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Abstract Accurately inferring the genome-wide landscape of recombination rates in natural7

populations is a central aim in genomics, as patterns of linkage influence everything from genetic8

mapping to understanding evolutionary history. Here we describe ReLERNN, a deep learning9

method for accurately estimating a genome-wide recombination landscape using as few as four10

samples. Rather than use summaries of linkage disequilibrium as its input, ReLERNN considers11

columns from a genotype alignment, which are then modeled as a sequence across the genome12

using a recurrent neural network. We demonstrate that ReLERNN improves accuracy and reduces13

bias relative to existing methods and maintains high accuracy in the face of demographic model14

misspecification. We apply ReLERNN to natural populations of African Drosophila melanogaster and15

show that genome-wide recombination landscapes, while largely correlated among populations,16

exhibit important population-specific differences. Lastly, we connect the inferred patterns of17

recombination with the frequencies of major inversions segregating in natural Drosophila18

populations.19

20

Introduction21

Recombination plays an essential role in the meiotic production of gametes in most sexual species,22

and is often required for proper pairing and segregation of chromosomes (Hunter et al., 2006;23

Mather, 1938; Smith and Nicolas, 1998). During meiotic recombination, double-strand breaks are24

resolved as crossover or non-crossover recombination events along the chromosome, and as25

such, homologous chromosomes can exchange genetic information (reviewed in Kirkpatrick, 2010;26

Zelkowski et al., 2019). Thus while recombination is often critical to development and reproduction,27

it also has profound effects on both evolutionary and population genomics (Burt, 2000; Felsenstein,28

1974; Haenel et al., 2018; Hartfield and Otto, 2011; Hill and Robertson, 1966; Kondrashov, 1982).29

Indeed, the population recombination rate � = 4Nr is a central parameter in population and30

statistical genetics (reviewed in Hahn, 2018), as � largely determines patterns of linkage disequi-31

librium (LD) across the genome. In regions of the genome where � is relatively small we expect32

increased levels of LD, and conversely in genomic compartments with high � we expect little LD.33

Deviations from our expected levels of LD given the local recombination rate can be illustrative of34

the influence of other evolutionary forces such as selection or migration. For example, selective35

sweeps are expected to dramatically elevate LD near the target of selection (Kim and Nielsen, 2004;36

O’Reilly et al., 2008; Parsch et al., 2001).37

Structural variation itself is expected to modulate the landscape of recombination along the chro-38

mosomes, as both crossovers and non-crossovers are predicated on the alignment of homologous39

sequences, and structural rearrangements may directly impact those alignments. Chromosomal40

inversions, long-known to suppress crossing over along a chromosome (e.g. Sturtevant, 1921), are41
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perhaps the most well-studied example of such structural variation. Inversion polymorphisms42

have been implicated in diverse evolutionary phenomena including local adaptation (Ayala et al.,43

2013; Kirkpatrick and Barton, 2006; Lowry and Willis, 2010), reproductive isolation (Ayala et al.,44

2013; Noor et al., 2001; Rieseberg, 2001), and the maintenance of meiotic drive complexes (Jaenike,45

2001; Presgraves et al., 2009). As suppressors of recombination, we expect a priori that segregating46

inversions should show distinct histories of recombination in comparison to standard karyotype47

chromosomes.48

While recombination plays a central role in meiosis and reproduction, the frequency and49

distribution of crossovers along the chromosomes are themselves phenotypes that can evolve50

(reviewed in Kirkpatrick, 2010; Ritz et al., 2017). Importantly, recombination rate variation exists51

between species, among sexes of the same species (males generally having shorter maps than52

females), and extends even between individuals of the same sex (Kong et al., 2010; Singh et al.,53

2013; Winckler et al., 2005). Yet while there is abundant variation in the rate of recombination54

within and between taxa, most methods for accurately measuring this variation involve painstaking55

experiments or large pedigrees. Thus genetics, as a field, would like to have a tool for directly56

estimating recombination rates from sequence data, without relying on pedigree genotyping or57

other ancillary information.58

Accordingly, there is a rich history of estimating � in population genetics, including efforts59

to obtain minimum bounds on the number of recombination events (Hudson and Kaplan, 1985;60

Myers and Griffiths, 2003;Wiuf, 2002), methods of moments estimators (Hudson, 1987;Wakeley,61

1997), composite likelihood estimators (Chan et al., 2012; Hudson, 2002;McVean et al., 2002), and62

summary likelihood estimators (Li and Stephens, 2003;Wall, 2000). Recently, supervised machine63

learning methods for estimating � have entered the fray (Gao et al., 2016; Lin et al., 2013), and64

have proven to be competitive in accuracy with state-of-the-art composite likelihood methods such65

as LDhat (McVean et al., 2002), often with far less computing effort.66

To this end, we sought to develop a novel method for inferring rates of recombination directly67

from a sequence alignment through the use of deep learning. In recent years deep artificial neural68

networks (ANNs) have produced remarkable performance gains in computer vision (Krizhevsky69

et al., 2012; Szegedy et al., 2015), speech recognition (Hinton et al., 2012), natural language pro-70

cessing (Sutskever et al., 2014), and data preprocessing tasks such as denoising (Vincent et al.,71

2008). Perhaps most illustrative of the potential of deep learning is the remarkable success of con-72

volutional neural networks (CNNs; Lecun et al., 1998) on problems in image analysis. For example,73

prior to the introduction of CNNs to the annual ImageNet Large Scale Visual Recognition Challenge74

(Krizhevsky et al., 2012), no method had achieved an error rate of less than 25% on the ImageNet75

data set. In the years that followed, CNNs succeeded in reducing this error rate below 5%, exceeding76

human accuracy on the same tasks (Russakovsky et al., 2015).77

In this study we focus our efforts on recurrent neural networks (RNNs), a promising network78

architecture for population genomics, which has proven adept for analyzing sequential data of79

arbitrary lengths (Graves et al., 2013). Unlike other machine learning methods, deep learning80

approaches do not require a predefined feature vector. When fed labeled training data (e.g. a set81

of haplotypes simulated under a known recombination rate), these methods algorithmically create82

their own set of informative statistics that prove most effective for solving the specified problem.83

By training deep learning networks directly on sequence alignments, we allow the neural network84

to automatically extract informative features from the data without human supervision. Learning85

directly from a sequence alignment for population genetic inference has recently been shown to be86

possible using CNNs (Chan et al., 2018; Flagel et al., 2018), and as we show below, is also true for87

RNNs.88

Here we introduce Recombination Landscape Estimation using Recurrent Neural Networks, an89

RNN-based method for estimating the genomic landscape of recombination rates directly from a90

phased genotype alignment. We found that ReLERNN is both highly accurate and out-performs91

competing methods at small sample sizes. We also show that ReLERNN retains its high accuracy in92
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the face of demographic model misspecification. We then apply ReLERNN to population genomic93

data from African samples of Drosophila melanogaster. We demonstrate that the landscape of94

recombination is largely conserved in this species, yet individual regions of the genome show95

marked population-specific differences. Finally, we found that chromosomal inversion frequencies96

directly impact the inferred rate of recombination, and we demonstrate that the role for inversions97

in suppressing recombination extends far beyond the inversion breakpoints themselves.98

Results99

ReLERNN: an accurate method for estimating the genome-wide recombination100

landscape101

We developed ReLERNN, a new deep learning method for accurately predicting genome-wide102

per-base recombination rates from as few as four phased chromosomes. Briefly, ReLERNN provides103

an end-to-end inferential pipeline for estimating a recombination landscape from a population104

sample: it takes as input a user-filtered Variant Call Format (VCF) file of phased genotypes, and from105

this estimates a set of simulation parameters reflective of the input samples. ReLERNN then uses106

the coalescent simulation program, msprime (Kelleher et al., 2016), to simulate training, validation,107

and test data sets under either a user-supplied or an inferred demographic history, seeking to108

mimic population genetic properties of the empirical samples. ReLERNN trains a specific type109

of RNN, known as a Gated Recurrent Unit (GRU), to predict the per-base recombination rate for110

these simulations, using only the raw genotype matrix and a vector of genomic coordinates for111

each simulation example (Figure 1). It then uses this trained network to estimate genome-wide112

per-base recombination rates for empirical samples using a sliding-window approach. ReLERNN113

can optionally estimate 95% confidence intervals around each prediction using a parametric boot-114

strapping approach, and it uses these bootstrap estimates to correct for inherent biases in the115

training process (see Materials and Methods; Figure 1–Figure Supplement 1).116

A key feature of ReLERNN’s network architecture is the bidirectional GRU layer (Figure 1 inlay),117

which takes advantage of the sequential nature of genomic data. While vanilla (feed-forward)118

networks use as input a full block of data for each example, recurrent layers break sequence119

data into time steps, and iterate over them sequentially. This process allows the gradient descent120

algorithm, known as backpropagation through time, to share parameters across time steps as well121

asmake inferences based on the ordering of SNPs—i.e. to have amemory of allelic associations. The122

bidirectional attribute of the GRU layer simply means that each example is duplicated and reversed,123

so the sequence data are analyzed from both directions and then merged by concatenation.124

Performance on Simulated Chromosomes125

As a proof of principle, we performed coalescent simulations usingmsprime (Kelleher et al., 2016) to126

generate whole chromosome samples using a fine scale genetic map estimated from D. melanogaster127

(Comeron et al., 2012). We then used ReLERNN to estimate the landscape of recombination128

for these examples. ReLERNN is able to predict the per-base recombination landscape along a129

simulated chromosome to a high degree of accuracy across a wide range of realistic parameter130

values, assumptions, and sample sizes (R2 ≥ 0.82; Mean absolute error (MAE) ≤ 1.28 × 10−8).131

Importantly, the accuracy of ReLERNN is only modestly diminished when comparing predictions132

based on 20 samples (R2 = 0.93; MAE = 3.72 × 10−9; Figure 2) to those based on four samples133

(R2 = 0.82;MAE = 6.66 × 10−9; Figure 2–Figure Supplement 1). While ReLERNN retains accuracy at134

small sample sizes, it exhibits somewhat greater sensitivity to both the assumed per-base mutation135

rate and the assumedmaximum ratio of � to the populationmutation parameter, �—twomandatory136

assumptions.137

To assess the degree of sensitivity to these mutation rate assumptions, we ran ReLERNN on138

simulations using an assumed per-base mutation rate both 50% greater and 50% less than the139

simulated (true) mutation rate. In both scenarios, ReLERNN predicts crossover rates that are highly140
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correlated with the simulated rates (R2 > 0.91). However, in both scenariosMAE is inflated but still141

modest, and the absolute rates of recombination are underpredicted (R2 = 0.91;MAE = 1.23 × 10−8;142

Figure 2–Figure Supplement 2) and overpredicted (R2 = 0.94; MAE = 1.28 × 10−8; Figure 2–Figure143

Supplement 3) when assuming a mutation rate less than or greater than the true per-base mutation144

rate, respectively. Together these results suggest that ReLERNN is in fact learning information about145

the ratio of crossovers tomutations, andwhile ReLERNN is highly robust to errant assumptions when146

predicting relative recombination rates within a genome, caution must be taken when comparing147

absolute rates between organisms with large differences in per-base mutation rate estimates.148

ReLERNN compares favorably to competing methods, especially for small sample149

sizes and under model misspecification150

To assess the accuracy of ReLERNN relative to existing methods, we took a comparative approach151

whereby we made predictions on the same set of simulated test chromosomes using methods152

that differ broadly in their approaches. Specifically, we chose to compare ReLERNN against two153

types of machine learning methods—a boosted regression method, FastEPRR (Gao et al., 2016),154

and a convolutional neural network (CNN) recently described in Flagel et al. (2018)—and LDhat155

(McVean et al., 2002), a widely cited approximate-likelihood method. We independently simu-156

lated 105 chromosomes using msprime (Kelleher et al., 2016) (parameters: n ∈ {4, 8, 16, 32, 64},157

priorLowsRℎo = 0.0, priorHigℎsRℎo = 5e−8 × 1.25, priorLowsMu = 2.5e−8 × 0.75, priorHigℎsMu =158

2.5e−8 × 1.25, CℎromosomeLengtℎ = 3e5). Half of these were simulated under demographic equilib-159

rium and half were simulated under a realistic demographic model (based on the out-of-Africa160

expansion of European humans; see Materials and Methods). We show that ReLERNN outperforms161

all other methods, exhibiting significantly reduced absolute error under both the demographic162

model and under equilibrium assumptions (T ≤ −31 ; P < 10−16; post hocWelch’s two sample t-tests163

for all comparisons; Figure 3). Importantly, ReLERNN is also more accurate than all methods we164

compared for each of the tested samples sizes, although all methods generally performed well with165

larger sample sizes.166

We also sought to assess the robustness of ReLERNN to demographic model misspecification,167

whereby different generative models are used for simulating the training and test sets—e.g. training168

on assumptions of demographic equilibrium when the test data was generated by a population169

bottleneck. Methods robust to this type of misspecification are crucial, as the true demographic170

history of a sample is often unknown and methods used to infer population size histories can171

disagree or be unreliable (see Figure 5–Figure Supplement 1). Moreover, population size changes172

alter the landscape of LD across the genome (e.g Slatkin, 1994; Rogers, 2014), and thus have the173

potential to reduce accuracy or produce biased recombination rate estimates.174

To this end, we trained ReLERNN on examples generated under equilibrium and made pre-175

dictions on 5000 chromosomes generated by the human demographic model specified above176

(and also carried out the reciprocal experiment). We compared ReLERNN to both the CNN and177

LDhat, whereby all methods were similarly misspecified (see Materials and Methods). We found178

that ReLERNN outperforms both the CNN and LDhat, exhibiting significantly lower absolute er-179

ror under both directions of demographic model misspecification (T ≤ −26 ; PW TT < 10−16 for all180

comparisons; Figure 4). Interestingly, we show that the error attributed to model misspecification181

(termed marginal error; see Materials and Methods) is significantly greater when ReLERNN was182

trained on equilibrium simulations and tested on demographic simulations than under the recip-183

rocal misspecification (T = 26.3 ; PW TT < 10−16; Figure 4–Figure Supplement 1). While this is true,184

it is important to note that marginal error is quite modest in both directions of misspecification185

(< 1.30 × 10−9; Figure 4–Figure Supplement 1), suggesting that the additional information gleaned186

from an informative demographic model is limited.187

Differences in the ratio of homologous gene conversion events to crossovers can also bias188

the inference of recombination rates, as conversion tracts break down LD within the prediction189

window (Gay et al., 2007; Przeworski and Wall, 2001). We treated the effect of gene conversion as190
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another form of model misspecification by training on examples that lacked gene conversion and191

testing on examples that included gene conversion. As ReLERNN uses msprime for all training192

simulations, and msprime cannot currently simulate gene conversion, we generated all test set193

simulations with ms (Hudson, 2002). We found that including gene conversion in our simulations194

biased our predictions, resulting in an overestimate of the true recombination rate (Figure 4–Figure195

Supplement 2). Moreover, the magnitude of this bias increased with the ratio of gene conversion196

events to crossovers. As expected, we also observed a similar pattern of bias for LDhat, although the197

magnitude of bias for LDhat was somewhat less than that exhibited by ReLERNN (Figure 4–Figure198

Supplement 2).199

Recombination landscapes are largely concordant among populations of African D.200

melanogaster201

Using our method, we characterized the genome-wide recombination landscapes of three popula-202

tions of African D. melanogaster (sampled from Cameroon, Rwanda, and Zambia). Each population203

was derived from the sequencing of 10 haploid embryos (detailed in Lack et al., 2015; Pool et al.,204

2012), hence these data represent an excellent opportunity to exploit ReLERNN’s high accuracy205

on small sample sizes. We first sought to model the demographic history of each population, as206

ReLERNN can simulate training data under demographic models inferred by three published soft-207

ware methods—stairwayplot (Liu and Fu, 2015), SMC++ (Terhorst et al., 2016), and MSMC (Schiffels208

and Durbin, 2014). Using all three methods, we show that inferred historical population sizes are209

unreliable for these populations—no two methods recapitualte the same history, and the histories210

generated by MSMC vary dramatically depending on the number of samples used (Figure 5–Figure211

Supplement 1, Figure 5–Figure Supplement 2). For these reasons, and because results from our212

simulations suggest that marginal error due to demographic misspecification is quite low for our213

method (above; Figure 4–Figure Supplement 1), we decided to simulate our training data under the214

assumptions of demographic equilibrium.215

Using ReLERNN, we discovered that the fine-scale recombination landscapes are highly corre-216

lated among all three populations of D. melanogaster (genome-wide mean pairwise Spearman’s217

� = 0.76; P < 10−16; 100 Kb windows; Figure 5). The genome-wide mean pairwise coefficient of218

determination between populations was somewhat lower, R2 = 0.63 (P < 10−16; 100 Kb windows),219

suggesting there may be important population-specific differences in the fine-scale drivers of220

allelic association. These differences may also contribute to within-chromosome differences in221

recombination rate between populations. Indeed, we estimate that mean recombination rates are222

significantly different among populations for all chromosomes with the exception of chromosome223

3L (P ≤ 3.78 × 10−4; one-way analysis of variance). Post-hoc pairwise comparisons suggest that224

this difference is largely driven by an elevated rate of recombination in Zambia, identified on all225

chromosomes (P ≤ 8.21 × 10−4; Tukey’s HSD tests) except for 3L (PHSD ≥ 0.15). ReLERNN predicts226

the recombination rate in simulated test sets to a high degree of accuracy for all three populations227

(R2 ≥ 0.93; P < 10−16; Figure 5–Figure Supplement 3), suggesting that we have sufficient power to228

discern fine-scale differences in per-base recombination rates across the genome.229

When comparing our recombination rate estimates to those derived from experimental crosses230

of North American D. melanogaster (reported in Comeron et al., 2012), we find that the coefficients231

of determination averaged over all three populations were R2 = 0.46, 0.70, 0.47, 0.08, 0.73 for chro-232

mosomes 2L, 2R, 3L, 3R, and X, respectively (Figure 5–Figure Supplement 4; 1 Mb windows). These233

results differ from those observed by Chan et al. (2012), who compared 22 D. melanogaster sampled234

from the same Rwandan population to the FlyBase map and found R2 = 0.55, 0.63, 0.45, 0.42, 0.41 for235

the same chromosomes. The minor differences we observed between methods for chromosomes236

2L, 2R, and 3L can likely be attributed to the fact that we are comparing estimates from two different237

methods, using different African flies, to a different experimentally derived map. However, the238

larger differences found between methods for chromosomes 3R and the X seem less likely at-239

tributable to methodological differences. Importantly, African D. melanogaster are known to harbor240
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large polymorphic inversions (Corbett-Detig and Hartl, 2012; Lack et al., 2015), often at appreciable241

frequencies. For example, the inversion In(3R)K segregates in our Cameroon population at p = 0.9.242

It is potentially these differences in inversion frequencies that contribute to the exceptionally weak243

correlation observed using our method for chromosome 3R and the larger differences between244

methods for chromosome X.245

An important cause of population-specific differences in recombination landscapes might be246

population-specific differences in the frequencies of chromosomal inversions, as recombination is247

expected to be strongly suppressed between standard and inversion arrangements. Segregating248

inversions in D. melanogaster have been shown to affect broad patterns of chromosomal varia-249

tion, and are thought to have quite recent origins when taken together (Corbett-Detig and Hartl,250

2012). To test for an effect of inversion frequency on our measurement of recombination rates, we251

resampled haploid genomes from Zambia to create sampled populations with the cosmopolitan252

inversion In(2L)t segregating at varying frequencies, p ∈ {0.0, 0.2, 0.6, 1.0}. In Zambia, In(2L)t segre-253

gates at p = 0.22 (Lack et al., 2015), suggesting that recombination within the inversion breakpoints254

may be strongly suppressed in individuals with the inverted arrangement relative to those with255

the standard arrangement. Moreover, In(2L)t arose recently, likely within the past 100,000 years256

(Corbett-Detig and Hartl, 2012). For these reasons, we predict that the inferred recombination rate257

should decrease as the low-frequency inverted arrangement is increasingly overrepresented in the258

set of sampled chromosomes (i.e. as more of the samples contain the high-LD inverted arrange-259

ments). As predicted, we found a strong effect of the sample frequency of In(2L)t on estimated rates260

of recombination for chromosome 2L in Zambia (Figure 6). Recombination rates are negatively261

correlated with inversion frequency in our sample, not only within the inversion, but also in regions262

3 Mb outside the inversion (flanking regions) (�Spearman′s = −1; P = 0.04 for both comparisons). We263

also see a similar negative correlation outside the flanking regions, although this association is264

weakened relative to that within or flanking the inversion (Figure 6). Importantly, varying the size of265

the flanking regions (from 1-5 Mb) produces patterns that are qualitatively identical, suggesting that266

the effect of inversions on recombination suppression extends far beyond the inversion breakpoints267

themselves (Figure 6–Figure Supplement 1).268

While the effect of inversion frequency on recombination rates may extend beyond the inver-269

sion breakpoints, we expect that rates of recombination should be correlated with distance to the270

inversion breakpoint on smaller spatial scales. To test this we looked at the recombination rates in271

our African D. melanogaster populations, binned by distance to the nearest inversion breakpoints272

segregating in these populations. Importantly, we curated the samples for our population com-273

parisons by seeking to match the frequency of each inversion segregating in our samples with274

its true population frequency, as measured in the whole of the DGN database (see Materials and275

Methods). We show that recombination rates in the flanking regions are positively correlated with276

distance to inversion breakpoints in both Rwanda and Zambia (�Spearman′s = 1; P = 0.04 for both277

comparisons) but not in Cameroon (�Spearman′s = 0.8; P = 0.17; Figure 7). Likewise, recombination278

rates in the inversion interior (> 2 Mb from the breakpoints) are expected to be higher than in279

those regions immediately surrounding the breakpoints. However, with the exception of Cameroon280

(Inversion interior compared to < 250 Kb from breakpoint; PW TT = 0.035), we did not observe this281

pattern (PW TT ≥ 0.057; Figure 7).282

To further explore population-specific differences in recombination landscapes we took a statis-283

tical outlier approach, whereby we define two types of recombination rate outliers—global outliers284

and population-specific outliers (see Materials and Methods). Global outliers are characterized by285

windows with exceptionally high variance in rates of recombination between all three populations286

(Figure 5; red triangles) while population-specific outliers are those windows where the rate of re-287

combination in one population is strongly differentiated from the rates in the other two populations288

(Figure 5; population-colored triangles). We find that population-specific outliers, but not global289

outliers, are significantly enriched within inversions (P = 0.005; randomization test; Figure 5; grey290

boxes). Moreover, this enrichment remains significant when extending the inversion boundaries291
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by up to 250 Kb (Prand ≤ 0.004). However, extending the inversion boundaries beyond 250 Kb, or292

restricting the overlap to windows surrounding only the breakpoints (250 Kb, 500Kb, 1 Mb, 2 Mb),293

erodes this pattern (Prand ≥ 0.055 for all comparisons), suggesting that the role for inversions in294

generating population-specific differences in recombination rates is complex, at least for these295

populations.296

Selection is another important factor that may confound the inference of recombination rates.297

For instance selective sweeps generate localized patterns of high LD on either side of the sweep site298

(Kim and Nielsen, 2004; Schrider et al., 2015), thus regions flanking selective sweeps may mimic299

regions of reduced recombination. Inasmuch population-specific selective sweeps are expected to300

contribute to population-specific differences in recombination rate estimates. We used diploS/HIC301

(Kern and Schrider, 2018) to identify hard and soft selective sweeps in our African D. melanogaster302

populations, and we tested for an excess of recombination rate outliers overlapping with windows303

classified as sweeps. In total, diploS/HIC classified 27.4%, 28.1%, and 26.8%, of all genomic widows304

as selective sweeps (either "hard" or "soft") for Cameroon, Rwanda, and Zambia, respectively, when305

looking at 5kb, non-overlapping windows. The associated False Discovery Rates (FDR) for calling306

sweeps in these populations were appreciable: 33.9%, 33.1% and 34.7%, respectively (Figure 5–307

Figure Supplement 5). As expected, windows classified as sweeps had significantly lower rates of308

recombination relative to neutral windows in all three populations (PW TT ≤ 10−16 for all comparisons;309

Figure 7). However, we found that neither global nor population-specific outliers were enriched310

for selective sweeps (Prand ≥ 0.246 for both comparisons), suggesting that, when treated as a class,311

recombination rate outliers are not likely driven by sweeps in these populations. When treated312

separately (i.e. independent permutation tests for each recombination rate outlier window), we313

identified 7 outliers enriched for sweeps at the P ≤ 0.05 threshold, corresponding to an expected314

FDR of 77%. However, given our FDR for calling sweeps in these populations, our measure of315

the enrichment in overlap with recombination rate outliers is likely to be conservative. Two of316

these outlier windows may represent potential true positives; an outlier in Cameroon contains 5317

out of 6 non-overlapping 5 kb windows classified as "hard" sweeps, the second from Rwanda has318

10 out of 12 windows classified as "hard" sweeps ( Prand = 0.0 for both comparisons). These two319

recombination rate outlier windows are potentially ripe for future studies on selective sweeps in320

these populations, and suggest that in at least some instances, selection contributes to observed321

differences in estimates of recombination rates between Drosophila populations.322

Discussion323

We introduced a new method, ReLERNN, for predicting the genome-wide landscape of per-base324

recombination rates from phased haplotypes from as few as four samples through the use of325

deep neural networks. Population genomics, as a field, relies on estimates of recombination rates326

to understand the effects of diverse phenomena ranging from the impacts of natural selection327

(Elyashiv et al., 2016), to patterns of admixture and introgression (Price et al., 2009; Brandvain328

et al., 2014; Schumer et al., 2018), to polygenic associations in genome-wide association studies329

(Bulik-Sullivan et al., 2015). As befits this need, there has been a long tradition of development of330

statistical methods for estimating the population recombination parameter, � = 4Nr (Chan et al.,331

2012; Gao et al., 2016; Hudson and Kaplan, 1985; Hudson, 1987, 2002; Li and Stephens, 2003; Lin332

et al., 2013;McVean et al., 2002;Myers and Griffiths, 2003;Wakeley, 1997;Wall, 2000;Wiuf, 2002).333

We sought to harness the power of deep learning, specifically deep recurrent neural networks, to334

address the problem of estimating recombination rates, and in so doing, we developed a workflow335

that reconstructs the genome-wide recombination landscape to a high degree of accuracy from336

very small sample sizes—e.g. four phased haploid chromosomes. The use of deep learning has337

recently revolutionized the fields of computer vision (Krizhevsky et al., 2012; Szegedy et al., 2015),338

speech recognition (Hinton et al., 2012), and natural language processing (Sutskever et al., 2014),339

and while its use in population genomics has only recently begun, it is anticipated to be similarly340

fruitful (Schrider and Kern, 2018). The natural extension of deep learning to population genomic341
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analyses comes as a result of the ways in which ANNs learn abstract representations of their342

inputs. In the case of population genomic analyses, the inputs can be naturally represented as343

DNA sequence alignments, eliminating the need for human oversight (and potentially constraint)344

in the form of statistical summaries (i.e. compression) of the raw data. ANNs can then learn345

high-dimensional statistical associations directly from the sequence alignments, and use these to346

return highly accurate predictions.347

ReLERNN utilizes a variant of an ANN, known as a Gated Recurrent Unit (GRU), as its primary348

technology. GRU networks excel at identifying temporal associations (Jozefowicz et al., 2015), and349

therefore we model our sequence alignment as a bidirectional time series, whereby each ordered350

SNP represents a new time step along the chromosome. We also model the distance between351

SNPs using a separate input tensor, and these two inputs are concatenated after passing through352

the initial layers of the network (see Figure 1 inlay). We demonstrated that ReLERNN can predict353

a simulated recombination landscape with a high degree of accuracy (R2 = 0.93; Figure 2), and354

that these predictions remain high, even when using small sample sizes (R2 = 0.82; Figure 2–Figure355

Supplement 1). Importantly, these predictions compared favorably to those made by a leading356

composite likelihood method (LDhat; McVean et al., 2002), as well as other machine learning357

methods (the CNN and FastEPRR; Figure 3). While the abstract nature of the data represented in358

its internal layers constrains our ability to interpret the exact information ReLERNN relies on to359

inform its predictions, our experiments using incorrect assumed mutation rates (Figure 2–Figure360

Supplement 3, Figure 2–Figure Supplement 2) suggests that ReLERNN is potentially learning the361

relative ratio of recombination rates to mutation rates. For these reasons, an extra caveat is362

warranted—use caution when interpreting the results from ReLERNN as precises measures of the363

per-base recombination rate unless precise mutation rate estimates are also known.364

Demographic model misspecification is another potential source of error that should affect not365

only deep learning methods targeted at estimating �, but also likelihood-based methods. Historical366

demographic events (e.g. population bottlenecks, rapid expansions, etc.), because they may alter367

the structure of LD genome-wide, can bias inference of recombination based on genetic variation368

data. Our simulations demonstrated that while all the methods we tested had elevated error in369

the context of demographic model misspecification, ReLERNN remained the most accurate across370

all misspecification scenarios (Figure 4). While we caution against generalizing too much from371

this experiment, the model misspecification tested here was extreme: we are replacing a human-372

like demography of a bottleneck followed by exponential growth with a model of demographic373

equilibrium. We suspect that ReLERNN, by using an RNN, is able to encode higher-order allelic374

associations across the genome, for instance three-locus or four-locus linkage disequilibrium, and375

in so doing capture more of the information available than traditional methods that use composite376

likelihoods of two-locus LD summaries. Additionally, there are clear opportunities for future377

improvements to ReLERNN. For instance, our simulation studies demonstrated that the RNN used378

by ReLERNN is also sensitive to gene conversion events(Figure 4–Figure Supplement 2), thus the379

joint estimation of rates of recombination and gene conversion may be quite feasible. Ultimately,380

it remains far from clear what network architectures will be best suited for population genetic381

inference, though we remain optimistic that ANNs will prove useful for a variety of applications in382

the field.383

A natural application of ReLERNN, due in part to its high accuracy with small sample sizes, was384

to characterize and compare the recombination landscapes for multiple populations of African D.385

melanogaster, for which few populations with large samples sizes are currently available. Previous386

estimates of genome-wide fine-scale recombination maps in flies have focused on characterizing387

recombination in experimental crosses (Comeron et al., 2012), or by running LDhat (or the related388

LDhelmet) on populations with relatively moderate sample sizes (i.e. ≥ 22 samples) (Chan et al.,389

2012; Langley et al., 2012). Here, we applied ReLERNN to three populations for which at least ten390

haploid embryos were sequenced: Cameroon, Rwanda, and Zambia (Lack et al., 2015; Pool et al.,391

2012). Generally, recombination landscapes were well correlated among populations. Mean pair-392
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wise coefficients of determination among all three populations were R2 = 0.69, 0.61, 0.77, 0.43, 0.66393

for chromosomes 2L, 2R, 3L, 3R, and X, respectively. These correlations are notably lower than394

those observed in humans (Myers et al., 2005) and mice (Wang et al., 2017), and one potential395

biological cause for this large difference could be the cosmopolitan chromosomal inversions that396

segregate in African D. melanogaster (Corbett-Detig and Hartl, 2012; Lack et al., 2015).397

We demonstrated a significant negative association between inversion sample frequency and398

recombination rate as inferred by ReLERNN through experimentally manipulating the frequency399

of the inversion karyotype in our sample (Figure 6). Our results suggest that recombination sup-400

pression extends well beyond the predicted breakpoints of the inversion (at least 5 Mb beyond in401

the case of In(2L)t; Figure 6–Figure Supplement 1). This large-scale suppression of recombination402

due to inversions in Drosophila has been observed both directly in experimental crosses (Dobzhan-403

sky and Epling, 1948; Novitski and Braver, 1954; Kulathinal et al., 2009; Miller et al., 2016; Fuller404

et al., 2018), and indirectly from patterns of variation surrounding known inversion breakpoints405

(Corbett-Detig and Hartl, 2012; Langley et al., 2012). While it is true that the negative relationship406

between inversion frequency and recombination should only exist for inversions segregating at low407

frequencies (e.g. crossover suppression is not expected in inversion homozygotes), we predict a408

negative relationship to dominate in these populations, as the majority of polymorphic inversions409

are young, segregate at low frequencies, and show elevated LD along their lengths perhaps due to410

the actions of natural selection (Corbett-Detig and Hartl, 2012; Lack et al., 2015).411

While polymorphic inversions exert strong effects on recombination landscapes, support for412

their role in explaining the most diverged regions among populations was mixed—we found that413

population-specific recombination rate outliers, but not global outliers, were significantly enriched414

within the inversions known to segregate in these populations (Figure 5). Moreover, our predictions415

for the relative rates of recombination among populations, based on inversion frequencies per416

chromosome, were largely not met—the inversions In(2L)t, In(2R)NS, and In(3L)Ok segregate at the417

highest frequencies in Zambia, yet this population also has the highest average recombination418

rate for these three chromosomes. Chromosome 3R, however, did match these predictions,419

having inversions segregating at the highest frequencies of any chromosome (e.g. pIn(3R)K = 0.9 in420

Cameroon) and also both the lowest coefficient of determination (R2 = 0.43) and population-specific421

recombination rates ranked in accordance with inversion frequencies (Figure 5).422

Interestingly, while we identified two individual outlier regions characterized by numerous423

selective sweeps, we did not observe a significant enrichment of sweeps overlapping either global424

or population-specific outliers when these outliers were treated as a class of genomic elements.425

This is perhaps surprising, given that selective sweeps are known to create characteristic elevations426

of LD (Kim and Nielsen, 2004), and perhaps could mimic regions with very divergent levels of427

recombination in a population-specific way. A number of other evolutionary forces might explain428

the existence of our outlier regions as well. For example, mutation rate heterogeneity along429

the chromosomes could, in principle, generate spurious peaks or troughs in our estimates of430

recombination rate, as ReLERNN in effect scales its per-base recombination rate estimates by a431

mutation rate that is assumed to be constant along the chromosome (Figure 2–Figure Supplement 3,432

Figure 2–Figure Supplement 2). Moreover, introgression from diverged populations might affect433

patterns of allelic association in a a local way along the genome (Schrider et al., 2018; Schumer434

et al., 2018). Taken together, our results suggest that while both inversions and selection can435

influence population-specific differences in the landscape of recombination, the preponderance of436

these differences likely have complex causes.437

In this report we described ReLERNN, a novel deep learning method for inferring fine-scale rates438

of recombination across the genome. While ReLERNN currently stands as a functional end-to-end439

pipeline for measuring recombination rates, the modular design herein presents a number of440

important opportunities for extension, with the potential to address myriad questions in population441

genomics. For example, while ReLERNN is currently designed to use phased haplotype data as442

its input, we see no reason why unphased, diploid genotypes couldn’t be substituted (e.g. Flagel443
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et al., 2018). Moreover, the RNN structure we exploit here could be used for inference of the444

distribution of selection coefficients and/or migration rates from natural populations. In addition,445

ReLERNN presents an excellent opportunity for the implementation of transfer learning, whereby446

ReLERNN could be trained in-house on an otherwise prohibitively extensive parameter space,447

allowing end-users to make accurate predictions by generating only a small fraction of the current448

number of simulations and training epochs presently required. The application of machine learning,449

and deep learning in particular, to questions in population genomics is ripe with opportunity.450

ReLERNN provides a platform for jumping off, that we hope to see advance our understanding of451

both population genetics and adaptation itself.452

Materials and Methods453

The ReLERNN workflow454

Here we briefly describe ReLERNN, a software package for accurately estimating a genome-wide re-455

combination landscape from as few as four phased chromosomes. The ReLERNNworkflow proceeds456

by the use of four python modules—ReLERNN_SIMULATE, ReLERNN_TRAIN, ReLERNN_PREDICT,457

and ReLERNN_BSCORRECT (Figure 1). The first three modules are mandatory, and include functions458

to calculate Watterson’s estimator and historical population sizes, functions for simulating the459

training set, functions for training the neural network, and functions for reporting rates of recom-460

bination along the chromosomes. The fourth module, ReLERNN_BSCORRECT, is optional (though461

recommended) and includes functions for estimating 95% confidence intervals and implements a462

correction function to reduce biases that may arise during training. The output from ReLERNN is a463

list of genomic windows and their corresponding recombination rate prediction (reported as per-464

base crossover events), along with 95% confidence intervals if the optional ReLERNN_BSCORRECT465

module was used.466

Parameter estimation and coalescent simulation467

ReLERNN takes as input a VCF file of phased biallelic variants, which can either be coded as468

nucleotides or ancestral/derived states (i.e. 0/1). A minimum of four sample chromosomes must469

be included, and users should ensure proper filtering of the input file beforehand—e.g. excluding470

low-coverage or low-quality sites, non-biallelic sites, and missing data. ReLERNN also requires the471

user to provide an assumed per-base mutation rate and an assumed maximum value for the ratio472

�∕�. These parameters are used to set an acceptable window size for prediction, by restricting the473

total number of segregating sites in each window to remain below a critical threshold. ReLERNN474

therefore uses a dynamic window size to reduce the probability of training failure due to having475

too many, or too few, segregating sites present in a window (e.g. experimental trials showed that476

the training loss function eventually returns NaNs when training on windows containing multiple477

thousands of segregating sites). As a result, the output predictions file may return different window478

sizes for different chromosomes, even within the same genome. For comparing rates between479

populations, an optional script ("force_window_size_predictions.py") is provided to force rates to480

conform to a given window size. This is accomplished by taking a weighted average of recombination481

rates, whereby rates are weighted by the fraction of overlap between their original window positions482

and the new forced window positions.483

Once the appropriate window sizes have been estimated, ReLERNN_SIMULATE uses the coales-484

cent simulation software, msprime (Kelleher et al., 2016), to independently generate 105 training485

examples and 103 validation and test examples. By default, these simulations are generated under486

assumptions of demographic equilibrium, using a range of per-base mutation and recombination487

rates. However, ReLERNN can optionally simulate under a demographic history inferred by one of488

three programs: stairwayplot (Liu and Fu, 2015), SMC++ (Terhorst et al., 2016), or MSMC (Schiffels489

and Durbin, 2014), and the handling of output from these programs is fully integrated into ReL-490

ERNN_SIMULATE. This provides users the ability to model a demographic history and to estimate491

rates of recombination from different files (e.g. one that includes only intergenic sites). When each492
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simulation is completed, ReLERNN dumps both the genotype matrix and a vector of the positions493

for every SNP into a temporary .npy file.494

Sequence batch generation and network architecture495

To reduce the large memory utilization common to the analysis of genomic sequence data, we took496

a batch generation approach, whereby only small batches of simulations are called into memory497

at any one time. Data normalization and padding occurs when a training batch is called, by which498

the genotype and position arrays are read into memory. In ReLERNN, ancestral states are coded499

as −1, derived states are coded as 1, and both genotype and positions arrays are padded with500

0s to the maximum number of segregating sites generated across all examples. In addition, a501

framing pad of five 0s is applied to both arrays, and the order of samples in each batch is randomly502

shuffled. The targets for each training batch are the per-base recombination rates used by msprime503

when simulating each example. These targets are z-score normalized across all training examples.504

The normalized and padded genotype and position arrays form the input tensors for our neural505

network.506

ReLERNN trains a recurrent neural network with Keras (Chollet et al., 2015) using a Tensorflow507

backend (Abadi et al., 2015). The complete details of our neural architecture can be found in the508

python module "ReLERNN_networks.py", and a simplified flow diagram showing the connectivity509

between layers can be found in Figure 1. Briefly, the ReLERNN neural network utilizes distinct input510

layers for the genotype and position tensors, which are later merged using a concatenation layer511

in Keras. The genotype tensor is first fed to a GRU layer, as implemented with the bidirectional512

wrapper in Keras, and the output of this layer is passed to a dense layer followed by a dropout513

layer. On the positions side of the network, the input positions tensor is fed directly to a dense514

layer and then to a dropout layer. Dropout was used extensively in our network, as hypertuning515

trials (below) demonstrated significantly improved accuracy when employing dropout relative to516

networks without dropout. Once concatenated, output from the dropout layer is passed to a final517

round of dense and dropout layers, and the final dense layer returns a single z-score normalized518

prediction for each example, which is unnormalized back to units of crossovers per-base. ReLERNN519

completes 250 training epochs and implements this training using the "Adam" optimizer and a520

Mean Squared Error (MSE) loss function. Though the number of epochs is user-selectable, the521

vast majority of networks are sufficiently trained within 250 epochs, largely due to how ReLERNN522

handles the input tensor size and simulation parameters. Our hyper-tuning trials were completed523

via a grid search over the set of parameters: Recurrent layer output dimensions (64, 82, 128), Loss524

function (MSE,MAE), Input merge strategy (concatenate, average), and dense layer dimensionality525

(64, 128), optimizing forMSE.526

Parametric bootstrap analysis and prediction corrections527

ReLERNN includes the option to both generate confidence intervals around each predicted re-528

combination rate and to correct for potential biases generated during training using a parametric529

bootstrapping approach. After the network has been trained and predictions have been gener-530

ated, users can run ReLERNN_BSCORRECT, which resimulates 103 test examples for each of 100531

recombination rate bins drawn from the distribution of recombination rates used to simulate532

the original training set. Predictions are then generated for these 105 simulated test examples533

using the previously trained network, generating a distribution of predictions for each respective534

recombination rate bin. 95% confidence intervals are calculated from by taking the upper and lower535

2.5% rate predictions from this distributions.536

The distribution of test predictions can be biased in systematic ways, such as predictably under-537

estimating rates of recombination for those examples with the highest simulated crossover events538

(Figure 1–Figure Supplement 1). These biases may potentially be caused an inability to resolve very539

high recombination rates with a limited number of informative SNPs. ReLERNN_BSCORRECT, esti-540

mates the magnitude of this bias through bootstrapping, and applies a bias correction function to541
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the empirical predictions. The bias correction function takes each empirical prediction and identifies542

the nearest median value in the bootstrap distribution. The correction function then adds to this543

prediction the difference between this median value and the true recombination rate used to simu-544

late the distribution of test examples at that recombination rate bin. This correction method has the545

effect of elevating the empirical prediction in regions of parameter space where we are reasonably546

confident that we are underestimating recombination rates and lowering the prediction in areas547

where we are likely to be overestimating recombination rates. ReLERNN_BSCORRECT is provided548

as an optional module in ReLERNN, as the resimulation of 105 test examples is computationally549

expensive and may not be warranted in all circumstances.550

Testing the accuracy of ReLERNN on simulated recombination landscapes551

To test the accuracy of ReLERNN at recapitulating a dynamic recombination landscape, we ran our552

complete ReLERNN workflow on simulation data replicating chromosome 2L of D. melanogaster.553

Using crossover rates estimated by Comeron et al. (2012), we simulated varying numbers of samples554

of D. melanogaster chromosome 2L with msprime using the RecombinationMap class. Simulated555

samples were exported to a VCF file using ploidy = 1, and all simulations were generated under556

demographic equilibrium. We used these simulated VCF files as the input to our ReLERNN pipeline,557

and ran all ReLERNN modules with default parameters, with the exception of varying the assumed558

per-base mutation rate and the assumed maximum ratio of � to �. Assumed mutation rates were559

varied from 50% less than the rate used in simulations (true rate) to 50% greater than the true560

rate. Likewise, the ratio of � to � was either held constant, resulting in the training set containing561

on average higher or lower per-base recombination rates than the true rate, or was adjusted to562

correctly reflect the true maximum per-base recombination rate used—i.e. approximately 1.2 × 10−7563

crossovers per base.564

Comparative methods565

We chose to compare ReLERNN to three published methods for estimating recombination rates—566

FastEPRR (Gao et al., 2016), a 1-dimensional CNN recently described in Flagel et al. (2018) and567

LDhat (McVean et al., 2002). We generated a training set (used by ReLERNN and the CNN) with568

105 examples and tested each method on an identical set of 5 × 103 simulation examples for569

testing. We generated two classes of simulations, one simulated under demographic equilibrium570

and one using a demographic history derived from European humans (CEU model; detailed in571

"ReLERNN_demographic_models.py"; Tennessen et al., 2012; Gravel et al., 2011). Both classes572

of simulations were generated for n ∈ {4, 8, 16, 32, 64}, where n is the number of chromosomes573

sampled from the population. All simulations were generated in msprime with the common574

set of parameters: priorLowsRℎo = 0.0, priorHigℎsRℎo = 5e−8 × 1.25, priorLowsMu = 2.5e−8 × 0.75,575

priorHigℎsMu = 2.5e−8 × 1.25, CℎromosomeLengtℎ = 3e5, whereby values for both per-base mutation576

and recombination rates were drawn from a uniform distribution between the low and high priors.577

For both ReLERNN and the CNN, the same training set consisting of 105 examples was used578

to train each neural network, and the same test examples were used to compare the predictions579

produced by each method. Comparisons with LDhat where made using the above training examples580

to parameterize the generation of independent coalescent likelihood lookup tables. For each set of581

examples of sample size N , we calculated the maximum value of � from the training set and the582

average per-base values for � for the test examples, using Watterson’s estimator. These parameter583

values were given to LDhat’s complete function for the lookup table generation, and the resulting584

table was used to make predictions on our 5 × 103 test examples using the pairwise function.585

Comparisons with FastEPRR were made by transforming the genotype matrices resulting from586

our test simulations into fasta-formated input files, and running the FastEPRR_ALN funtion (using587

format = 1) in R. As both LDhat and FastEPRR predict �, the resulting predictions were transformed588

to per-base recombination rates for comparison with ReLERNN using the function r = �pred×�true
�W

,589

whereby �pred is the prediction output by each method, and �W and �true are Watterson’s estimator590
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and the true per-base mutation rate used in the simulation example, respectively. To compare591

accuracy among methods we directly compared the distribution of absolute errors (|rpredicted − rtrue|)592

for each method for each set of examples of sample size N .593

To test the effects of model misspecification on predictions, we simply directed ReLERNN and594

the CNN to use a training set generated under demographic equilibrium for making predictions595

on a test set generated under the CEU model, and vice versa. To test for the effects of model596

misspecification in LDhat, we generated a lookup table using parameter values estimated from597

the misspecified training set (e.g. the lookup table used for predicting the CEU model test set was598

generated by using parameter values directly inferred from training simulations under equilibrium.599

We did not directly test the effect of model misspecification using FastEPRR, as this method takes600

as input only a fasta sequence file, and therefore the internal training of the model was not able to601

be separated from the input sequences. To address the effects of model misspecification, we also602

directly compared the distribution of absolute errors (|rpredicted − rtrue|). Additionally, we compared the603

marginal error directly attributable to model misspecification amongmethods. We definedmarginal604

error as �m − �c , where �m and �c are equal to |rpredicted − rtrue| when the model is misspecified and605

correctly specified, respectively. We simulated gene conversion test sets using ms (Hudson, 2002),606

with a mean conversion tract length of 352 bp (corresponding to the mean empirically derived607

tract length in D. melanogaster (Hilliker et al., 1994)) and simulated a ratio of conversion events to608

crossover events of 0, 1, 2, 4, and 8.609

Recombination rate variation in D. melanogaster610

We obtained D. melanogaster population sequence data from the Drosphila Genome Nexus (DGN;611

https://www.johnpool.net/genomes.html; Lack et al., 2015; Pool et al., 2012). We converted DGN612

"consensus sequence files" to VCF format using custom python scripts, excluding all non-biallelic613

sites and sites containing missing data. We chose to analyze populations from Cameroon, Rwanda,614

and Zambia, as these populations contained at least 10 haploid embryo sequences per population615

and each population included multiple segregating chromosomal inversions (supplemental table616

1). To ensure roughly equivalent power to compare rates among populations, we downsampled617

both Rwanda and Zambia to 10 chromosomes. We selected individual haploid genomes for each618

population by requiring that our sampled inversion frequencies for each of the six segregating619

inversions—In(1)Be, In(2L)t, In(2R)NS, In(3L)Ok, In(3R)K, and In(3R)P—closely approximate their popu-620

lation frequencies as measured in the complete set of haploid genomes for that population. All621

sample accessions and their corresponding inversion frequencies are located in the supporting622

materials.623

Before running ReLERNN, we first set out to model the demographic history for each population624

using each of three methods: stairwayplot (Liu and Fu, 2015), SMC++ (Terhorst et al., 2016), and625

MSMC (Schiffels and Durbin, 2014). With the exception of MSMC, all methods were run using626

default parameters. For MSMC, the use of default parameters generated predictions that were627

unusable (Figure 5–Figure Supplement 2). For these reasons, and after direct communication with628

MSMC’s authors, we determined that running MSMC with a sample size of two chromosomes would629

be the most appropriate. Ultimately we decided to run our ReLERNN pipeline with simulations630

generated under demographic equilibrium [options: –estimateDemography False –assumedMu631

3.27e-9 –upperRhoThetaRatio 35], as estimates of historical population size were unreliable for632

these data—all three methods produced significantly different demographic histories (Figure 5–633

Figure Supplement 1)—and tests on simulated data suggest little effect of demographic model634

misspecification (Figure 4–Figure Supplement 1). All code required to run our ReLERNN analysis635

is deposited on GitHub (https://github.com/kern-lab/ReLERNN and https://github.com/kern-lab/636

ReLERNN-analysis).637

We measured the correlation in recombination rates between each African D. melanogaster638

populations in 100 kb sliding windows, as ReLERNN will predict the rates of recombination in slightly639

different window sizes, depending on � for each chromosome. The recombination rate for each640
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sliding window was calculated by taking the average of all rate windows predicted by ReLERNN,641

weighted by the fraction that each window overlapped the larger sliding window. Recombination642

rate outliers were identified in two ways: as global outliers and population-specific outliers. Global643

outliers were identified by first calculating the mean and standard deviation in recombination rates644

for all three populations in each 100 kb sliding window. We then used the top 1% of outliers from645

the distribution of residuals, after fitting a linear model to the standard deviation on the mean.646

Population-specific outliers were identified by using a modification of the population branch statistic647

(herein PBS*; Yi et al., 2010), whereby we replaced pairwise FST with the pairwise differences in648

recombination rates. We then used the top 1% of all PBS* scores as our population-specific outliers,649

with each outlier corresponding to a PBS* score for a single population.650

To test the effect of inversion frequency on predicted recombination rates, we resampled651

10 haploid chromosomes from the available set of haploid genomes from Zambia to generate652

sampled populations containing In(2L)t at varying frequencies, p ∈ {0.0, 0.2, 0.6, 1.0}. We then ran653

ReLERNN on chromosome 2L for each of these resampled Zambian populations. We classified654

recombination windows by their overlap with the coordinates of In(2L)t (as defined in Corbett-Detig655

and Hartl, 2012), defining windows within the breakpoints (inside), windows up to 3 Mb outside the656

breakpoints (flanking), and windows > 3 Mb outside the breakpoints (outside).657

To test the effect of genome-wide inversion breakpoints on differences in recombination land-658

scapes between populations, we classified windows by their overlap with inversion interiors (> 2 Mb659

inside the inversion breakpoints) and their overlap with windows within 200 Kb, 500 Kb, 1 Mb, and660

2 Mb of inversion breakpoints. We tested for an enrichment of both global and population-specific661

outliers within inversions by randomization tests, whereby we permuted the labels for outliers662

104 times and counted the overlap with inversions for each permutation to calculate the empirical663

p-values. We also tested for an effect of selection on recombination rates in these populations,664

by running diploS/HIC (Kern and Schrider, 2018) to detect selective sweeps. We ran diploS/HIC665

on each population, training on simulations generated under demographic equilibrium. For each666

population we simulated 2000 training examples from each of the five classes of regions required667

by diploS/HIC using the coalescent simulation software discoal (Kern and Schrider, 2016). For simu-668

lations which included sweeps we drew the selection coefficient from a uniform distribution such669

that s ∼ U (0.0001, 0.005), the time of completion of the sweep from � ∼ U (0, 0.05), and the frequency670

at which a soft sweep first comes under selection as f ∼ U (0, 0.1). We drew � from U (65, 654) and671

we drew � from an exponential distribution with mean 1799 and the upper bound truncated at triple672

the mean. For the discoal simulations we simulated 605 kb of data with the goal of classification of673

the central most 55 kb window. We looked at the overlap with "sweep" windows (those classified674

as either "hard" or "soft") and those windows classified as "neutral" by diploS/HIC. Our complete675

diploS/HIC pipeline for these samples is available in the supporting materials online. All statistical676

tests were completed in R (R Core Team, 2018), with the exception of empirical randomization tests,677

which were completed using Python.678

Data availability679

ReLERNN is currently available at https://github.com/kern-lab/ReLERNN. Supporting information,680

tables, and figures will be deposited online at the publication journal.681
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Figure 1. Diagram depicting a typical workflow using ReLERNN’s four modules (shaded boxes).

ReLERNN_SIMULATE can optionally (dotted lines) utilize output from stairwayplot, SMC++, MSMC to simulate

under a demographic history in msprime. The breakout of ReLERNN_TRAIN depicts the GRU network

architecture used for training. The input genotype matrix shows alleles encoded as ancestral (-1), derived (1), or

padded (0; not shown), and the input position matrix shows variant position coded along the real number line
(0-1).

Figure 1–Figure supplement 1. Parametric bootstraping results as implemented by ReLERNN. Lines represent

the minimum (blue), lower 5% (orange), lower 25% (green), median (red), upper 25% (purple), upper 95%

(brown), and maximum (pink) bounds for each of 1000 replicate simulations and predictions (y-axis) across 100

recombination rate bins (x-axis)
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Figure 2. Recombination rate predictions for a simulated Drosophila chromosome (black line) using ReLERNN
(red line). The recombination landscape was simulated for n = 20 chromosomes under mutation-drift
equilibrium using msprime (Kelleher et al., 2016), with per-base crossover rates derived from D. melanogaster
chromosome 2L (Comeron et al., 2012). Gray ribbons represent 95% confidence intervals. R2 is reported for the
general linear model of predicted rates on true rates and mean absolute error was calculated across all 100 kb

windows.

Figure 2–Figure supplement 1. Recombination rate predictions for a simulated Drosophila chromosome (black
line) using ReLERNN (red line). The recombination landscape was simulated for n = 4 chromosomes under

mutation-drift equilibrium using msprime (Kelleher et al., 2016), with per-base crossover rates derived from D.
melanogaster chromosome 2L (Comeron et al., 2012). Gray ribbons represent 95% confidence intervals. R2 is
reported for the general linear model of predicted rates on true rates and mean absolute error was calculated

across all 100 kb windows.

Figure 2–Figure supplement 2. Recombination rate predictions for a simulated Drosophila chromosome (black
line) using ReLERNN (red line). The recombination landscape was simulated for n = 20 chromosomes under

mutation-drift equilibrium using msprime (Kelleher et al., 2016), with per-base crossover rates derived from D.
melanogaster chromosome 2L (Comeron et al., 2012). Here the per-base mutation rate was assumed to be 50%
less than the rate used for simulation. Gray ribbons represent 95% confidence intervals. R2 is reported for the
general linear model of predicted rates on true rates and mean absolute error was calculated across all 100 kb

windows.

Figure 2–Figure supplement 3. Recombination rate predictions for a simulated Drosophila chromosome (black
line) using ReLERNN (red line). The recombination landscape was simulated for n = 20 chromosomes under

mutation-drift equilibrium using msprime (Kelleher et al., 2016), with per-base crossover rates derived from D.
melanogaster chromosome 2L (Comeron et al., 2012). Here the per-base mutation rate was assumed to be 50%
greater than the rate used for simulation. Gray ribbons represent 95% confidence intervals. R2 is reported for
the general linear model of predicted rates on true rates and mean absolute error was calculated across all 100

kb windows.
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Figure 3. Distribution of absolute errors (|rpredicted − rtrue|) for each method across 5000 simulated
chromosomes (1000 for FastEPRR). Independent simulations were run under a known demographic history

(left) or an assumption of demographic equilibrium (right). Sampled chromosomes indicate the number of

independent sequences that were sampled from each msprime (Kelleher et al., 2016) coalescent simulation.
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Figure 4. Distribution of absolute errors (|rpredicted − rtrue|) for each method across 5000 simulated
chromosomes after model misspecification. For the CNN and ReLERNN, predictions were made by training on

equilibrium simulations and testing on sequences simulated under a demographic model (left) or training on

demographic simulations and testing on sequences simulated under equilibrium (right). For LDhat, the lookup

table was generated using parameters values that were estimated from simulations where the model was

misspecified in the same way as described for the CNN and ReLERNN above. Sampled chromosomes indicate

the number of independent sequences that were sampled from each msprime (Kelleher et al., 2016)
coalescent simulation.

Figure 4–Figure supplement 1. Distribution of marginal errors attributed to model misspecification across

5000 simulated chromosomes. Predictions were made by training on equilibrium simulations and testing on

sequences simulated under a demographic model (left) or training on demographic simulations and testing on

sequences simulated under equilibrium (right). Here, marginal errors are represented as �m − �c , where �m and

�c are equal to |rpredicted − rtrue| when the model is misspecified and correctly specified, respectively. Sampled
chromosomes indicate the number of independent sequences that were sampled from each msprime (Kelleher

et al., 2016) coalescent simulation.
Figure 4–Figure supplement 2. Distribution of predicted rates of recombination over true rates for 5000

examples simulated with gene conversion and n = 8. The ratio of gene conversion to crossovers was drawn

from U (0, c), with c ∈ {0, 1, 2, 4, 8}. Gene conversion tract lengths were fixed at 352 bp, and all simulations were

completed in ms (Hudson, 2002).
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Figure 5. (Left) Genome-wide recombination landscapes for D. melanogaster populations from Cameroon (teal
lines), Rwanda (purple lines), and Zambia (orange lines). Grey boxes denote the inversion boundaries predicted

to be segregating in these samples (Pool et al., 2012; Corbett-Detig and Hartl, 2012). Red triangles mark the
top 1% of global outlier windows for recombination rate. Blue, purple, and orange triangles mark the top 1% of

population-specific outlier windows for recombination rate, with triangle color indicating the outlier population

(see Materials and Methods). (Right) Per-chromosome recombination rates for each population. Spearman’s �
and R2 are reported as the mean of pairwise estimates between populations for each chromosome. **P < 0.01
and ***P < 0.001 are based on Tukey HSD tests for all pairwise comparisons.

Figure 5–Figure supplement 1. Historical population size estimates were inferred for Cameroon, Rwanda, and

Zambia using three separate methods, all of which disagree with one another. Inferences are based on 10

samples for both stairwayplot (grey line) and SMC++ (orange line), and 2 samples for MSMC (purple line).

Figure 5–Figure supplement 2. Historical population size estimates were inferred for Cameroon, Rwanda, and

Zambia using three separate methods, all of which disagree with one another. Here, inferences are based on 10

samples for both stairwayplot (grey line) and SMC++ (orange line), and 10 samples for MSMC (purple line).

Figure 5–Figure supplement 3. ReLERNN test results for Cameroon, Rwanda, and Zambia when trained under

assumptions of mutation-drift equilibrium. Scatter plots (top) show raw (unnormalized) predictions for per-base

recombination rates for 1000 test examples. Mean absolute error and mean squared error are calculated for

each population. Line graphs (bottom) show the decrease in the mean absolute error over time (epochs) for

both the training set (blue lines) and the validation set (purple lines).

Figure 5–Figure supplement 4. Genome-wide recombination landscapes for D. melanogaster populations from
Cameroon (teal lines), Rwanda (purple lines), and Zambia (orange lines). Rates are compared to those

experimentally derived by Comeron et al. (2012) (black lines). All rates have been scales to 1 Mb windows by
using a weighted average (see Materials and Methods).

Figure 5–Figure supplement 5. Confusion matrix showing the fraction of test simulation windows assigned to

each of five prediction categories by diploS/HIC (Kern and Schrider, 2018): hard, hard-linked, soft, soft-linked,
and neutral. The y-axis shows the location of the window being classified relative to the selected window.
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Figure 6. (Top) Recombination landscapes for Zambian D. melanogaster surrounding In(2L)t, sampled at different
inversion frequencies. The grey box denotes the inversion boundaries of In(2L)t in Drosophila (Corbett-Detig
and Hartl, 2012). (Bottom) Recombination rate estimates from genomic windows within the inversion, within a
3 Mb region flanking the inversion, and 3 Mb outside the inversion, sampled at different inversion frequencies.

Figure 6–Figure supplement 1. Recombination rate estimates using flanking window sizes from 1-5 Mb. Rates

are shown for genomic windows within the inversion, within regions flanking the inversion, and for regions

outside both the inversion and flanking regions. All estimates are from chromosome 2L with In(2L)t sampled at
different inversion frequencies
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Figure 7. (Left) Recombination rate estimates for genomic windows > 2 Mb inside, < 250 kb surrounding, < 500

kb surrounding, < 1 Mb surrounding, and < 2 Mb surrounding all inversion breakpoints. (Right) Recombination

rate estimates for all genomic windows overlapping windows predicted as either hard/soft sweeps (purple) or

as neutral (white) by diploS/HIC (Kern and Schrider, 2018).
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Figure 1–Figure supplement 1. Parametric bootstraping results as implemented by ReLERNN.

Lines represent the minimum (blue), lower 5% (orange), lower 25% (green), median (red), upper 25%

(purple), upper 95% (brown), and maximum (pink) bounds for each of 1000 replicate simulations

and predictions (y-axis) across 100 recombination rate bins (x-axis)
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Figure 2–Figure supplement 1. Recombination rate predictions for a simulated Drosophila chro-
mosome (black line) using ReLERNN (red line). The recombination landscape was simulated for

n = 4 chromosomes under mutation-drift equilibrium using msprime (Kelleher et al., 2016), with
per-base crossover rates derived from D. melanogaster chromosome 2L (Comeron et al., 2012). Gray
ribbons represent 95% confidence intervals. R2 is reported for the general linear model of predicted
rates on true rates and mean absolute error was calculated across all 100 kb windows.
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Figure 2–Figure supplement 2. Recombination rate predictions for a simulated Drosophila chro-
mosome (black line) using ReLERNN (red line). The recombination landscape was simulated for

n = 20 chromosomes under mutation-drift equilibrium using msprime (Kelleher et al., 2016), with
per-base crossover rates derived from D. melanogaster chromosome 2L (Comeron et al., 2012).
Here the per-base mutation rate was assumed to be 50% less than the rate used for simulation.

Gray ribbons represent 95% confidence intervals. R2 is reported for the general linear model of
predicted rates on true rates and mean absolute error was calculated across all 100 kb windows.
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Figure 2–Figure supplement 3. Recombination rate predictions for a simulated Drosophila chro-
mosome (black line) using ReLERNN (red line). The recombination landscape was simulated for

n = 20 chromosomes under mutation-drift equilibrium using msprime (Kelleher et al., 2016), with
per-base crossover rates derived from D. melanogaster chromosome 2L (Comeron et al., 2012).
Here the per-base mutation rate was assumed to be 50% greater than the rate used for simulation.

Gray ribbons represent 95% confidence intervals. R2 is reported for the general linear model of
predicted rates on true rates and mean absolute error was calculated across all 100 kb windows.
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Figure 4–Figure supplement 1. Distribution of marginal errors attributed to model misspecifi-

cation across 5000 simulated chromosomes. Predictions were made by training on equilibrium

simulations and testing on sequences simulated under a demographic model (left) or training on

demographic simulations and testing on sequences simulated under equilibrium (right). Here,

marginal errors are represented as �m − �c , where �m and �c are equal to |rpredicted − rtrue| when the
model is misspecified and correctly specified, respectively. Sampled chromosomes indicate the

number of independent sequences that were sampled from each msprime (Kelleher et al., 2016)
coalescent simulation.
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Figure 4–Figure supplement 2. Distribution of predicted rates of recombination over true rates

for 5000 examples simulated with gene conversion and n = 8. The ratio of gene conversion to
crossovers was drawn from U (0, c), with c ∈ {0, 1, 2, 4, 8}. Gene conversion tract lengths were fixed
at 352 bp, and all simulations were completed in ms (Hudson, 2002).

890

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 6, 2019. ; https://doi.org/10.1101/662247doi: bioRxiv preprint 

https://doi.org/10.1101/662247
http://creativecommons.org/licenses/by-nc/4.0/


Preprint submitted to bioRxiv

1e+05

1e+06

1e+07

0
50

00
0

10
00

00

15
00

00

N
e

Cameroon

1e+05

1e+06

1e+07

0
50

00
0

10
00

00

15
00

00

Years in past

Rwanda

1e+05

1e+06

1e+07

0
50

00
0

10
00

00

15
00

00

stairway plot
SMC++
MSMC

Zambia

Figure 5–Figure supplement 1. Historical population size estimates were inferred for Cameroon,

Rwanda, and Zambia using three separate methods, all of which disagree with one another. Infer-

ences are based on 10 samples for both stairwayplot (grey line) and SMC++ (orange line), and 2

samples for MSMC (purple line).
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Figure 5–Figure supplement 2. Historical population size estimates were inferred for Cameroon,

Rwanda, and Zambia using three separate methods, all of which disagree with one another. Here,

inferences are based on 10 samples for both stairwayplot (grey line) and SMC++ (orange line), and

10 samples for MSMC (purple line).
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Figure 5–Figure supplement 3. ReLERNN test results for Cameroon, Rwanda, and Zambia when

trained under assumptions of mutation-drift equilibrium. Scatter plots (top) show raw (unnormal-

ized) predictions for per-base recombination rates for 1000 test examples. Mean absolute error and

mean squared error are calculated for each population. Line graphs (bottom) show the decrease in

the mean absolute error over time (epochs) for both the training set (blue lines) and the validation

set (purple lines).
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Figure 5–Figure supplement 4. Genome-wide recombination landscapes for D. melanogaster
populations from Cameroon (teal lines), Rwanda (purple lines), and Zambia (orange lines). Rates

are compared to those experimentally derived by Comeron et al. (2012) (black lines). All rates have
been scales to 1 Mb windows by using a weighted average (see Materials and Methods).
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Figure 5–Figure supplement 5. Confusion matrix showing the fraction of test simulation windows

assigned to each of five prediction categories by diploS/HIC (Kern and Schrider, 2018): hard, hard-
linked, soft, soft-linked, and neutral. The y-axis shows the location of the window being classified

relative to the selected window.

895

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 6, 2019. ; https://doi.org/10.1101/662247doi: bioRxiv preprint 

https://doi.org/10.1101/662247
http://creativecommons.org/licenses/by-nc/4.0/


Preprint submitted to bioRxiv

0.0e+00

2.5e−08

5.0e−08

7.5e−08

1.0e−07

Within inversion 1 Mb flank Outside inversion

Inversion freq
0.0
0.2
0.6
1.0

0.0e+00

2.5e−08

5.0e−08

7.5e−08

1.0e−07

Within inversion 2 Mb flank Outside inversion

0.0e+00

2.5e−08

5.0e−08

7.5e−08

1.0e−07

Within inversion 3 Mb flank Outside inversion

0.0e+00

2.5e−08

5.0e−08

7.5e−08

1.0e−07

Within inversion 4 Mb flank Outside inversion

0.0e+00

2.5e−08

5.0e−08

7.5e−08

1.0e−07

Within inversion 5 Mb flank Outside inversion

Inversion class

R
ec

vo
m

bi
na

tio
n 

ra
te

 (c
/M

b)

Figure 6–Figure supplement 1. Recombination rate estimates using flanking window sizes from

1-5 Mb. Rates are shown for genomic windows within the inversion, within regions flanking the

inversion, and for regions outside both the inversion and flanking regions. All estimates are from

chromosome 2L with In(2L)t sampled at different inversion frequencies
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