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ABSTRACT

Reliable identification of inflammatory biomarkers from metagenomics data is a promising direction for developing non-invasive,
cost-effective, and rapid clinical tests for early diagnosis of IBD. We present an integrative approach to Network-Based
Biomarker Discovery (NBBD) which integrates network analyses methods for prioritizing potential biomarkers and machine
learning techniques for assessing the discriminative power of the prioritized biomarkers. Using a large dataset of new-onset
pediatric IBD metagenomics biopsy samples, we compare the performance of Random Forest (RF) classifiers trained on
features selected using a representative set of traditional feature selection methods against NBBD framework, configured using
five different tools for inferring networks from metagenomics data, and nine different methods for prioritizing biomarkers as well
as a hybrid approach combining best traditional and NBBD based feature selection. We also examine how the performance of
the predictive models for IBD diagnosis varies as a function of the size of the data used for biomarker identification. Our results
show that (i) NBBD is competitive with some of the state-of-the-art feature selection methods including Random Forest Feature
Importance (RFFI) scores; and (ii) NBBD is especially effective in reliably identifying IBD biomarkers when the number of data
samples available for biomarker discovery is small.

Introduction
Inflammatory bowel disease (IBD) refers to disorders that involve chronic inflammation in the gastrointestinal tract. The two
main types of IBD are ulcerative colitis (UC), which is characterized by continuous ascending inflammation from the rectum
into the colon and periods of relapse and remittance1, and Crohn disease (CD), which is characterized by discontinuous skip
lesions affecting any part of the gastrointestinal tract2. Recent metagenome-wide association studies have implicated some
changes in the microbial communities in the gut microbiota with the onset and progression of IBD.3–6. However, the precise
nature of the changes in the gut microbiota in IBD remains to be fully understood3.

IBD, particularly in children, fails to be correctly diagnosed, or diagnosed in a timely fashion, because of the frequency of
nonspecific symptoms at the onset of the disease7, 8. Although several non-invasive tests exist for IBD, none has been shown to
be capable of diagnosing the two main IBD subtypes with sufficient accuracy9. Therefore, a biomarker signature for diagnosing
IBD and differentiating between the two major IBD subtypes is highly desirable8, 10. Identification of microbial biomarkers is a
promising direction, not only for predicting IBD onset but also for predicting IBD risk factors11.

Identification of disease microbiomarkers from metagenomics data requires effective computational and statistical methods
for determining, from a very large number of candidate biomarkers, a minimal subset of biomarkers that can accurately
discriminate between two or more phenotypes (e.g., IBD versus healthy). This task presents several challengs in practice12:
curse of dimensionality; high degree of sparsity of the metagenomics data; complexity of the underlying biology; limitations
of sequencing technology and of methods for determining microbial composition and functional profiles from metagenomic
data. To date, several statistical methods have been proposed in the literature to compare an abundance of features (e.g., genes
or operational taxonomic units (OTUs)) between two groups13. Some of these methods have been designed specifically for
RNA-Seq data (e.g., DESeq14 and edgeR15) while recent tools such as metagenomeSeq16 and analysis of composition of
microbiomes (ANCOM)17 have been developed specifically for metagenomics data, which often exhibits greater sparsity
than RNA-Seq data. Machine learning methods for feature selection18 offer a promising approach to identifying, from either
RNA-Seq or metagenomics data, an optimal subset of the features (potential biomarkers) that can be used to build predictive
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models that can effectively diagnose a disease or discriminate between disease subtypes.
Recent analysis of microbial ecology networks (MEN) (where the nodes denote microbial taxa and links denote some

measure of correlations between the composition of the corresponding taxa) derived from healthy and type 2 diabetes (T2D)
groups has shown topological differences between the two networks at the global, module (i.e., sub-networks or communities),
and node levels and found that the differences in cluster membership of the nodes in the two networks can serve as biomarkers
for T2D19. Motivated by these findings, Abbas et al.20 hypothesized that MEN corresponding to different phenotypes should
exhibit different topologies, and the resulting differences in topology at the node and sub-network levels could be exploited in
biomarker discovery. They tested this hypothesis using a framework for network-based biomarker discovery (NBBD).NBBD
has two key modules: (i) A network construction module for assembling MEN from the abundance data for microbial taxa
(e.g., OTUs); (ii) A node importance scoring module for comparing MEN for the chosen phenotypes and assigning a score
to each node based on the degree to which the topological properties of that node differ across two networks. They reported
results of experiments with a large dataset of new-onset pediatric IBD metagenomics biopsy samples showing that NBBD
could effectively discover IBD biomarkers20.

In this study, we build on and extend the results of Abbas et al.20 in two aspects (i) We introduce a novel node importance
scoring method based on three different node resilience measures21 for identifying potential biomarkers. The strength of this
approach is that the optimal number of features used to specify a biomarker need not be fixed a priori; (ii) We describe a hybrid
approach for integrating network-based and random forest feature importance (RFFI) scores for improving the identification
of a minimal subset of features to discriminate between the phenotypes of interest (based on the relative abundance of the
microbial taxa represented by the features). We also report results of extensive experiments with several instantiations of the
NBBD framework using five different network inference tools, nine node importance scoring functions, and varying number of
data samples used to perform feature selection. Our results demonstrate the viability of the NBBD framework for biomarker
identification, not only from extremely sparse and high-dimensional data but also from datasets with small number of samples.

Datasets
BIOM files (see http://biom-format.org) and meta-data (including age, gender, race, disease severity, behavior, and location)
for a large cohort IBD dataset3 were downloaded from the QIITA (https://qiita.ucsd.edu/) database. The dataset consists of
1359 metagenomics samples including rectal tissue biopsy and fecal samples and each sample has 786 OTUs at the genus level
that were extracted using the summarize_taxa.py QIIME script. We filtered the data by discarding fecal samples and samples
corresponding to patients with age greater than 18 years. The resulting dataset consists of metagenomic biopsy samples for 657
IBD and 316 healthy control cases, respectively. Thus, each sample (which correspond to a row in the table), is encoded by a
tuple of values that represent the relative abundances of the various microbial taxa (indexed by the columns) in the sample. To
evaluate our models, we randomly split the data into training and test sets, named DS400 and DS573, such that the training
data has 200 healthy and 200 IBD samples, and the test data has 457 healthy and 116 IBD samples.It should be noted that
predictive models are often tested on a data distribution that reflects the natural distribution of the different classes. However, in
this case, the available IBD and healthy samples do not reflect the natural distribution of IBD and healthy cases in the pediatric
population. The prevalence of IBD worldwide has been reported to be close to 0.3% of the population22. Hence, given the high
degree of class imbalance expected in the natural distribution of data, we anticipate that the reported performance of all of
the methods in our comparison to substantially overestimate the true performance of the predictive models were they to be
deployed in a real-world setting. However, this should not impact the validity of the overall conclusions from our study.

The training data is also used for feature selection (i.e., selecting a subset of features that are most relevant for the
classification task). In our experiments, we examined the effect of using a small fraction of the training data for performing
feature selection. Specifically, we experimented with the following choices of data for feature selection, which we call the
feature selection datasets (FSDS): DS50⊂DS100⊂ FSD200⊂DS300⊂DS400, each with equal numbers of IBD and healthy
samples.

Network-based Biomarker Discovery (NBBD) Framework
We summarize the Network-based Biomarker Discovery (NBBD) framework below: (See Fig. 1, adapted from20). Given a
feature selection dataset (FSDS) of metagenomics samples in the form of a labeled OTU table: (i) The network construction
module, produces two MEN, one from the healty samples, and one from the IBD samples, using the chosen network construction
tool (e.g., CoNet23); (ii) The node importance scoring module compares the two networks and scores each node in terms of its
contribution to the differences between the two networks (as measured using one or more network similarity measures); (iii)
The k highest scoring nodes provide the k features used to train and evaluate binary classifiers for predicting whether or not a
given metagenomic sample belongs to a healthy of IBD individual.

We evaluated the NBBD framework using five network construction methods and nine node importance scoring methods
summarized below.
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Network Construction Methods
We experimented with several widely used methods for constructing MEN from metagenomic data. We used the default
parameters of each tool, unless noted otherwise. Each of these methods is briefly described as follows.

• SparCC: Sparse Correlations for Compositional data (SparCC)24 infers a network of associations between the microbial
species based on the linear Pearson correlations between the log-transformed components (e.g. OTUs). Since log
transformation cannot be applied to zeros, which are frequent in microbiome data, zeros are usually substituted with a
small value, called pseudo-count. SparCC makes two main underlying assumptions: (i) the number of nodes (e.g. OTUs)
is large; and (ii) the underlying network is sparse. We applied the implementation of SparCC included as part of the
SPIEC-EASI tool25.

• MB: The Meinshausen and Bühlmann (MB) method26 is another technique for estimating sparse networks based
on estimation of the conditional independence restrictions of each individual node in the graph. The MB method
determines the direct neighbors of each target node by finding the smallest subset of nodes such that the target node is
conditionally independent of the rest of the networks given the direct neighbors so identified. MB is also implemented in
SPIEC-EASI25.

• RMT: Random Matrix Theory (RMT) method uses the Pearson correlation coefficient to add an edge between two OTUs
if their correlation is higher than a threshold. Instead of using a user-defined threshold, RMT utilizes a procedure based
on the Random Matrix Theory to automatically detect a reliable threshold. The method is implemented in the Molecular
Ecological Network Analysis Pipeline27 available at http://ieg4.rccc.ou.edu/mena. We used the default parameters except
for the parameter controlling the number of OTUs that build the network. An OTU was used if it is expressed in at least
25% of the samples. The default value of that parameter is 50% of the samples, and with the parameter set to 50% the
method failed to construct the network.

• CoNet: This method infers the association network by combining two complementary approaches to evaluate the
significance of the associations23. The first approach is an ensemble method of similarity or dissimilarity measures while
the second is a novel permutation-renormalization bootstrap method, ReBoot23. We followed the procedure described
in28 to construct the networks for the IBD and healthy phenotypes.

• Proxi: Proxi29 is a Python package for proximity graph construction. In proximity graphs, each node is connected by an
edge (directed or undirected) to its nearest neighbors according to some distance metric d. In our experiments, we set the
number of neighbors to seven and used the absolute value of Pearson’s Correlation between two vectors (subtracted from
one) as the distance function between two vectors.

Node Importance Scoring Methods
We considered two approaches for scoring nodes (i.e., features) based on: (i) differences in the topological properties of the
nodes in the two networks20; (ii) common nodes in the critical attack sets30 determined from the two networks. The first
approach assumes that a biomarker has different patterns of interactions with other OTUs in healthy and IBD samples. The
second approach assumes that biomarkers correspond to a special set of nodes, in the two networks, called a critical attack
set30 such that the removal of nodes in the critical attack set from a graph results in clustering the network into a number of
subnetworks (i.e., microbial communities in the case of MEN).

Node Scoring Using Topological Properties
Let Gi(Vi,Ei) and G j(Vj,E j) be two graphs constructed using two groups of metagenomics samples (e.g., healthy and IBD).
The Node Topological Property Scoring (NTPS) method scores each node v ∈Vi∩Vjwith respect to a node topological property
P as follows: scoreP(v) = | fP(v,Gi)− fP(v,G j)|, where fP(v,G) is the value of the property P for a node v in a graph G. In this
work, we experimented with the following node properties computed with NetworkX software31:

• Betweenness Centrality (btw): Betweenness centrality of a node v is defined as fbtw(v,G) = ∑
σ(u,w|v)
σ(u,w) u,v,w∈V

, where

σ(u,w) is the total number of shortest paths between u and w and σ(u,w|v) is the number of shortest paths between u
and w passing through v.

• Closeness Centrality (cls): Closeness centrality of a node v is given by fcls(v,G) = n−1
∑

n−1
u=1 d(u,v)

, where d(u,v) is the shortest

path distance between u and v and n is the number of nodes that can reach v.

• Average Neighbor Degree (and): The average neighborhood degree of a node v is given by fand(v,G) = 1
|N(v)| ∑u∈N(v) ku,

where N(v) denotes the set of neighbors of node v and ku is the degree of node u ∈ N(v).
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• Clustering Coefficient (cc): For unweighted graphs, the clustering coefficient of a node v is given by fcc(v,G) =
2T (v)

deg(v)(deg(v)−1) , where T (v) is the number of triangles that include node v and deg(v) is the degree of v.

• Node Clique Number (ncn): The node clique number of a node v is the size of the largest maximal clique containing v. A
clique is a subset of nodes such that there is an edge between every pair of distinct nodes.

• Core Number (cn): The core number of a node v is the largest value k of a k-core containing v, where a k-core is a
maximal subgraph that contains nodes of degree k or more.

Critical Attack Set Scoring
Critical Attack Set Scoring (CASS) is based on a node resilience clustering algorithm, NBR-Clust21, 30. We briefly describe
below, the node resilience measures (specifically the three utilized in this work) before proceeding to describe how they are
used to identify biomarkers.

Node-based resilience measures quantify the resilience of a network in terms of the extent of damage (as measured by
disruption of connectivity between otherwise connected components or clusters of nodes) caused to the network by the removal
of a set of critical nodes (called the attack set)32. Because the nodes in the attack set are crucial for maintaining connectivity
across the network, removal of the nodes in the attack set can be expected to partition the network into clusters that are isolated
from (i.e., disconnected from) each other. Different node resilience measures yield different attack sets with different degrees of
sparseness30. In this work, we focused on three measures, namely vertex attack tolerance (VAT), integrity, and tenacity.

• The VAT of an undirected, connected graph G = (V,E) is defined as32, 33: VAT (G) = min
S⊂V,S 6= /0

{ |S|
|V−S−Cmax(V−S)|+1},

where S is an attack set and Cmax(V −S) is the largest connected component in V −S. The goal is to identify small attack
sets that consist of nodes that are most cricial in preserving network connectivity.

• Integrity is defined as34: I(G) = min
S⊂V
{|S|+Cmax(V −S)}. Integrity balances the size of the attack set with the largest

connected component in the network resulting from the removal of the attack set. An increase in attack set size can more
easily be offset by a decrease in Cmax, which means that attack set sizes will tend to be larger than with VAT. Generally,
the attack set for integrity SI will include the most crucial nodes (as generated by VAT), plus additional nodes that if
removed, make the graph disconnected.

• Tenacity is defined as35 : T (G) = min
S⊂V
{ |S|+Cmax(V−S)

ω(V−S) }, where ω(V −S) is the number of connected components in V −S.

This measure identifies nodes that, if removed,result in partitioning the graph into a large number of components. Thus,
the tenacity attack set ST will include almost all nodes that if removed, can make the graph disconnected.

In order to calculate these resilience measures, we utilized a heuristic known as Greedy betweenness centrality (Greedy-BC)36.
For a given resilience measure, the Greedy-BC heuristic estimates candidate attack sets by iteratively selecting the node with
highest betweenness centrality and removing it from the network. This process results in a node-removal ordering, which
is used to calculate all three resilience measures. Each node is then, in order, added to the attack set, with a new graph
configuration being generated with each iteration. The resilience measure is updated iteratively after each graph configuration
update. The goal is to iteratively optimize the resilience measure. This greedy heuristic can be used to optimize VAT, integrity
and tenacity with acceptable accuracy32, 37. Of the three resilience measures30, VAT tends to yield the smallest attack set while
tenacity yields the largest. A consequence of using the Greedy-BC heuristic is that the three attack sets are related as follows:
SV ⊆ SI ⊆ ST .

To select features for training IBD classifiers, we apply the NBR-Clust algorithm separately to the the IBD and Healthy
networks to obtain the critical attack sets for healthy (GH ) and IBD (GD) samples. We then select the nodes that are shared by
the critical attack sets of both graphs.

Identification and Evaluation of IBD Biomarkers
Given a training dataset DS400, a feature selection dataset (e.g., DS50), a test set DS573, a feature selection method (FSM),
and the number of selected features k ∈ {10,20,30,40,50,60}: First, we applied the FSM to the feature selection data to
determine top k features. Then, we generated variants of the training and test data with only the selected features and used them
to train and estimate the performance of a Random Forest (RF)38 classifier. In each case, the input to the classifier consists of
the relative abundance of the microbial taxa represented by the selected features. In our experiments, we used RF classifiers
implemented in Scikit-learn39 with the number of estimators set to 500 trees.

In addition to our proposed network-based feature selection methods, we considered the following traditional and commonly
used feature selection methods: (i) Filter-based feature selection using Information Gain (IG) and F-Statistic (FStat); (ii)
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Table 1. Performance of the top (in terms of highest AUC and smallest number of selected features) performing RF classifiers
for different choices of feature selection dataset and traditional feature selection methods.

FSDS FSM # Features ACC Sn Sp MCC AUC
DS50 None NA 0.66 0.64 0.75 0.31 0.74

IG 60 0.65 0.62 0.78 0.32 0.76
FStat 60 0.63 0.64 0.62 0.21 0.69
RFE 40 0.69 0.66 0.78 0.36 0.79
RFFI 50 0.68 0.65 0.82 0.38 0.80

DS100 None NA 0.66 0.64 0.75 0.31 0.74
IG 60 0.65 0.62 0.74 0.29 0.75

FStat 20 0.68 0.66 0.72 0.32 0.74
RFE 50 0.66 0.62 0.81 0.35 0.78
RFFI 40 0.68 0.65 0.80 0.37 0.79

DS200 None NA 0.66 0.64 0.75 0.31 0.74
IG 20 0.69 0.68 0.73 0.34 0.79

FStat 50 0.68 0.67 0.72 0.31 0.75
RFE 60 0.65 0.62 0.76 0.30 0.78
RFFI 20 0.67 0.63 0.81 0.36 0.79

DS300 None NA 0.66 0.64 0.75 0.31 0.74
IG 30 0.69 0.66 0.80 0.38 0.80

FStat 60 0.68 0.67 0.75 0.34 0.76
RFE 60 0.68 0.65 0.80 0.36 0.79
RFFI 30 0.68 0.64 0.81 0.37 0.79

DS400 None NA 0.66 0.64 0.75 0.31 0.74
IG 60 0.64 0.61 0.73 0.28 0.75

FStat 40 0.70 0.69 0.72 0.34 0.76
RFE 60 0.64 0.62 0.73 0.28 0.76
RFFI 20 0.69 0.68 0.76 0.36 0.80

Recursive Feature Extraction (RFE) that uses LASSO40 estimator for estimating the importance of features and removes the
lowest ranked 10 features at each iteration; (iii) RF Feature Importance (RFFI) which is an embedded feature selection method
where the FS data are used to train a RF classifier with 500 trees, and feature importance scores are then inferred from the
learned model as suggested by Breiman38.

We report the predictive performance of all IBD classifiers considered in this study as measured using Accuracy (ACC),
Sensitivity (Sn), Specificity (Sp), Matthews Correlation Coefficient (MCC), and Area Under ROC Curve (AUC)41.

Results

Feature Selection Improves the Predictive Performance of RF Classifiers
Table 1 reports the performance of top (in terms of highest AUC and smallest number of selected features) RF classifiers using
five different feature selection datasets as well as using all input features (FSM = None). For RF classifier without feature
selection method, the AUC is 0.74. Using the smallest feature selection dataset (DS50), the three traditional feature selection
methods yield RF classifiers with better AUC scores. The highest observed AUC corresponds to a RF classifier trained using
the top 50 features selected using RFFI method. On the other hand, when using the largest feature selection dataset (DS400),
all feature selection methods yield models with AUC better than the baseline model with no feature selection. Interestingly,
RFFI seems to benefit substantially by increase in the size of the feature selection dataset since it returns only 20 features that
are as discriminative as the 50 features determined using DS50 .

We find that some feature selection methods (e.g., IG) are sensitive to changes in the FSDS. For example, the best subset of
features returned using the IG filter is with DS300. On the other hand, with DS400 (which includes all instances in DS300), the
IG filter fails to determine a good subset of selected features. We suspect that the biomarkers identified using such unstable
feature selection methods are likely to be unreliable.

5/15

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 6, 2019. ; https://doi.org/10.1101/662197doi: bioRxiv preprint 

https://doi.org/10.1101/662197
http://creativecommons.org/licenses/by-nc-nd/4.0/


Performance of Network-based Feature Selection Methods
Results in Table 1 demonstrate the superior performance of RF feature importance for identifying a small subset of discriminative
features from metagenomics data which is widely acknowledged in the literature42, 43. Here, we report results of experiments
(using the framework in Fig. 1) designed to address the following questions: (i) which network inference tool learns graphs that
could be suitable for our network-based feature selection method?; (ii) how do the results of network-based feature selection
using different Node Topological Property Scoring (NTPS) and Critical Attack Set Scoring (CASS) compare to each other as
well as to results in Table 1?

First, for each of the five FSDS considered in our experimented and using graphs generated by five NIMs, we evaluated our
NBBD framework using six topological properties for NTPS approach and k identified biomarkers for k∈{10,20,30,40,50,60}.
A total of 900 experiments were conducted and are reported in Tables S1-S5. Table 2 summarizes all these tables for results
obtained using DS50 by reporting the performance of top performing (in terms of highest AUC and smallest number of selected
features) RF classifiers. Table 2 reveals the following interesting observations: (i) Models using networks generated by CoNet,
Proxi, and RMT achieve performance comparable to that of best performing models in Table 1 using RFFI and RFE feature
selection; (ii) The AUC of the top performing models obtained using RMT graphs are consistently good (i.e., AUC scores in
the range 0.77-0.78), while other NIMs yield top performing models with a wider range of AUC scores; (iii) There is no single
topological property that can be used to train RF classifiers that outperform their counterparts trained using other properties.
However,the topological properties that work best appear to depend on the network construction method used. For example,
CoNet and Proxi based models achieve their highest AUC scores using ‘and’ and ‘cn’ properties, respectively. Even though
RMT based models have almost the same AUC for all six different topological properties, the method seems to work best with
‘cc’ property since it reaches the highest AUC score of 0.78 using only 20 features whereas it requires at least 50 features using
other properties.

Second, we repeated the experiments described in the preceding paragraph but using CASS based on three node resilience
measures as the Node Importance Scoring module in our NBBD framework. The performance of the resulting RF classifiers are
reported in Table S6 and summarized in Table 3 for DS50. Table S6 shows that the highest AUC score of 0.79 can be reached
using DS100 and graphs learned using Proxi (and 28 features) or SparCC (and 51 features) as well as using DS400 and graphs
obtained using SparCC (and 54 features). Results in Table 3 suggest that the three CASS methods seem to need larger feature
selection datasets in order to reach a predictive performance comparable to those obtained using traditional feature selection
methods or NTPS methods. Unlike all other feature selection methods considered in this work, CASS methods do not require
the user to provide the number of features to be selected from the input data as a parameter.

In summary, our results suggest that the five NIMs, except MB26, can be successfully used in our NBBD framework
for identifying discriminative features (i.e., potential IBD biomarkers) from metagenomics data. Our results also show that
network-based feature selection methods are comparable to some commonly used traditional feature selection methods including
the widely used RFFI. Moreover, with small size feature selection datasets, network-based feature selection methods applied to
RMT graphs outperform traditional feature selection methods.

Performance of Hybrid Feature Selection Methods
Preliminary results reported in an early version of this work (Fig. 4 in Abbas et al.20) show that only 12 OTUs were shared
among the three subsets of 30 biomarkers determined using RFFI and two instances of the NBBD framework. Therefore,
we hypothesize that the feature importance scores estimated using RFFI and the best instances of our NBBD framework are
complementary with each other. To test this hypothesis, we developed a hybrid feature selection method that returns the product
of RFFI and NBBD based on NTPSs as combined feature importance. Results for the hybrid method are reported for each of
the five FSDS using graphs generated by five NIMs and instances of the NBBD framework using six topological properties for
the NTPS approach and the top k ∈ {10,20,30,40,50,60} biomarkers in Tables S7-S11 and the top performing RF classifiers
using DS50 are reported in Table 4.

Table S8 reports the results for RF classifier using hybrid feature selection based on instances of the NBBD framework
applied to MB graphs and shows that the two best performing RF classifiers with AUC scores of 0.82 and 0.81 are obtained
using the ‘and’ property and the top 10 and 20 features (respectively). Interestingly, these two classifiers were trained using
features determined using MB graphs inferred from DS50. This is a substantial improvement in performance compared with
the RF model trained using RFFI and features determined using DS50 (see Table 1) which has an AUC score of 0.80 using
50 features. In addition, several RF models with AUC scores higher than 0.80 were obtained using Proxi, RMT, and SparCC
graphs (see Tables S7-S11).

Table 4 summarizes the results in Tables S7-S11 by reporting the top performing RF classifiers obtained using DS50 (i.e.,
the smallest feature selection dataset). In this table, two RF classifiers using MB and RMT graphs have equal AUC scores of
0.82 . Several RF classifiers reached an AUC score of 0.80, but only the model based on SparCC graphs is using a small number
of features. Comparing results in Tables 2 and 4 suggests that the RF classifiers using hybrid feature selection outperform
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Table 2. Performance of top (in terms of highest AUC and smallest number of selected features) performing RF classifiers for
combinations of different choices of Network Inference Method (NIM) and network-based feature selection using different

properties for Node Topological Property Scoring. All results were obtained using DS50 as the feature selection dataset.

NIM FSM # Features ACC Sn Sp MCC AUC
CoNet and 50 0.69 0.66 0.81 0.38 0.79

btw 30 0.67 0.64 0.78 0.34 0.78
cc 60 0.67 0.65 0.76 0.33 0.77
cls 60 0.66 0.63 0.77 0.32 0.74
cn 60 0.67 0.64 0.79 0.35 0.78

ncn 60 0.66 0.64 0.73 0.31 0.75
MB and 50 0.64 0.63 0.69 0.26 0.71

btw 50 0.65 0.62 0.77 0.31 0.74
cc 50 0.61 0.59 0.72 0.24 0.71
cls 50 0.63 0.61 0.69 0.24 0.72
cn 60 0.62 0.61 0.67 0.23 0.69

ncn 60 0.62 0.57 0.80 0.30 0.75
Proxi and 60 0.64 0.61 0.76 0.30 0.75

btw 50 0.69 0.67 0.78 0.36 0.77
cc 60 0.62 0.61 0.68 0.24 0.70
cls 50 0.57 0.53 0.72 0.20 0.67
cn 40 0.65 0.62 0.77 0.31 0.78

ncn 60 0.67 0.65 0.75 0.33 0.77
RMT and 50 0.66 0.64 0.75 0.32 0.78

btw 50 0.67 0.64 0.79 0.35 0.78
cc 20 0.68 0.66 0.78 0.35 0.78
cls 60 0.67 0.65 0.78 0.35 0.77
cn 60 0.68 0.66 0.75 0.33 0.77

ncn 60 0.68 0.66 0.76 0.34 0.78
SparCC and 60 0.61 0.57 0.73 0.25 0.69

btw 60 0.68 0.66 0.75 0.34 0.75
cc 40 0.60 0.57 0.71 0.23 0.70
cls 60 0.66 0.65 0.72 0.29 0.73
cn 50 0.66 0.64 0.72 0.29 0.72

ncn 60 0.63 0.60 0.74 0.28 0.71
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Table 3. Performance (highest AUC attained, and the smallest number of features chosen) by the top performing RF classifiers
for combinations of different choices of Network Inference Method (NIM) and network-based feature selection using three
resilience measures for Critical Attack Set Scoring (CASS). Results obtained using DS50 as the feature selection dataset.

NIM FSM # Features ACC Sn Sp MCC AUC
CoNet CASS_I 21 0.66 0.64 0.75 0.31 0.77

CASS_T 35 0.67 0.64 0.76 0.33 0.76
CASS_V 21 0.66 0.64 0.75 0.31 0.77

MB CASS_I 6 0.51 0.47 0.68 0.12 0.61
CASS_T 33 0.57 0.53 0.73 0.21 0.65
CASS_V NA NA NA NA NA NA

Proxi CASS_I 11 0.65 0.63 0.72 0.28 0.72
CASS_T 39 0.65 0.64 0.70 0.27 0.73
CASS_V 1 0.25 0.07 0.96 0.04 0.51

RMT CASS_I 8 0.49 0.46 0.58 0.03 0.52
CASS_T 12 0.56 0.52 0.72 0.19 0.64
CASS_V 3 0.64 0.64 0.61 0.21 0.62

SparCC CASS_I 117 0.66 0.64 0.74 0.31 0.76
CASS_T 125 0.66 0.64 0.72 0.30 0.76
CASS_V NA NA NA NA NA NA

counterpart RF classifiers using NTPS only in terms of predictive performance and/or number of features used to train the
models.

Analysis of Top Performing Models and the Identified IBD Biomarkers
Table 5 compares the performance of the top RF classifiers obtained using traditional feature selection and hybrid feature
selection methods evaluated in our experiments. Using a hybrid scoring method combining RFFI (estimated from DS50) and
‘and’ scores (determined from MB graphs), a RF classifier trained using the top 20 features outperforms the best RF developed
using RFFI (estimated from DS400) in four out of five performance metrics. Table 6 shows the AUC scores for these three
models using different FSDSs. Since feature selection datasets are nested (i.e., DS50⊂DS100⊂ FSD200⊂DS300⊂DS400),
we expect feature selection methods to return the same or better subset of features as we increase the size of the FSDS used.
Our expectation is almost realized using the RFFI method, except that there is a drop in AUC score when DS300 is used. On
the other hand, our expectation is violated using the hybrid feature selection methods. The highest AUC score is observed using
DS50, and increasing the size of the FSDS leads to a drop in classifier performance. This suggests that NIMs such as MB and
RMT might be highly unstable to changes in the input data. In other words, networks constructed from DS50 and DS400 (as an
example) are substantially different. For instance, Fig. S1 compares the four MB graphs generated using the MB method from
IBD and healthy samples in DS50 and DS400. We found that MB constructs two networks (over the same set of nodes) but
with a minimal overlap in edges from DS50 and DS400 data. In the absence of the ground truth, we can not determine which
network is closer to reality. However, our results show that graphs inferred from DS50 allow our NBBD framework to identify
a better set of features.

Fig. 2 shows the Venn diagram of unique and shared OTUs among the three subsets of features used for training the
top three models in Table 5. We found that the number of unique OTUs in each subset is 7, 3, and 18 for RFFI, MB_and,
and RMT_cc sets, respectively. Interestingly, 17 out of the 20 features in MB_and are also in RMT_cc and 8 out of these
17 common OTUs are also shared with RFFI. Table S12 lists the OTUs in these three sets of selected features. We further
conducted downstream statistical analysis of the common 8 OTUs which are highlighted in bold in Table S12. More precisely,
we assessed the significance of the difference between the medians of sample normalized relative abundance of these OTUs
in IBD and healthy populations using the Kruskal-Wallis nonparametric test (Figures S2-S6). Analysis of DS400 (Fig. S6)
shows significantly higher abundance of (Aggregatibacter, Fusobacterium, and Sutterella) in IBD samples relative to healthy
samples. The increase of Aggregatibacter genus in IBD samples has been reported in several recent studies44, 45. Also, the
high abundance of Fusobacterium in IBD samples has been suggested as a biomarker in several studies3, 46. Sutterella spp.
have been frequently associated with several human diseases including autism and IBD47, 48. However, other studies49, 50 have
suggested that Sutterella spp. are unlikely to play a role in the pathogenesis of IBD. Fig. S6 also shows significant decreases in
Roseburia, Dialister, and Clostridiales. These three biomarkers have been repeatedly reported in previous studies51–53. Finally,
results of our statistical analysis reported in Fig. S6 suggest that two of our top identified genera biomarkers, Bacteroides and
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Table 4. Performance of the top performing RF classifiers (with the highest AUC and using the smallest number of features)
for combinations of different choices of Network Inference Method (NIM) and hybrid feature selection based on RFFI and
different properties for Node Topological Property Scoring. All results were obtained using DS50 as the feature selection

dataset.

GIM FS Method # Features ACC Sn Sp MCC AUC
CoNet and 30 0.68 0.65 0.79 0.36 0.79

btw 20 0.65 0.61 0.79 0.33 0.78
cc 60 0.66 0.64 0.74 0.31 0.74
cls 40 0.62 0.59 0.77 0.29 0.74
cn 40 0.66 0.64 0.75 0.32 0.76

ncn 40 0.67 0.65 0.75 0.32 0.76
MB and 20 0.73 0.72 0.76 0.40 0.82

btw 40 0.66 0.64 0.78 0.33 0.78
cc 20 0.66 0.62 0.79 0.34 0.77
cls 40 0.65 0.64 0.72 0.29 0.77
cn 10 0.69 0.68 0.74 0.34 0.76

ncn 20 0.65 0.61 0.80 0.34 0.79
Proxi and 50 0.68 0.66 0.77 0.35 0.78

btw 30 0.69 0.66 0.82 0.39 0.79
cc 50 0.65 0.62 0.77 0.31 0.78
cls 50 0.67 0.63 0.83 0.37 0.79
cn 40 0.62 0.60 0.70 0.24 0.73

ncn 40 0.68 0.65 0.80 0.36 0.79
RMT and 60 0.68 0.64 0.80 0.36 0.79

btw 40 0.64 0.60 0.80 0.32 0.78
cc 40 0.69 0.65 0.81 0.38 0.82
cls 50 0.69 0.66 0.80 0.37 0.80
cn 40 0.64 0.60 0.80 0.32 0.76

ncn 50 0.68 0.65 0.81 0.37 0.80
SparCC and 30 0.67 0.64 0.78 0.34 0.80

btw 40 0.70 0.68 0.78 0.37 0.79
cc 30 0.66 0.63 0.79 0.34 0.78
cls 30 0.67 0.64 0.80 0.36 0.78
cn 50 0.67 0.63 0.82 0.36 0.80

ncn 40 0.66 0.62 0.81 0.34 0.79
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Table 5. Performance comparison of top three RF classifiers obtained using traditional feature selection and hybrid feature
selection methods.

NIM FSDS FS Method # Features ACC Sn Sp MCC AUC
NA DS400 RFFI 20 0.69 0.68 0.76 0.36 0.80
MB DS50 RFFI × and 20 0.73 0.72 0.76 0.40 0.82

RMT DS50 RFFI ×cc 40 0.69 0.65 0.81 0.38 0.82

Table 6. AUC scores for top three RF classifiers obtained using RFFI feature selection and two hybrid feature selection
methods, MB_and and RMT_cc, using different feature selection datasets.

FSDS RFFI MB_and RMT_cc
DS50 0.76 0.82 0.82

DS100 0.78 0.76 0.79
DS200 0.79 0.75 0.77
DS300 0.77 0.79 0.77
DS400 0.80 0.78 0.75

Oscillospira, have no significant differences in IBD and control samples. Bacteroides is a dominant and biologically important
bacteria genus in the microbiota of the human gastrointestinal tract54 and Oscillospira is an under-studied bacterial genus that is
hard to cultivate but is consistently being identified in several human gut microbiota association studies55. This highlights the
need for developing more sophisticated differential abundance tests that take into account the sparsity and compositional nature
of metagenomics data.

Sensitivity analysis of Kruskal-Wallis and Mann-Whitney nonparametric tests against the number of samples analyzed has
been conducted using all variants of FSDS. The complete results of this analysis is reported in supplementary figures S2-S11.
Surprisingly, both tests failed to show any significant differences between IBD and healthy groups using DS50. Overall, the
results from the two nonparametric tests are in agreement with each other, and our results suggest that at least 100 samples are
needed for each group in order to demonstrate significant differences in the abundances of six out of the top eight identified
biomarkers.

Discussion
The past decade has witnessed a revolution in microbiology and microbiome research. Advances in sequencing technologies
and computational techniques coupled with large scale collaborative efforts such as Human Microbiome Project (HMP)56 and
American Gut Project57 have generated unprecedented amounts of metagenomics data. Analysis and interpretation of such data
presents many statistical and computational challenges58, 59. One such challenge has to do with the reliable identification of
biomarkers (in the form of species, genes, or pathways) that differentiate between two or more phenotypes12.

To address this challenge, we have developed NBBD, a novel metagenomics system biology framework for microbial
biomarker discovery. The NBBD framework integrates network analysis and machine learning approaches for reliable
identification of biomarkers from metagenomics data. Given two OTU tables corresponding to two phenotypes, NBBD uses
any existing tool for constructing phenotype specific networks from the data. Depending on the tool used, these networks
model the interactions, the correlations, or the proximity relationships between microbes. Next, the nodes are scored using
different scoring methods that quantify the extent to which the nodes contribute to differences in the topological properties
of the nodes in the two networks. The k top-scoring nodes are used as the set of selected features to train and test classifier
using machine learning. We conducted extensive experiments to evaluate the NBBD framework, configured using five different
network inference tools and nine different node importance scoring methods, using a large dataset from a cohort of 657 IBD
and 316 healthy healthy pediatric metagenomics biopsy samples, respectively.

Although several tools for constructing microbial ecology networks from metagenomics data have been developed, they
leave considerable room for improvement12, 60. For example, Weiss et al.60 benchmarked the performance of eight correlation
detection strategies on simulated and real metagenomics data and showed significant inconsistency (in terms of number of
edges) among graphs inferred using different tools. Using simulated data, they showed that all of the tools exhibited extremely
low precision (below 0.20). That is, for every identified true edge, there are at least four false positive edges in the constructed
network. While the five network construction tools considered in our study are among the top performing tools in Weiss et al.60,
they are far from perfect. It is indeed remarkable that the noisy networks produced by such tools can be used to reliably identify
discriminative features and to identify potential IBD biomarkers.
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In this study, we performed experiments to examine the sensitivity of classifiers to the number of samples in the feature
selection dataset. To facilitate fair comparison between classifiers, we used the entire training data for training the classifiers
using the features determined based on different subsets of the training data. Our results suggest that traditional feature selection
methods fail to determine a minimal subset of discriminative features from small feature selection datas ets. Interestingly, we
found that several network-based feature selection methods returned a minimal subset of discriminative features using the
smallest feature selection dataset,DS50. These findings highlight one of the reasons network-based feature selection should be
used. Mainly, by mapping the feature selection data into graphs, we overcome several challenges in the input data, including
a small number of samples, sparsity, and high-dimensionality. Another reason for using network-based feature selection is
that it opens up the possibility of developing a variety of novel feature selection methods based on a broad and rich collection
of well-developed graph mining algorithms. For example, in this work, we showed how to develop network-based feature
selection methods using virtually any vertex topological property and also using a graph clustering algorithm (NBR-Clust).
In particular, the CASS method (derived from NBR-Clust) determines the optimal number of features seamlessly. More
methods could be developed using vertex similarity algorithm (e.g., SimRank61 and ASCOS62), graph similarity algorithms
(e.g., DeltaCon63), and network-based anomaly detection methods64. Our ongoing work aims to explore the utility of these
algorithms for developing more sophisticated Node Importance Scoring (NIS) modules for the NBBD framework.

Our sensitivity analysis also revealed that the microbial ecology networks constructed using state-of-the-art network
construction methods are highly sensitive to the data samples used to construct the network. Needless to say, this lack of
stability of network construction algorithms has serious implications for subsequent biological interpretation of microbial
ecology networks, and in the contest of our work, the reliability of the biomarkers discovered from analysis of microbial
ecology networks. In order for the predictive models trained using the features selected using network-based feature selection
methods) to be reliable, we need to ensure the feature selection methods have a high degree of stability with respect to changes
in the underlying network. Note that the stability of feature selection algorithms is a function of both the properties of the
algorithm itself as well as the data supplied to the algorithm. Hence, improvements are needed on both fronts.

Fundamentally, constructing microbial ecology networks from metagenomic data requires determining the correlation or
similarity between (abundances of) microbial taxa from a relatively small number of metagenomic samples. This problem is
not fundamentally different from the problem of determining gene co-expression networks from gene expression data65, or
that of determining functional brain networks from fMRI data66. All of these applications present some shared challenges:
In most cases, the number of features (genes, brain regions, microbial taxa) far exceed the number of data samples; It is
generally impossible, without making additional assumptions or incorporating domain knowledge, to distinguish between
direct and indirect correlations; The choice of the correlation or similarity measure is often application-dependent. Methods for
microbial ecology network estimation from metagenomic data could benefit greatly from recent advances in high dimensional
correlation matrix estimation67–70. Work in progress is aimed at evaluating the applicability of such methods in constructing
stable microbial ecology networks from metagenomic data.

Conclusions
We have proposed a novel Network-Based Biomarker Discovery (NBBD) framework for detecting disease biomarkers from
metagenomics data. NBBD consists of two major customizable modules: A network inference module, for constructing
microbial ecology networks from OTU tables extracted from the metagenomic data for the phenotypes of interest; and a node
importance scoring module, which compares the resulting phenotype-specific networks and scores the nodes based on different
measures of the node’s contribution to the differences between the networks.

We have evaluated the proposed NBBD framework, using five different network construction methods, in combination
with nine different node importance scoring methods, on a large dataset from a cohort of 657 IBD and 316 healhy pediatric
metagenomics biopsy samples. Our results show that NBBD, when used to train predictive models for IBD diagnosis from
metagenomic data, is very competitive with some of the state-of-the-art feature selection methods including the widely used
method based on random forest feature importance scores. Our results further show that a hybrid approach that combines
NBBD scores and the random forest feature importance scores yields further improvements in performance. Furthermore,
the proposed method is able to achieve its best observed performance using only only 50 samples for feature selection. Work
in progress is aimed at further improving the two key components of NBBD, e.g., by incorporating recent advances in high
dimensional correlation matrix estimation67–70 to improve the reliability and the stability of the resulting networks, exploring
improved node scoring methods. Other promising directions for future research include systematic evaluation of the NBBD
framework for biomarker discovery from different types of omics data, integrative analyses of multi-omics data71, 72, e.g., using
information-preserving low-dimensional network embeddings73.
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Figure legends
Figure 1. Overview of the NBBD framework. Feature Selection Dataset (FSDS) which is a subset of, or the same as, training
dataset in the form of two OTU tables corresponding to two groups of metagenomics samples are first used to construct two
networks. The node importance scoring modules compares topological properties of shared nodes in the two networks and
outputs scores to prioritize the input features. Top selected features are then used to train and evaluate a classifier.

Figure 2. Venn diagram of unique and shared features selected using RF Feature Importance (RFFI), network-based feature
selection applied to MB (RMT) networks and using ‘and’ (‘cc’) for node importance scoring.
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