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firing	rates	(gray	screen	stimulus)	to	experimental	observations,	(ii)	match	peak	firing	rates	for	the	drifting	
grating,	and	(iii)	avoid	epileptic-like	activity	where	the	network	would	ramp	up	to	have	 large	global	bursts	
and	then	enter	a	period	of	 silence	until	 the	next	very	 rapid	burst.	The	weight	adjustments	were	kept	 in	a	
strict	range	where,	 for	example,	the	LGN	to	L4	excitatory	weights	were	not	adjusted	at	all	given	that	they	
were	 fit	 to	 direct	 in	 vivo	experimental	measurements	 (Lien	 and	 Scanziani,	 2013).	 Other	 LGN	 connections	
were	restricted	to	be	scaled	only	in	the	range	[0.5,	2]	from	the	target	net	input	current	as	those	were	scaled	
from	optogenetics	experiments	(Ji	et	al.,	2015).	The	optimization	was	performed	starting	from	L4	only	and	
adding	successive	layers	one	by	one	(Figs.	4G,	S6).	First,	all	interlayer	connections	were	set	to	zero	and	only	
the	 intra-layer	 connections	 in	 L4	 were	 optimized.	 Once	 our	 criteria	 were	 met,	 we	 added	 L2/3	 to	 the	
optimization,	including	the	interactions	between	the	two	layers.	This	procedure	simplified	the	optimization	
process	even	though	weights	optimized	at	one	step	had	to	be	readjusted	at	the	next	step	(typically	minor).	
This	process	was	continued	for	layer	5,	followed	by	layer	6,	and	finally	layer	1.	During	our	optimization,	the	
weight	scaling	was	restricted	in	the	range	of	[0.2,	5].	In	the	deeper	layers	(layers	5	and	6),	this	rule	had	to	be	
expanded	to	reach	the	net	adjustment	range	of	[0.12,	18]	for	the	biophysical	model	and	[0.17,	6.0]	for	the	
GLIF	model.	Note	that	adjusting	the	synaptic	weights	 in	the	biophysical	model	did	not	translate	directly	to	
scaling	the	PSP	(see	the	Layer	1	description	in	Dendritic	Targeting	for	the	Biophysical	Model).		

OPTIMIZATION	WITH	THE	DIRECTION-BASED	RULE	AND	PHASE	DEPENDENCE	FOR	SYNAPTIC	STRENGTH	
As	described	in	the	Main	Text,	the	next	version	of	our	V1	models	used	a	rule	for	synaptic	strengths	that	was	
asymmetric	 with	 respect	 to	 the	 reversal	 of	 direction	 and	 included	 phase	 dependence,	 such	 that	 the	
strongest	synaptic	inputs	were	sourced	from	a	stripe	perpendicular	to	the	preferred	direction	of	the	target	
cell	 (Figs.	 6A,	 6B).	 	 Once	 this	 rule	 was	 introduced,	 the	 weights	 needed	 to	 be	 optimized	 further,	 as	 the	
balance	in	the	network	was	affected.	 	As	a	first	step,	we	scaled	the	recurrent	synaptic	weights	so	that	the	
net	current	(area	under	the	curve,	Fig.	6A)	became	the	same	as	in	the	previous	version	of	the	model	(Fig.	4D)	
for	every	connection	class.	However,	this	was	not	sufficient,	and,	thus,	we	further	performed	another	round	
of	optimization	as	described	in	the	above	section.	It	turned	out	that	because	of	the	scaling	to	match	the	area	
under	 the	 curve,	 the	 weights	 were	 already	 close	 to	 the	 correct	 solution,	 and	 we	 found	 that	 these	 new	
optimizations	 required	only	a	 few	 iterations	before	converging	 to	meet	our	criteria.	For	 the	same	reason,	
here	 it	 was	 not	 necessary	 to	 optimize	 the	 models	 layer-by-layer,	 and	 instead	 the	 optimization	 was	
performed	 with	 the	 full	 recurrent	 connectivity.	 The	 weight	 scaling	 was	 not	 constrained	 to	 tight	 limits,	
however,	due	to	the	new	synaptic	strength	profiles	that	deviated	substantially	and	in	a	non-linear	 fashion	
from	those	used	before.	

CORRECTING	FOR	BIASES	BETWEEN	HORIZONTAL-	AND	VERTICAL-PREFERRING	NEURONS	
After	finalizing	the	optimization	using	the	rules	above,	we	noticed	biased	firing	rates	in	our	models,	in	that	
vertical	drifting	gratings	evoked	higher	firing	rate	relative	to	horizontal	gratings	(Fig.	6C).	Since	this	was	not	
observed	experimentally	and	was	a	result	of	extra	excitatory	synaptic	drive	into	vertically	preferring	neurons	
(Fig.	 S11),	 we	 adjusted	 incoming	 synaptic	 weights	 to	 maintain	 equal	 net	 synaptic	 drive.	 The	 adjustment	
depends	 on	 the	 cortical	 magnification	 factors	 in	 the	 azimuth	 and	 elevation	 dimensions.	 As	 described	 in	
Visual	 Coordinates,	 the	 physical	 dimensions	 of	 each	 V1	 neuron	 was	 converted	 to	 visual	 space	 by	 a	
conversion	 factor	 of	 70	 degrees/mm	 in	 the	 azimuth	 (x-dimension)	 and	 40	 degrees/mm	 in	 elevation	 (z-
dimension),	 estimated	 from	 experimental	 reports	 (Schuett,	 Bonhoeffer	 and	 Hübener,	 2002;	 Kalatsky	 and	



	 52	

Stryker,	2003).	To	adjust	for	this	asymmetry,	we	collapsed	every	neuron’s	preferred	angle	to	the	quadrant	
𝜃 = [0, 90]	and	scaled	synapses	to	neurons	that	preferred	horizontal	motion	(0-degrees)	by	

70 + 40 /2
40

=
5.5
4
	

whereas	synapses	to	neurons	preferring	vertical	motion	(90-degrees)	were	scaled	by:	

70 + 40 /2
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Given	these	two	points,	we	then	fit	a	linear	function	to	estimate	the	weight	scaling	for	every	intermediate	
value,	resulting	in	
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This	weight	adjustment	fixed	the	bias	(Figs.	6C,	S11)	and	resulted	in	horizontal-preferring	neurons	having	a	
heavier	tail	of	the	incoming	synaptic	strength	distribution	than	vertical-preferring	neurons	(Fig.	6E).	Finally,	
due	to	our	highly	non-linear	V1	models,	this	adjustment	resulted	in	deviations	from	our	target	optimization	
firing	rates.	Thus,	a	small	amount	of	grid	search	tuning	was	needed	again	to	match	our	target	criteria.		

SYNAPTIC	CHARACTERISTICS	
The	synaptic	mechanisms	used	 for	 the	biophysical	model	were	as	 in	 the	L4	model	 (Arkhipov	et	al.,	2018).	
The	synapses	were	bi-exponential	(using	NEURON’s	Exp2Syn	mechanism)	with	a	reversal	potential	of	-70	mV	
for	 inhibition	and	0	mV	for	excitation.	The	weights’	units	are	 in	𝜇𝑆	(peak	conductance).	The	tau1	and	tau2	
constants	for	the	mechanism	were	2.7	ms	and	15	ms	for	inhibitory-to-excitatory	synapses,	0.2	and	8	ms	for	
inhibitory-to-inhibitory	synapses,	0.1	ms	and	0.5	ms	for	excitatory-to-inhibitory	synapses,	and	1	ms	and	3	ms	
for	excitatory-to-excitatory	connections.	Note	that	these	are	not	the	somatic	 temporal	characteristics,	but	
time	 constants	 at	 the	 synaptic	 location;	 the	 PSP	 shape	 at	 the	 soma	depends	 on	 dendritic	 location	 of	 the	
synapse	and	membrane	dynamics.		

For	the	GLIF	model,	postsynaptic	current-based	synaptic	mechanisms	were	used	with	dynamics	described	by	
an	alpha-function:	

𝐼!"#(𝑡) =
𝑒 𝑊!"#$

𝜏!"#
𝑡𝑒!

!
!!"# 	

Where	𝐼!"# 	is	 the	 postsynaptic	 current,	𝜏!"# 	is	 the	 synaptic	 port	 time	 constant,	 and	𝑊!"#$ 	is	 the	 input	
connection	 weight.	 This	 function	 was	 normalized	 such	 that	 a	 post-synaptic	 current	 with	 synapse	 weight	
𝑊!"#$ = 1.0	has	 an	 amplitude	 of	 1.0	𝑝𝐴	at	 the	 peak	 time	 point	 of	𝑡 = 𝜏!"#.	 The	𝜏!"# 	constants	 for	 the	
mechanisms	were	5.5	ms	for	excitatory-to-excitatory	synapses,	8.5	ms	for	inhibitory-to-excitatory	synapses,	
2.8	ms	for	excitatory-to-inhibitory	synapses,	and	5.8	ms	for	inhibitory-to-inhibitory	connections,	which	were	
extracted	from	LIF	models	in	the	L4	model	(Fig.	S2B	of	(Arkhipov	et	al.,	2018)).		

VISUAL	STIMULI	
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The	 visual	 stimuli	 used	 in	 our	 simulations	 were	 identical	 to	 those	 used	 for	 the	 experiments	 we	
compare	to	(except	the	looming	disk	that	had	no	experimental	counterpart).		Each	simulation	included	
a	 500	 ms	 interval	 of	 gray	 screen	 in	 the	 beginning,	 which	 was	 then	 followed	 by	 a	 single	 trial	 of	
presentation	of	the	stimulus.	
	

Drifting	Gratings	
For	the	drifting	grating	stimuli,	we	used	sinusoidal	gratings	with	a	spatial	frequency	of	0.04	cycles	per	degree	
with	a	temporal	frequency	of	2Hz	(for	2.5	seconds	after	the	gray-screen).	All	stimuli	were	run	for	10	trials	for	
every	direction	of	motion	 (8	sampled	directions	with	 increments	of	45	degrees)	at	80%	contrast	 (for	both	
the	 experiments	 and	 the	models).	 Although	 the	 experimental	 data	 from	mice	 (see	 below)	 included	more	
temporal	 and	 spatial	 frequencies,	 we	 restricted	 our	 analysis	 to	 match	 the	 drifting	 gratings	 used	 in	 our	
simulations.	

Flashes	
The	 flash	stimuli	 (10	 trials)	 consisted	of:	500	ms	of	gray	screen,	 followed	by	250	ms	of	white	screen	 (ON-
flash),	returning	to	a	gray	screen	for	1000	ms,	then	another	250	ms	of	black	screen	(OFF-flash),	and	a	final	
gray	screen	for	500	ms).	The	contrast	was	at	80%	(to	match	experiments).	We	also	conducted	simulations	
with	full-contrast	flashes	(100%),	and	the	models	were	stable	and	produced	results	very	similar	to	the	80%	
contrast	case	(data	not	shown).	

Natural	Movies	
We	tested	our	models	on	a	clip	(10	trials)	from	one	of	the	natural	movies	(Touch	of	Evil,	directed	by	Orson	
Welles)	used	 in	 the	Allen	Brain	Observatory	 (de	Vries	et	al.,	2019).	The	2.5	seconds	shown	were	matched	
between	the	model	and	experiment.	

Looming	Disk	
The	looming	stimulus	 is	a	growing	black	disk	(circle)	on	a	gray	background.	When	the	maximum	circle	size	
(radius	 of	 25	 degrees)	 is	 reached,	 the	 circle	 disappears	 and	 grows	 again.	 This	 is	 repeated	 four	 times	
throughout	the	2.5	second	stimulus	presentation	(625	ms	duration	for	every	repetition).	

DATA	ANALYSIS	
Firing	Rates	
The	 firing	 rates	were	 estimated	 from	all	 trials	 of	 a	 simulation.	 Since	 all	 simulations	 started	with	 a	 500ms	
gray-screen	period	followed	by	the	stimulus,	the	firing	rate	is	estimated	using	the	stimulus	duration	without	
these	 first	 500	ms	 (that	 is,	 2500	ms	 for	 a	 drifting	 grating	 or	 a	 natural	movie).	 Thus,	 the	 firing	 rate	 for	 a	
neuron	in	a	trial	was	calculated	by	dividing	the	total	number	of	spikes	after	the	gray	screen	by	the	stimulus	
duration	 (2500	ms).	 Some	metrics	 required	 time-dependent	 firing	 rates	 that	are	described	below.	For	 the	
OSI	and	DSI	metrics,	to	avoid	noise	from	very	sparsely	firing	neurons	that	could	yield	spurious	OSI/DSI	values	
of	1.0,	we	required	that	neurons’	firing	rates	at	their	preferred	drifting	grating	direction	be	greater	than	0.5	
Hz.	

Orientation	Selectivity	Index	(OSI)	
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The	 OSI	 metric	 computed	 is	 also	 referred	 to	 as	 the	 global	 Orientation	 Selectivity	 Index,	 as	 it	 takes	 into	
account	the	response	of	a	neuron	in	all	directions	tested	(not	just	the	preferred	and	orthogonal).	The	OSI	is	
calculated	as:	

𝑂𝑆𝐼 =
𝛴 𝑅!𝑒!!"

𝛴𝑅!
	

where	𝑅! 	is	the	mean	firing	rate	response	to	a	drifting	grating	of	angle	𝜃.	

Direction	Selectivity	Index	(DSI)	
Similar	 to	 the	 OSI	 metric,	 the	 DSI	 also	 considered	 responses	 in	 all	 directions	 of	 drifting	 gratings	 shown	
(sometimes	referred	to	as	the	global	Direction	Selectivity	Index).	The	DSI	is	calculated	as:	

𝐷𝑆𝐼 =
𝛴 𝑅!𝑒!"

𝛴𝑅!
	

where	𝑅! 	is	the	mean	firing	rate	response	to	a	drifting	grating	of	angle	𝜃.	

Response	at	Preferred	Direction	
The	plots	quantifying	neurons’	response	at	their	preferred	direction	report	the	mean	firing	rate	values	based	
on	the	largest	mean	response	(across	trials)	over	all	8	directions	tested.	

Signal	Correlations,	Noise	Correlations,	and	Correlation	of	Signal	and	Noise	Correlations	
We	computed	the	signal	correlation	as	the	Pearson	correlation	coefficient	between	the	trial-averaged	spike	
counts	for	each	pair	of	neurons	(Arkhipov	et	al.,	2018).	For	natural	movies,	we	computed	the	correlation	for	
binned	 spike	 counts	 in	 non-overlapping	 windows	of	 length	50	ms.	For	 gratings,	the	correlation	was	
computed	 over	 the	spike	 counts	 in	 8	 different	 orientations.	 The	 noise	 correlation	 was	 computed	 as	 the	
Pearson	 correlation	 coefficient	 between	 single-trial	 spike	 counts	 for	 each	 pair	 of	 neurons,	 and	 then	
averaged	over	stimuli	conditions	(8	orientations	for	gratings	and	non-overlapping	50	ms	windows	for	natural	
movies).	To	compute	 the	correlation	of	 signal	and	noise	correlations	 for	a	 single	experimental	mouse,	we	
calculate	 the	 Pearson	 correlation	 coefficent	 between	 the	 noise	 correlation	 and	 signal	 correlation	metrics	
already	calculated.	Since	we	have	many	mice	(20	for	drifting	gratings,	7	for	natural	movies),	we	subsample	
neurons	within	150	μm	 from	the	center	mini-column	of	 the	models	 to	match	 the	number	of	neurons	per	
mouse.	The	subsampling	is	without	replacement.	We	restricted	the	sampling	near	the	center	of	the	models	
to	match	experimental	Neuropixels	recording	as	much	as	possible.	
	
Lifetime	and	Population	Sparsity			
Lifetime	sparsity	for	each	neuron	was	computed	using	the	following	definition	(Vinje	and	Gallant,	2000):		

𝑆! =  
1 − 1

𝑁
𝑟!!

!

𝑟!!!

1 − 1
𝑁
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where	 N	 is	 the	 number	 of	 stimulus	 conditions	 and	ri	is	 the	trial-averaged	 spike	 count	for	stimulus	
condition	i	(de	 Vries	 et	 al.,	 2019).	To	 compute	 the	 population	 sparsity,	we	 used	the	 same	equation,	 but	
where	N	 is	 the	total	number	 of	 neurons	in	 the	 population	and	ri	is	the	average	spike-count	
of	neuron	i	over	all	stimulus	conditions	(de	Vries	et	al.,	2019).		
	
Similarity	Score	
A	similarity	score	was	developed	to	compare	the	distribution	of	all	excitatory	neurons	in	the	models	with	all	
regular	spiking	neurons	recorded	experimentally	as	well	as	for	Pvalb	neurons	in	the	models	with	fast-spiking	
neurons	 from	 the	 same	 Neuropixels	 recording.	 The	 score	 compares	 any	 two	 distributions	 and	 does	 not	
require	a	normality	assumption	nor	that	both	distributions	have	an	equal	number	of	samples.	Moreover	it	
can	be	applied	to	any	metric	and	we	use	it	here	to	compare	OSI,	DSI,	and	the	firing	rate	distributions	of	the	
models	with	experiments.	The	metric	uses	 the	𝐷	statistic	 from	a	Kolmogorov–Smirnov	 test	 that	 calculates	
the	distance	between	the	cumulative	distributions	of	two	samples	and	is	bounded	in	the	range	[0,	1].	Since	
we	 are	 interested	 in	 similarity	 in	 this	work	 and	matching	 distributions,	 this	was	 converted	 to	 a	 similarity	
score, S = 1 − 𝐷.	 Fig.	 S5	 illustrates	 how	 for	 two	 different	 distributions	S	 is	 close	 to	 0,	 whereas	 for	 two	
similar	distributions	it	approaches	1.	

ELECTROPHYSIOLOGICAL	RECORDINGS	
Animal	preparation	
All	experimental	procedures	were	approved	by	the	Allen	Institute	for	Brain	Science	Institutional	Animal	Care	
and	 Use	 Committee.	 Five	weeks	 prior	 to	 the	 experiment,	mice	were	 anesthetized	with	 isoflurane,	 and	 a	
metal	 headframe	with	 a	 10-mm	 circular	 opening	was	 attached	 to	 the	 skull	 with	Metabond.	 In	 the	 same	
procedure,	a	5-mm-diameter	craniotomy	and	durotomy	was	drilled	over	left	visual	cortex	and	sealed	with	a	
circular	glass	coverslip.	Following	a	2-week	recovery	period,	a	visual	area	map	was	obtained	through	intrinsic	
signal	imaging	(Juavinett	et	al.,	2017).	Mice	with	well-defined	visual	area	maps	were	gradually	acclimated	to	
the	experimental	rig	over	the	course	of	12	habituation	sessions.	On	the	day	of	the	experiment,	the	mouse	
was	placed	under	light	isoflurane	anesthesia	for	~40	min	to	remove	the	glass	window,	which	was	replaced	
with	a	0.5	mm	thick	plastic	window	with	laser-cut	holes	(Ponoko,	Inc.,	Oakland,	CA).	The	space	beneath	the	
window	was	filled	with	agarose	to	stabilize	the	brain	and	provide	a	conductive	path	to	the	silver	ground	wire	
attached	to	the	headpost.	Any	exposed	agarose	was	covered	with	10,000	cSt	silicone	oil,	to	prevent	drying.	
Following	 a	 1-2	 hour	 recovery	 period,	 the	 mouse	 was	 head-fixed	 on	 the	 experimental	 rig.	 Up	 to	 six	
Neuropixels	probes	coated	in	CM-DiI	were	independently	lowered	through	the	holes	in	the	plastic	window	
and	 into	 visual	 cortex	 at	 a	 rate	of	 200	µm/min	using	 a	 piezo-driven	microstage	 (New	Scale	 Technologies,	
Victor,	NY).	When	the	probes	reached	their	final	depths	of	2,500–3,500	µm,	each	probe	extended	through	
visual	 cortex	 into	 hippocampus	 and	 thalamus.	Only	 data	 obtained	 from	V1	was	 included	 in	 this	 study.	 In	
total,	data	from	20	mice	were	used	for	the	drifting	gratings	analysis	(one	experiment	per	mouse)	and	7	mice	
for	the	natural	movie	and	flash	analysis.	
		
Data	acquisition	system	
Recordings	were	performed	in	awake,	head-fixed	mice	allowed	to	run	freely	on	a	rotating	disk.	During	the	
recordings,	 the	 mice	 passively	 viewed	 a	 battery	 of	 visual	 stimuli,	 including	 local	 drifting	 gratings	 (for	
receptive	 field	 mapping),	 full-field	 flashes,	 drifting	 gratings,	 static	 gratings,	 natural	 images,	 and	 natural	
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movies,	with	the	same	parameters	as	those	from	the	Allen	Brain	Observatory	(de	Vries	et	al.,	2019).	All	spike	
data	were	 acquired	with	Neuropixels	 probes	 (Jun	et	 al.,	 2017)	with	 a	 30-kHz	 sampling	 rate	 and	 recorded	
with	 the	 Open	 Ephys	 GUI	 (Siegle	 et	 al.,	 2017).	 A	 300-Hz	 analog	 high-pass	 filter	 was	 present	 in	 the	
Neuropixels	probe,	and	a	digital	300-Hz	high-pass	filter	(3rd-order	Butterworth)	was	applied	offline	prior	to	
spike	sorting.	
		
Data	preprocessing		
Spike	 times	 and	 waveforms	 were	 automatically	 extracted	 from	 the	 raw	 data	 using	 Kilosort2	
(github.com/mouseland/kilosort2).	Kilosort2	 is	a	spike-sorting	algorithm	developed	for	electrophysiological	
data	 recorded	 by	 hundreds	 of	 channels	 simultaneously.	 It	 implements	 an	 integrated	 template	 matching	
framework	 for	 detecting	 and	 clustering	 spikes,	 rather	 than	 clustering	 based	 on	 spike	 features,	 which	 is	
commonly	used	by	other	spike-sorting	techniques.	After	filtering	out	units	with	“noise”	waveforms	using	a	
random	 forest	 classifier	 trained	 on	 manually	 annotated	 data,	 all	 remaining	 units	 were	 packaged	 into	
Neurodata	Without	Borders	format	(Teeters	et	al.,	2015)	for	further	analysis.	
		
Neuronal	Classification	
Regular	 spiking	 (RS)	 neurons	 and	 fast	 spiking	 (FS)	 neurons	were	 determined	by	 the	 duration	 of	 the	 spike	
(time	between	trough	and	peak	of	the	waveform).	The	duration	of	the	spikes	showed	a	bimodal	distribution	
(Hartigan	dip	test,	p=0.004),	with	a	dip	at	0.4	ms.	We	classified	a	neuron	as	RS	if	its	duration	was	>	0.4	ms,	
and	otherwise	FS	(Fig.	S4).	In	total	we	had	328	L6	RS	neurons,	72	L6	FS	neurons,	419	L5	RS	neurons,	80	L5	FS	
neurons,	294	L4	RS	neurons,	49	L4	FS	neurons,	251	L23	RS	neurons,	49	L23	FS	neurons,	and	81	L1	neurons.	
		
	


