 

up to 1.5 times the interquartile range above and below the box. 
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Tables 

Table 1. Overview of the number of unique metabolites, for which significant SNP-metabolite 

associations have been published, per Human Metabolome Database
22–24

 ‘super class’.  

See Supplementary Data 1 for an overview of the exact metabolites classified per ‘super class’, ‘class’ 

and ‘subclass’, as well as the SNPs associated with each metabolite. 

Super class Number of unique metabolites 

Lipids and lipid-like molecules (e.g., lipids) 662 

Organic acids and derivatives (e.g., organic acids) 182 

Organoheterocyclic compounds 45 

Organic oxygen compounds 19 

Nucleosides, nucleotides, and analogues 12 

Benzenoids 12 

Organic nitrogen compounds 11 

Phenylpropanoids and polyketides 4 

Proteins 3 

Organic compounds 1 

Trichlorophenols 1 

Organooxygen compounds 1 
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Table 2. Participant characteristics after preprocessing per metabolomics platform.  

This table gives an overview of the number of individuals (N) per platform, specifies the number of families these individuals belong to and the 

percentage of females and twins in each dataset. In addition, for each platform the mean and standard deviation (SD) of the age at blood draw 

in years, the body-mass-index (BMI), the cholesterol level in mmol/l, the low-density lipoprotein cholesterol (LDL) levels in mmol/l and the high-

density lipoprotein cholesterol (HDL) levels in mmol/l are given.  

Metabolomics platform N 

N 

families 

Age*  

(mean ± 

SD) 

Female 

(%) 

Twins 

(%) 

BMI  

(mean ± 

SD) 

Cholesterol
$
  

(mean ± SD) 

LDL
$
  

(mean ± 

SD) 

HDL
$
  

(mean ± 

SD) 

All Participants 5,117 2,445 42.1 ± 14.2 62.8% 63.4% 24.8 ± 4.1 4.9 ± 1.2 3.0 ± 1.0 1.7 ± 1.0 

Nightingale Health 
1
H-NMR

 
4,227 2,179 40.7 ± 13.7 67.3% 69.7% 24.6 ± 4.0 4.9 ± 1.2 3.0 ± 1.0 1.7 ± 1.0 

UPLC-MS Lipidomics 2,324 1,251 39.0 ± 12.9 66.6% 89.2% 24.4 ± 4.1 5.0 ± 1.0 3.0 ± 0.9 1.4 ± 0.4 

Leiden 
1
H-NMR 2,324 1,323 37.6 ± 12.5 67.0% 89.0% 24.2 ± 4.1 4.6 ± 1.3 2.7 ± 1.0 2.0 ± 1.4 

Biocrates 1,448 946 45.7 ± 15.3 43.8% 39.6% 25.2 ± 3.9 4.6 ± 1.5 2.8 ± 1.1 2.3 ± 1.7 

* Age at blood draw in years; 
$
 levels in mmol/l. 
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Table 3. Summary of the heritability estimates of the four-variance component models for the 309 

‘lipids’ and the 52 ‘organic acids’ analyzed across all four metabolomics platforms.  

The mean, median and range of the total heritability (h
2

total), SNP heritability (h
2

snp), heritability based on 

the 479 significant metabolite loci for the ‘lipids’ or the 397 significant metabolite loci for the ‘organic 

acids’ (h
2

GW-Class), the 596-683 significant metabolite loci not belonging to these classes (h
2 

GW-Notclass) and 

the total heritability explained by metabolite loci (e.g., sum of h
2 

GW-Class and h
2 

GW-Notclass: h
2

GW-loci), as well 

as their standard errors (s.e.’s), are depicted for all 361 successfully analyzed metabolites as included on 

all platforms. Supplementary Table 1 denotes which metabolites belong to each class. 

  Lipids and lipid-like molecules Organic acids and derivatives 

  estimate s.e. estimate s.e. 

h
2

total 

mean 0.47 0.04 0.41 0.04 

median 0.47 0.03 0.40 0.03 

range (0.11 - 0.66) (0.02 - 0.07) (0.14 - 0.72) (0.02 - 0.07) 

h
2

SNP 

mean 0.05 0.24 0.05 0.24 

median 0.06 0.22 0.09 0.23 

range (-0.54 - 0.71) (0.11 - 0.35) (-0.42 - 0.46) (0.11 - 0.34) 

h
2

GW-loci 

mean 0.06 0.03 0.01 0.02 

median 0.06 0.03 0.02 0.02 

range (-0.05 - 0.16) (0.01 - 0.04) (-0.08 - 0.11) (0.01 - 0.04) 

h
2

GW-Class 

mean 0.06 0.02 0.01 0.02 

median 0.06 0.02 0.01 0.02 

range (-0.02 - 0.16) (0.01 - 0.03) (-0.04 - 0.14) (0.01 - 0.03) 

h
2

GW-Notclass 

mean 0.00 0.02 0.00 0.02 

median 0.01 0.02 0.00 0.02 

range (-0.06 - 0.12) (0.01 - 0.03) (-0.06 - 0.05) (0.01 - 0.03) 
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Table 4. Summary of the heritability estimates of the four-variance component models for the 17 

essential and the 14 non-essential amino acids analyzed across all four metabolomics platforms.  

The mean, median and range of the total heritability (h
2

total), SNP heritability (h
2

snp) and heritability based 

on the 397 significant metabolite loci for the ‘organic acids’ (h
2

GW-Class), the 683 significant metabolite loci 

not belonging to this class (h
2

GW-Notclass) and the total heritability explained by metabolite loci (e.g., sum 

of h
2

GW-Class and h
2

GW-Notclass: h
2

GW-loci), as well as their standard errors (s.e.’s), are depicted for all 31 

successfully analyzed essential and non-essential amino acids as included on all platforms. 

Supplementary Table 1 denotes which metabolites belong to each class. 

  Essential amino acids Non-essential amino acids 

  estimate s.e. estimate s.e. 

h
2

total 

mean 0.42 0.04 0.39 0.04 

median 0.40 0.03 0.39 0.04 

range (0.23 - 0.64) (0.02 - 0.07) (0.22 - 0.69) (0.03 - 0.07) 

h
2

SNP 

mean -0.01 0.24 0.10 0.25 

median -0.01 0.23 0.07 0.24 

range (-0.42 - 0.46) (0.12 - 0.34) (-0.18 - 0.44) (0.12 - 0.34) 

h
2

GW-loci 

mean 0.00 0.02 0.02 0.03 

median 0.00 0.02 0.01 0.03 

range (-0.05 - 0.05) (0.01 - 0.03) (-0.07 - 0.11) (0.01 - 0.04) 

h
2

GW-Class 

mean 0.01 0.02 0.03 0.02 

median 0.00 0.02 0.01 0.02 

range (-0.03 - 0.05) (0.01 - 0.02) (-0.03 - 0.14) (0.01 - 0.03) 

h
2

GW-Notclass 

mean -0.01 0.02 0.00 0.02 

median -0.01 0.02 0.00 0.02 

range (-0.06 - 0.04) (0.01 - 0.03) (-0.04 - 0.03) (0.01 - 0.03) 
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