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6

Abstract Accurately inferring the genome-wide landscape of recombination rates in natural7

populations is a central aim in genomics, as patterns of linkage influence everything from genetic8

mapping to understanding evolutionary history. Here we describe ReLERNN, a deep learning9

method for estimating a genome-wide recombination map that is accurate even with small10

numbers of pooled or individually sequenced genomes. Rather than use summaries of linkage11

disequilibrium as its input, ReLERNN takes columns from a genotype alignment, which are then12

modeled as a sequence across the genome using a recurrent neural network. We demonstrate that13

ReLERNN improves accuracy and reduces bias relative to existing methods and maintains high14

accuracy in the face of demographic model misspecification, missing genotype calls, and genome15

inaccessibility. We apply ReLERNN to natural populations of African Drosophila melanogaster and16

show that genome-wide recombination landscapes, while largely correlated among populations,17

exhibit important population-specific differences. Lastly, we connect the inferred patterns of18

recombination with the frequencies of major inversions segregating in natural Drosophila19

populations.20

21

Introduction22

Recombination plays an essential role in the meiotic production of gametes in most sexual species,23

and is often required for proper segregation (Nicklas, 1974) and pairing of homologous chromo-24

somes (reviewed in Zickler and Kleckner, 2015). During prophase of meiosis, recombination is25

initiated by the formation of double-strand breaks (DSBs) across a wide array of organisms (Lichten,26

2001). A subset of these DSBs will be repaired as crossover events, leading to reciprocal exchange27

between homologs. Those that are not resolved as crossovers are repaired through a number28

of mechanisms included noncrossover gene conversions and non-homologous end joining (Do29

et al., 2014). Recombination not only plays a central role in meiosis, but so too does it have wide30

ranging effects on both evolutionary and population genomics (Lewontin and Kojima, 1960; Hill31

and Robertson, 1966; Ohta and Kimura, 1969, 1970; Smith and Haigh, 1974).32

Indeed, the population recombination rate � = 4Nr is a central parameter in population and33

statistical genetics (reviewed in Hahn, 2018), as at equilibrium we expect � to be proportional to the34

scale of of linkage disequilibrium (LD) in a given region of the genome (Ohta and Kimura, 1969). In35

regions of the genome where � is relatively small we expect increased levels of LD, and conversely36

in genomic compartments with high � we expect little LD. Deviations from our expected levels of LD37

given the local recombination rate can be illustrative of the influence of other evolutionary forces38

such as selection or migration. For example, selective sweeps are expected to dramatically elevate39

LD near the target of selection (e.g. Kim and Nielsen, 2004; O’Reilly et al., 2008; Parsch et al., 2001).40

Structural variation itself is expected to modulate the landscape of recombination—herein41
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the map of per-base recombination rates, r, to genomic positions along the chromosomes—as42

both crossovers and non-crossovers are predicated on the alignment of homologous sequences,43

and structural rearrangements may directly impact those alignments. Chromosomal inversions,44

long-known to suppress crossing over along a chromosome (e.g. Sturtevant, 1921), are one of the45

best studied examples of such structural variation. Inversion polymorphisms have been implicated46

in diverse evolutionary phenomena including local adaptation (Dobzhansky, 1937; Kirkpatrick and47

Barton, 2006; Ayala et al., 2013), reproductive isolation (White, 1977; Ayala et al., 2013; Noor et al.,48

2001; Rieseberg, 2001), and the maintenance of meiotic drive complexes (reviewed in Jaenike, 2001).49

As suppressors of recombination, we expect a priori that segregating inversions should show distinct50

histories of recombination in comparison to standard karyotype chromosomes.51

While recombination plays a central role in meiosis and reproduction, the frequency and dis-52

tribution of crossovers along the chromosomes are themselves phenotypes that can evolve. Not53

only is there a long tradition of work demonstrating the conditions under which rates of recombina-54

tion might change (Fisher, 1930;Muller, 1932; Charlesworth, 1976; Barton, 1995; Otto and Barton,55

1997), but increasingly there is good empirical evidence that such changes do indeed occur in56

nature (reviewed in Ritz et al., 2017). Importantly, recombination rate variation exists between57

species, between populations, and between sexes of the same species (males generally having58

shorter maps than females) (Hinch et al., 2011; Kong et al., 2010; Singh et al., 2013;Winckler et al.,59

2005). Yet while there is abundant variation in the rate of recombination within and between taxa,60

methods for accurately measuring this variation have historically involved painstaking experiments61

or large pedigrees. Thus genetics, as a field, seeks ever-improving tools for directly estimating62

recombination rates from sequence data, without relying on pedigree genotyping or other ancillary63

information.64

Accordingly, there is a rich history of estimating � in population genetics, including efforts65

to obtain minimum bounds on the number of recombination events (Hudson and Kaplan, 1985;66

Myers and Griffiths, 2003;Wiuf, 2002), methods of moments estimators (Hudson, 1987;Wakeley,67

1997), composite likelihood estimators (Chan et al., 2012; Hudson, 2002;McVean et al., 2002), and68

summary likelihood estimators (Li and Stephens, 2003;Wall, 2000). Recently, supervised machine69

learning methods for estimating � have entered the fray (Gao et al., 2016; Lin et al., 2013), and70

have proven to be competitive in accuracy with state-of-the-art composite likelihood methods such71

as LDhat (McVean et al., 2002) or LDhelmet (Chan et al., 2012), often with far less computing effort.72

Thesemethods, taken en masse have uncovered interesting biology, for instance the characterization73

of recombination hotspots (Myers et al., 2005), and are well suited for large samples of high quality74

genome or genotype data.75

To this end, we sought to develop a novel method for inferring rates of recombination directly76

from a sequence alignment through the use of deep learning. In recent years deep artificial neural77

networks (ANNs) have produced remarkable performance gains in computer vision (Krizhevsky78

et al., 2012; Szegedy et al., 2015), speech recognition (Hinton et al., 2012), natural language pro-79

cessing (Sutskever et al., 2014), and data preprocessing tasks such as denoising (Vincent et al.,80

2008). Perhaps most illustrative of the potential of deep learning is the remarkable success of con-81

volutional neural networks (CNNs; Lecun et al., 1998) on problems in image analysis. For example,82

prior to the introduction of CNNs to the annual ImageNet Large Scale Visual Recognition Challenge83

(Krizhevsky et al., 2012), no method had achieved an error rate of less than 25% on the ImageNet84

data set. In the years that followed, CNNs succeeded in reducing this error rate below 5%, exceeding85

human accuracy on the same tasks (Russakovsky et al., 2015).86

In this study we focus our efforts on recurrent neural networks (RNNs), a promising network87

architecture for population genomics, which has proven adept for analyzing sequential data of88

arbitrary lengths (Graves et al., 2013). Unlike other machine learning methods, deep learning89

approaches do not require a predefined feature vector. When fed labeled training data (e.g. a set90

of genotypes simulated under a known recombination rate), these methods algorithmically create91

their own set of informative statistics that prove most effective for solving the specified problem.92
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By training deep learning networks directly on sequence alignments, we allow the neural network93

to automatically extract informative features from the data without human supervision. Learning94

directly from a sequence alignment for population genetic inference has recently been shown to95

be possible using CNNs (Chan et al., 2018; Flagel et al., 2018), and as we show below, is also true96

for RNNs. Moreover, supervised deep learning methods, such as RNNs, can be trained directly on97

the types of missing data that often beset researchers investigating non-model organisms using98

traditional tools.99

Here we introduce Recombination Landscape Estimation using Recurrent Neural Networks, an100

RNN-basedmethod for estimating the genomicmap of recombination rates directly from a genotype101

alignment. We found that ReLERNN is both highly accurate and out-performs competing methods at102

small sample sizes. We also show that ReLERNN retains its high accuracy in the face of demographic103

model misspecification, missing genotypes, and genome inaccessibility. Further, we present an104

extension to ReLERNN that takes as input allele frequencies estimated by pooled sequencing105

(Pool-seq), making ReLERNN the first software package to directly infer rates of recombination106

in Pool-seq data. These results suggest that ReLERNN has the potential to fill a much-needed107

role in the analysis of low-quality or sparse genomic data. We then apply ReLERNN to population108

genomic data from African samples of Drosophila melanogaster. We demonstrate that the landscape109

of recombination is largely conserved in this species, yet individual regions of the genome show110

marked population-specific differences. Finally, we found that chromosomal inversion frequencies111

directly impact the inferred rate of recombination, and we demonstrate that the role of inversions112

in suppressing recombination extends far beyond the inversion breakpoints themselves.113

Results114

ReLERNN: an accurate method for estimating the genome-wide recombination115

landscape116

We developed ReLERNN, a new deep learning method for accurately predicting genome-wide117

per-base recombination rates from as few as four chromosomes. Briefly, ReLERNN provides an end-118

to-end inferential pipeline for estimating a recombination map from a population sample: it takes as119

input either a Variant Call Format (VCF) file or, in the case of ReLERNN for Pool-seq data, a vector of120

allele frequencies and genomic coordinates. ReLERNN then uses the coalescent simulation program,121

msprime (Kelleher et al., 2016), to simulate training, validation, and test data sets under either122

constant population size or an inferred population size history. Importantly, these simulations are123

parameterized to match the distribution of Watterson’s estimator, �W , calculated from the empirical124

samples. ReLERNN trains a specific type of RNN, known as a Gated Recurrent Unit (GRU; Cho et al.,125

2014), to predict the per-base recombination rate for these simulations, using only the raw genotype126

matrix and a vector of genomic coordinates for each simulation example (Figure 1, Figure S1,127

Figure S2). It then uses this trained network to estimate genome-wide per-base recombination128

rates for empirical samples using a sliding-window approach. ReLERNN can optionally estimate129

95% confidence intervals around each prediction using a parametric bootstrapping approach, and130

it uses the predictions generated while bootstrapping to correct for inherent biases in the training131

process (see Materials and Methods; Figure S3).132

A key feature of ReLERNN’s network architecture is the bidirectional GRU layer (Figure 1, Fig-133

ure S1), which allows us to model genomic sequence alignments as a time series. While vanilla134

(feed-forward) networks use as input a full block of data for each example, recurrent layers break135

each genotype alignment into time steps corresponding to discrete genomic coordinates, and136

iterate over the time steps sequentially. At each time step, the gated recurrent units modulate137

the flow of information, using reset and update gates that control how the activation is updated138

(Cho et al., 2014; Chung et al., 2014). This process allows the gradient descent algorithm, known as139

backpropagation through time, to share parameters across time steps, as well as make inferences140

based on the ordering of SNPs—i.e. to have a spatial memory of allelic associations along the141
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Figure 1 A cartoon depicting a typical workflow using ReLERNN’s four modules (shaded boxes)
for (A) individually sequenced genomes or (B) pooled sequences. ReLERNN can optionally (dot-
ted lines) utilize output from stairwayplot, SMC++, MSMC to simulate under a demographic his-

tory with msprime. Training inlays show the network architectures used, with the GRU inlay in (B)
depicting the gated connections within each hidden unit. Here r, z, ℎt, and ℎ̃t are the reset gate,
update gate, activation, and candidate activation, respectively (Cho et al., 2014). The genotype
matrix encodes alleles as reference (-1), alternative (1), or padded/missing data (0; not shown).
Variant positions are encoded along the real number line (0-1).

chromosome. The bidirectional attribute of the GRU layer simply means that each example is142

duplicated and reversed, so the sequence data are analyzed from both directions and then merged143

by concatenation. We present a generalized GRU for analyzing genomic sequence data, along with144

a more detailed look at the network architecture parameters used by ReLERNN in Figure S1.145

Performance on simulated chromosomes146

To assess our method we performed coalescent simulations using msprime (Kelleher et al., 2016),147

generating whole chromosome samples using a fine scale genetic map estimated from crosses148

of D. melanogaster (Comeron et al., 2012). We then used ReLERNN to estimate the landscape of149

recombination for these simulated examples. ReLERNN is able to predict the landscape of per-base150

recombination rates to a high degree of accuracy across a wide range of realistic parameter values,151

assumptions, and sample sizes (R2 ≥ 0.82; Mean absolute error (MAE) ≤ 1.28 × 10−8). Importantly,152

the accuracy of ReLERNN is only modestly diminished when comparing predictions based on 20153

samples (R2 = 0.93; MAE = 3.72 × 10−9; Figure 2A) to those based on four samples (R2 = 0.82;154

MAE = 6.66 × 10−9; Figure S4). We also show that ReLERNN performs equally well on phased155

and unphased genotypes (W = 68.5 ; P = 0.17; Mann-Whitney U test; Figure S5), suggesting that156

any effect of computational phasing error might be mitigated by treating the inputs as unphased157

variants.158

Because ReLERNN performed exceedingly well on unphased genotypes, we speculated that159

it might be able to glean crucial information about recombination rates from a vector of allele160

frequencies alone. Therefore we set out to extend ReLERNN to work with Pool-seq data, where161

the only inputs are a vector of allele frequencies and their corresponding genomic coordinates.162

Surprisingly, ReLERNN exhibits modest accuracy on simulated Pool-seq data, despite simulated163

sample and read depths as low as n = 50 and coverage = 50X (R2 = 0.54;MAE = 1.59×10−8; Figure S6).164
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Figure 2 (A) Recombination rate predictions for a simulated Drosophila chromosome (black line)
using ReLERNN for individually sequenced genomes (red line). The recombination landscape was

simulated for n = 20 chromosomes under mutation-drift equilibrium using msprime (Kelleher
et al., 2016), with per-base crossover rates taken from D. melanogaster chromosome 2L (Com-
eron et al., 2012). Gray ribbons represent 95% confidence intervals. R2 is reported for the general
linear model of predicted rates on true rates and mean absolute error was calculated across all

100 kb windows. (B) Distribution of raw error (rpredicted − rtrue) using ReLERNN for Pool-seq data.
Pools simulated from the same recombination landscape as above, with n = 20 and (C) n = 50
chromosomes across a range of simulated read depths (0.5X to 5X; Inf represents infinite simu-
lated sequencing depth). Both the bootstrap-corrected predictions (red) and the non-bootstrap-

corrected (NBSC; white) predictions are shown.
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Figure 3 (A) Distribution of raw error (rpredicted − rtrue) for each method across 5000 simulated chro-
mosomes (1000 for FastEPRR). Independent simulations were run under a model of population

size expansion or (B) demographic equilibrium. Sampled chromosomes indicate the number of
independent sequences that were sampled from each msprime (Kelleher et al., 2016) coalescent
simulation. LDhelmet was not able be used with n = 64 chromosomes, and FastEPRR was not
able to be used with n = 4.

Increasing the read depth to a nominal 5X the sample depth (e.g. n = 50 and coverage = 250X)165

produced substantially greater accuracy (R2 = 0.69; MAE = 1.20 × 10−8; Figure S7). As a general166

trend, we show that prediction error is reduced by increasing the number of chromosomes sampled167

in the pool (i.e. increasing allele frequency resolution) and by increasing the depth of sequencing168

(i.e. reducing sampling error) (Figure 2B). While there currently exists software for estimating LD169

in Pool-seq data (Feder et al., 2012), to our knowledge ReLERNN is the first software to directly170

estimate rates of recombination using these data.171

While ReLERNN retains accuracy at small sample sizes, it exhibits somewhat greater sensitivity172

to both the assumed genome-wide average mutation rate, �̄, and the assumed maximum value173

for recombination, �max. To assess the degree of sensitivity to these assumptions, we ran ReLERNN174

on simulated chromosomes assuming �̄ was both 50% greater and 50% less than the simulated175

mutation rate, �true. In both scenarios, ReLERNN predicts crossover rates that are highly correlated176

with the true rates (R2 > 0.91). However, in both scenariosMAE is inflated but still modest, and177

the absolute rates of recombination are underpredicted (R2 = 0.91;MAE = 1.23 × 10−8; Figure S8)178

and slightly overpredicted (R2 = 0.94;MAE = 1.28 × 10−8; Figure S9) when assuming �̄ is less than or179

greater than �true, respectively. Moreover, underestimating �max causes ReLERNN to underpredict180

rates of recombination roughly proportional to the the magnitude of the underestimate (Figure S10,181

Figure S11), while overestimating �max causes only a minor loss in accuracy (R2 = 0.90;MAE = 4.07 ×182

10−9; Figure S12). Together these results suggest that ReLERNN is in fact learning information about183

the ratio of crossovers tomutations, andwhile ReLERNN is highly robust to errant assumptions when184

predicting relative recombination rates within a genome, caution must be taken when comparing185

absolute rates between organisms with large differences in per-base mutation rate estimates or for186

species. One additional limitation to ReLERNN it’s inability to fully resolve narrow recombination187

rate hot spots (herein defined as ≤ 10 kb genomic regions with r ≥ 50X the genome-wide average).188

We simulated hot spots of different lengths [lengtℎ ∈ {2kb, 4kb, 6kb, 8kb, 10kb}, rbackground = 2.5e−9,189

rℎotspot = 1.25e−7] and found that errors at hot spots were negatively correlated with hot spot length190

(Figure S13), suggesting that signal for crossovers at hot spots is being swamped by the background191

rate within the focal window, especially for very narrow hot spots relative to the focal window. This192

limitation could be of particular importance when attempting to resolve hot spots in human data,193
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Figure 4 (A) Distribution of raw error (rpredicted − rtrue) for each method across 5000 simulated chro-
mosomes after model misspecification. For the CNN and ReLERNN, predictions were made by

training on equilibrium simulations while testing on sequences simulated under a model of pop-

ulation size expansion or (B) training on demographic simulations while testing on sequences
simulated under equilibrium. For LDhat and LDhelmet, the lookup tables were generated using

parameters values that were estimated from simulations where the model was misspecified in

the same way as described for the CNN and ReLERNN above. Sampled chromosomes indicate

the number of independent sequences that were sampled from each msprime (Kelleher et al.,
2016) coalescent simulation. LDhelmet was not able be used with n = 64 chromosomes and the
demographic model could not be intentionally misspecified using FastEPRR.

where lengths are often between 1-2 kb (Jeffreys et al., 2001; Jeffreys and May, 2004).194

ReLERNN compares favorably to competing methods, especially for small sample195

sizes and under model misspecification196

To assess the accuracy of ReLERNN relative to existing methods, we took a comparative approach197

whereby we made predictions on the same set of simulated test chromosomes using methods198

that differ broadly in their approaches. Specifically, we chose to compare ReLERNN against two199

types of machine learning methods—a boosted regression method, FastEPRR (Gao et al., 2016),200

and a convolutional neural network (CNN) recently described in Flagel et al. (2018)—and both201

LDhat (McVean et al., 2002) and LDhelmet (Chan et al., 2012), two widely cited approximate-202

likelihood methods. We independently simulated 105 chromosomes using msprime (Kelleher et al.,203

2016) [parameters: sample_size ∈ {4, 8, 16, 32, 64}, recombination_rate = U(0.0, 6.25e−8), mutation_rate =204

U(1.875e−8, 3.125e−8), lengtℎ = 3e5]. Half of these were simulated under demographic equilibrium and205

half were simulated under a realistic demographic model (based on the out-of-Africa expansion206

of European humans; see Materials and Methods). We show that ReLERNN outperforms all other207

methods, exhibiting significantly reduced absolute error (|rpredicted−rtrue|) under both the demographic208

model and under equilibrium assumptions (T ≤ −31 ; P < 10−16; post hocWelch’s two sample t-tests209

for all comparisons; Figure S14, Figure S15). ReLERNN also exhibited less bias than likelihood-based210

methods across a range of sample sizes (Figure 3), although all methods generally performed well211

at the largest sample size tested (n = 64).212

We also sought to assess the robustness of ReLERNN to demographic model misspecification,213

where different generative models are used for simulating the training and test sets—e.g. training214

on assumptions of demographic equilibrium when the test data was generated by a population215

bottleneck. Methods robust to this type of misspecification are crucial, as the true demographic216

history of a sample is often unknown and methods used to infer population size histories can217
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disagree or be unreliable (see Figure S21). Moreover, population size changes alter the landscape218

of LD across the genome (e.g Slatkin, 1994; Rogers, 2014), and thus have the potential to reduce219

accuracy or produce biased recombination rate estimates.220

To this end, we trained ReLERNN on examples generated under equilibrium and made predic-221

tions on 5000 chromosomes generated by the human demographic model specified above (and222

also carried out the reciprocal experiment; Figure 4). We compared ReLERNN to the CNN, LDhat,223

and LDhelmet, with all methods similarly misspecified (see Materials and Methods). We found that224

ReLERNN outperforms these methods under nearly all conditions, exhibiting significantly lower225

absolute error under both directions of demographic model misspecification (T ≤ −26 ; PW TT < 10−16226

for all comparisons, with the exception of the comparison to LDhelmet using 16 chromosomes;227

Figure S16, Figure S17). We show that the error directly attributed to model misspecification (which228

we term marginal error; see Materials and Methods) is occasionally higher in ReLERNN relative to229

other methods, even though ReLERNN exhibited the lowest absolute error among methods. As230

a prime example of this, we found predictions from LDhelmet were not affected by our misspeci-231

fication regime at all, but these predictions were still, on average, less accurate than those made232

by a misspecified ReLERNN. Interestingly, marginal error is significantly greater when ReLERNN233

was trained on equilibrium simulations and tested on demographic simulations than under the234

reciprocal misspecification (T = 26.3 ; PW TT < 10−16; Figure S18). While this is true, it is important to235

note that mean marginal error for ReLERNN, in both directions of misspecification and across all236

sample sizes, never exceeded 3.90 × 10−9, suggesting that the additional information gleaned from237

an informative demographic model is limited.238

In addition to model misspecification, differences in the ratio of homologous gene conversion239

events to crossovers can also bias the inference of recombination rates, as conversion tracts240

break down LD within the prediction window (Gay et al., 2007; Przeworski and Wall, 2001). We241

treated the effect of gene conversion as another form of model misspecification, by training on242

examples that lacked gene conversion and testing on examples that included gene conversion. As243

ReLERNN uses msprime for all training simulations, and msprime cannot currently simulate gene244

conversion, we generated all test set simulations with ms (Hudson, 2002). We found that including245

gene conversion in our simulations biased our predictions, resulting in an overestimate of the true246

recombination rate (Figure S19). Moreover, the magnitude of this bias increased with the ratio247

of gene conversion events to crossovers,
rGC
rCO
. As expected, we also observed a similar pattern of248

bias for LDhelmet, although the magnitude of bias for LDhelmet was less than that exhibited by249

ReLERNN for
rGC
rCO

> 2 (T > 4.37 ; PW TT < 1.32×10−5; Figure S19). As errors in genotype calls can mimic250

gene conversion—e.g. a heterozygous sample being called as a homozygote—filtering low-quality251

SNP calls, either by removing the individual genotype or by masking sites, has the potential to252

mitigate gene conversion-induced bias. However, missing genotypes and inaccessible sites have253

the potential to introduce their own biases, highlighting an area where deep learning methods may254

have a unique advantage over traditional tools.255

ReLERNN retains high accuracy on simulated low-quality genomic datasets256

Deep learning tools have the potential to perform exceptionally well on poor-quality genomic257

datasets, such as those with low-quality or low-complexity reference genomes, under sampling258

regimes where individual samples are at a premium, or where base- and map-quality scores are259

suspect. This is in part because such attributes of genomic quality can be readily incorporated260

during training, and deep learning methods can generalize despite these limitations. To address261

the potential for ReLERNN to serve as an asset for researchers working with low-quality data—e.g.262

those studying non-model organisms—we simulated 1 Mb chromosomes under a randomized263

fine-scale recombination landscape, and then masked increasing fractions of both genotypes and264

sites. We then trained ReLERNN with both missing genotypes and genome inaccessibility, and265

generated predictions on the simulated chromosomes.266

We show that ReLERNN exhibits high accuracy and low bias on datasets with missing genotypes,267
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Figure 5 (A) Distribution of raw error (rpredicted − rtrue) for LDhelmet and ReLERNN when presented
with varying levels of missing genotypes for simulations with n = 4 and (B) n = 20 chromosomes.
(C) Fine-scale rate predictions generated by ReLERNN for a 1 Mb recombination landscape (grey
line) simulated with varying levels of missing genotypes, for n = 4 and (D) n = 20 chromosomes.
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even as the faction of missing data increases to half of all genotypes (Figure 5). Moreover, we found268

that ReLERNN had reduced bias and significantly lower absolute error than LDhelmet at 50%missing269

genotypes for both n = 4 and n = 20 (T ≤ −2.8 ; PW TT < 0.007 for both comparisons). Here we define270

missing genotypes as any genotype call set to a . in the VCF, although in theory a simple quality271

threshold to identify missing genotypes could also be implemented. Additionally we tested ReLERNN272

across increasing levels of genome inaccessibility (up to 75% of all sites inaccessible), simulating273

a scenario where the vast majority of sites cannot be accurately mapped—e.g. in low-complexity274

genomic regions or for taxa without reference assemblies. Here genome inaccessibility refers to any275

site overlapping a window in the accessibility mask, where the entire genotype array at this site is276

discarded. Again, ReLERNN exhibited reduced bias in error across all levels of genome accessibility277

relative to LDhelmet (Figure S20). However, levels of absolute error were not significantly different278

between themethods after correcting for multiple tests (T ≤ −2.1 ; PW TT ≥ 0.043 for all comparisons).279

Together these results suggest that ReLERNN may be of particular interest to researchers studying280

non-model organisms or for those without the access to high-quality reference assemblies.281

Recombination landscapes are largely concordant among populations of African D.282

melanogaster283

Using our method, we characterized the genome-wide recombination landscapes of three popula-284

tions of African D. melanogaster (sampled from Cameroon, Rwanda, and Zambia). Each population285

was derived from the sequencing of 10 haploid embryos (detailed in Lack et al., 2015; Pool et al.,286

2012), hence these data represent an excellent opportunity to exploit ReLERNN’s high accuracy on287

small sample sizes. The lengths of genomic windows selected by ReLERNN were roughly consistent288

among populations, and ranged from 38 kb for chromsomes 2R, 3L, and 3R in Zambia, to 51 kb289

for the X chromosome in Cameroon. We show that fine-scale recombination landscapes are highly290

correlated among all three populations of D. melanogaster (genome-wide mean pairwise Spearman’s291

� = 0.76; P < 10−16; 100 Kb windows; Figure 6). The genome-wide mean pairwise coefficient of292

determination between populations was somewhat lower, R2 = 0.63 (P < 10−16; 100 Kb windows),293

suggesting there may be important population-specific differences in the fine-scale drivers of294

allelic association. These differences may also contribute to within-chromosome differences in295

recombination rate between populations. Indeed, we estimate that mean recombination rates are296

significantly different among populations for all chromosomes with the exception of chromosome297

3L (P ≤ 3.78 × 10−4; one-way analysis of variance). Post-hoc pairwise comparisons suggest that298

this difference is largely driven by an elevated rate of recombination in Zambia, identified on all299

chromosomes (P ≤ 8.21 × 10−4; Tukey’s HSD tests) except for 3L (PHSD ≥ 0.15). ReLERNN predicts300

the recombination rate in simulated test sets to a high degree of accuracy for all three populations301

(R2 ≥ 0.93; P < 10−16; Figure S23), suggesting that we have sufficient power to discern fine-scale302

differences in per-base recombination rates across the genome.303

When comparing our recombination rate estimates to those derived from experimental crosses304

of North American D. melanogaster (reported in Comeron et al., 2012), we find that the coefficients305

of determination averaged over all three populations were R2 = 0.46, 0.70, 0.47, 0.08, 0.73 for chromo-306

somes 2L, 2R, 3L, 3R, and X, respectively (Figure S24; 1 Mb windows). These results differ from those307

observed by Chan et al. (2012), who compared 22 D. melanogaster sampled from the same Rwandan308

population to the FlyBase map and found R2 = 0.55, 0.63, 0.45, 0.42, 0.41 for the same chromosomes.309

The minor differences we observed between methods for chromosomes 2L, 2R, 3L, and the X310

chromosome can likely be attributed to the fact that we are comparing estimates from two different311

methods, using different African flies, to a different experimentally derived map. However, the312

larger differences found between methods for chromosome 3R seem less likely attributable to313

methodological differences. Importantly, African D. melanogaster are known to harbor large poly-314

morphic inversions often at appreciable frequencies (Lemeunier and Aulard, 1992; Aulard et al.,315

2002). For example, the inversion In(3R)K segregates in our Cameroon population at p = 0.9. It is316

potentially these differences in inversion frequencies that contribute to the exceptionally weak317
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correlation observed using our method for chromosome 3R.318

An important cause of population-specific differences in recombination landscapes might be319

population-specific differences in the frequencies of chromosomal inversions, as recombination is320

expected to be strongly suppressed between standard and inversion arrangements. To test for an321

effect of inversion frequency inferences made by ReLERNN, we resampled haploid genomes from322

Zambia to create artificial population samples with the cosmopolitan inversion In(2L)t segregating323

at varying frequencies, p ∈ {0.0, 0.2, 0.6, 1.0}. In Zambia, In(2L)t arose recently (Corbett-Detig and324

Hartl, 2012) and segregates at p = 0.22 (Lack et al., 2015), suggesting that recombination within the325

inversion breakpoints may be strongly suppressed in individuals with the inverted arrangement326

relative to those with the standard arrangement. For these reasons, we predict that the inferred327

recombination rate should decrease as the low-frequency inverted arrangement is increasingly328

overrepresented in the set of sampled chromosomes (i.e. as more of the samples contain the high-329

LD inverted arrangements). As predicted, we found a strong effect of the sample frequency of In(2L)t330

on estimated rates of recombination for chromosome 2L in Zambia (Figure S27), demonstrating331

that ReLERNN is sensitive to the frequency of recent inversions.332

To further explore population-specific differences in recombination landscapes we took a statis-333

tical outlier approach, whereby we define two types of recombination rate outliers—global outliers334

and population-specific outliers (see Materials and Methods). Global outliers are characterized by335

windows with exceptionally high variance in rates of recombination between all three populations336

(Figure 6; red triangles) while population-specific outliers are those windows where the rate of re-337

combination in one population is strongly differentiated from the rates in the other two populations338

(Figure 6; population-colored triangles). We find that population-specific outliers, but not global339

outliers, are significantly enriched within inversions (P = 0.005; randomization test; Figure 6; grey340

boxes). Moreover, this enrichment remains significant when extending the inversion boundaries341

by up to 250 Kb (Prand ≤ 0.004). However, extending the inversion boundaries beyond 250 Kb, or342

restricting the overlap to windows surrounding only the breakpoints (250 Kb, 500Kb, 1 Mb, 2 Mb),343

erodes this pattern (Prand ≥ 0.055 for all comparisons), suggesting that the role for inversions in344

generating population-specific differences in recombination rates is complex, at least for these345

populations.346

Selection is another important factor that may confound the inference of recombination rates.347

For instance selective sweeps generate localized patterns of high LD on either side of the sweep site348

(Kim and Nielsen, 2004; Schrider et al., 2015), thus regions flanking selective sweeps may mimic349

regions of reduced recombination. Inasmuch population-specific selective sweeps are expected to350

contribute to population-specific differences in recombination rate estimates. We used diploS/HIC351

(Kern and Schrider, 2018) to identify hard and soft selective sweeps in our African D. melanogaster352

populations, and we tested for an excess of recombination rate outliers overlapping with windows353

classified as sweeps. In total, diploS/HIC classified 27.4%, 28.1%, and 26.8%, of all genomic widows354

as selective sweeps (either "hard" or "soft") for Cameroon, Rwanda, and Zambia, respectively, when355

looking at 5kb, non-overlapping windows. The associated False Discovery Rates (FDR) for calling356

sweeps in these populations were appreciable: 33.9%, 33.1% and 34.7%, respectively (Figure S26).357

As expected, windows classified as sweeps had significantly lower rates of recombination relative to358

neutral windows in all three populations (PW TT ≤ 10−16 for all comparisons; Figure S25). However,359

we found that neither global nor population-specific outliers were enriched for selective sweeps360

(Prand ≥ 0.246 for both comparisons), suggesting that, when treated as a class, recombination361

rate outliers are not likely driven by sweeps in these populations. When treated separately (i.e.362

independent permutation tests for each recombination rate outlier window), we identified 7 outliers363

enriched for sweeps at the P ≤ 0.05 threshold, corresponding to an expected FDR of 77%. However,364

given our FDR for calling sweeps in these populations, our measure of the enrichment in overlap365

with recombination rate outliers is likely to be conservative. Two of these outlier windows may366

represent potential true positives; an outlier in Cameroon contains 5 out of 6 non-overlapping 5 kb367

windows classified as "hard" sweeps, the second from Rwanda has 10 out of 12 windows classified368
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Figure 6 (A) Genome-wide recombination landscapes for D. melanogaster populations from
Cameroon (teal lines), Rwanda (purple lines), and Zambia (orange lines). Grey boxes denote the

inversion boundaries predicted to be segregating in these samples (Pool et al., 2012; Corbett-
Detig and Hartl, 2012). Red triangles mark the top 1% of global outlier windows for recombina-
tion rate. Blue, purple, and orange triangles mark the top 1% of population-specific outlier win-

dows for recombination rate, with triangle color indicating the outlier population (see Materials

and Methods). (B) Per-chromosome recombination rates for each population. Spearman’s � and
R2 are reported as the mean of pairwise estimates between populations for each chromosome.

**P < 0.01 and ***P < 0.001 are based on Tukey HSD tests for all pairwise comparisons.
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as "hard" sweeps ( Prand = 0.0 for both comparisons). These two recombination rate outlier windows369

are potentially ripe for future studies on selective sweeps in these populations, and suggest that in370

at least some instances, selection contributes to observed differences in estimates of recombination371

rates between Drosophila populations.372

Discussion373

We introduced a new method, ReLERNN, for predicting the genome-wide map of per-base recom-374

bination rates from polymorphism data, through the use of deep neural networks. Importantly,375

ReLERNN is particularly well-suited to take advantage of emerging small-scale sequencing exper-376

iments—e.g. those traditionally associated with the study of non-model organisms. Population377

genomics, as a field, relies on estimates of recombination rates to understand the effects of diverse378

phenomena ranging from the impacts of natural selection (Elyashiv et al., 2016), to patterns of379

admixture and introgression (Price et al., 2009; Brandvain et al., 2014; Schumer et al., 2018), to380

polygenic associations in genome-wide association studies (Bulik-Sullivan et al., 2015). As befits381

this need, there has been a long tradition of development of statistical methods for estimating382

the population recombination parameter, � = 4Nr (Chan et al., 2012; Gao et al., 2016; Hudson383

and Kaplan, 1985; Hudson, 1987, 2002; Li and Stephens, 2003; Lin et al., 2013;McVean et al., 2002;384

Myers and Griffiths, 2003;Wakeley, 1997;Wall, 2000;Wiuf, 2002).385

We sought to harness the power of deep learning, specifically deep recurrent neural networks, to386

address the problem of estimating recombination rates, and in so doing, we developed a workflow387

that reconstructs the genome-wide recombination landscape to a high degree of accuracy from very388

small sample sizes—e.g. four haploid chromosomes or directly from allele frequencies obtained389

through Pool-seq. The use of deep learning has recently revolutionized the fields of computer390

vision (Krizhevsky et al., 2012; Szegedy et al., 2015), speech recognition (Hinton et al., 2012), and391

natural language processing (Sutskever et al., 2014), and while its use in population genomics has392

only recently begun, it is anticipated to be similarly fruitful (Schrider and Kern, 2018). The natural393

extension of deep learning to population genomic analyses comes as a result of the ways in which394

ANNs learn abstract representations of their inputs. In the case of population genomic analyses,395

the inputs can be naturally represented as DNA sequence alignments, eliminating the need for396

human oversight (and potentially constraint) in the form of statistical summaries (i.e. compression)397

of the raw data. ANNs can then learn high-dimensional statistical associations directly from the398

sequence alignments, and use these to return highly accurate predictions.399

ReLERNN utilizes a variant of an ANN, known as a Gated Recurrent Unit (GRU), as its primary400

technology. GRU networks excel at identifying temporal associations (Jozefowicz et al., 2015), and401

therefore we modeled our sequence alignment as a bidirectional time series, where each ordered402

SNP represented a new time step along the chromosome. We also modeled the distance between403

SNPs using a separate input tensor, and these two inputs were concatenated after passing through404

the initial layers of the network (see Figure 1 inlay). We demonstrated that ReLERNN can predict a405

simulated recombination landscape with a high degree of accuracy (R2 = 0.93; Figure 2), and that406

these predictions remain high, even when using small sample sizes (R2 = 0.82; Figure S4). These407

predictions compared favorably to those made by a leading composite likelihood methods (LDhat408

and LDhelmet;McVean et al., 2002; Chan et al., 2012), as well as other machine learning methods409

(the CNN and FastEPRR; Figure 3).410

We also showed that ReLERNN can achieve modest accuracy when presented solely with allele411

frequencies derived from simulated Pool-seq data, especially when sequenced at the relatively412

modest depth of 5X the pool size (Figure S7). Moreover, ReLERNN performed well at estimating413

recombination rates in the face of missing genotype calls—exhibiting reduced bias when compared414

to LDhelmet, even with 50% of genotypes missing (Figure 5) or 75% of the genome inaccessible415

to SNP calls (Figure S20). Together, these results suggest that ReLERNN will be well suited to the416

increasing amount of population genomic data from non-model organisms. While the abstract417

nature of the data represented in its internal layers constrains our ability to interpret the exact418
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information ReLERNN relies on to inform its predictions, our experiments using incorrect assumed419

mutation rates (Figure S9, Figure S8) suggests ReLERNN is potentially learning the relative ratio420

of recombination rates to mutation rates. Because the assumed rate of mutation governs the421

inherent potential for ReLERNN to resolve recombination events—i.e. recombination events cannot422

be detected without informative SNPs—and because simulation results suggest ReLERNN is more423

accurate when overestimating �̄ relative to underestimating it, we suggest erring on the side of424

overestimating �̄. For these reasons however, an extra caveat is warranted—use caution when425

interpreting the results from ReLERNN as absolute measures of the per-base recombination rate426

unless precise mutation rate estimates are also known. This actually presents an opportunity—we427

suspect that ReLERNN (or a related network) has the potential to infer the joint landscape of428

recombination and mutation, though this task likely poses an additional set of unknown challenges.429

Demographic model misspecification is another potential source of error that should affect not430

only deep learning methods targeted at estimating �, but also likelihood-based methods. Historical431

demographic events (e.g. population bottlenecks, rapid expansions, etc.), because they may alter432

the structure of LD genome-wide, can bias inference of recombination based on genetic variation433

data. Our simulations demonstrated that while all the methods we tested had elevated error in434

the context of demographic model misspecification, ReLERNN remained the most accurate across435

all misspecification scenarios (Figure 4). While we caution against generalizing too much from this436

experiment, the model misspecification tested here was extreme: we are replacing a human-like437

demography of a bottleneck followed by exponential growth with a model of constant population438

size. We suspect that ReLERNN, by using an RNN, is able to encode higher-order allelic associations439

across the genome, for instance three-locus or four-locus linkage disequilibrium, and in so doing440

capture more of the information available than traditional methods that use composite likelihoods441

of two-locus LD summaries. Additionally, there are clear opportunities for future improvements to442

ReLERNN. For instance, our simulation studies demonstrated that the GRU used by ReLERNN is also443

sensitive to gene conversion events (Figure S19), thus the joint estimation of rates of recombination444

and gene conversion may be quite feasible. Ultimately, it remains far from clear what network445

architectures will be best suited for population genetic inference, though we remain optimistic that446

ANNs will prove useful for a variety of applications in the field.447

A natural application of ReLERNN, due in part to its high accuracy with small sample sizes, was448

to characterize and compare the recombination landscapes for multiple populations of African D.449

melanogaster, for which few populations with large samples sizes are currently available. Previous450

estimates of genome-wide fine-scale recombination maps in flies have focused on characterizing451

recombination in experimental crosses (Comeron et al., 2012), or by running LDhat (or the related452

LDhelmet) on populations with relatively moderate sample sizes (i.e. ≥ 22 samples) (Chan et al.,453

2012; Langley et al., 2012). Here, we applied ReLERNN to three populations for which at least ten454

haploid embryos were sequenced: Cameroon, Rwanda, and Zambia (Lack et al., 2015; Pool et al.,455

2012). Generally, recombination landscapes were well correlated among populations. Mean pair-456

wise coefficients of determination among all three populations were R2 = 0.69, 0.61, 0.77, 0.43, 0.66457

for chromosomes 2L, 2R, 3L, 3R, and X, respectively. These correlations are notably lower than458

those observed in humans (Myers et al., 2005) and mice (Wang et al., 2017), and one potential459

biological cause for this large difference could be the cosmopolitan chromosomal inversions that460

segregate in African D. melanogaster (Corbett-Detig and Hartl, 2012; Lack et al., 2015).461

Our results suggest that recombination suppression extends well beyond the predicted break-462

points of the inversion (at least 5 Mb beyond in the case of In(2L)t; Figure S27, Figure S28). This463

large-scale suppression of recombination due to inversions in Drosophila has been observed both464

directly in experimental crosses (Dobzhansky and Epling, 1948; Novitski and Braver, 1954; Kulathi-465

nal et al., 2009; Miller et al., 2016; Fuller et al., 2018), and indirectly from patterns of variation466

surrounding known inversion breakpoints (Corbett-Detig and Hartl, 2012; Langley et al., 2012).467

While it is true that the negative relationship between inversion frequency and recombination468

should only exist for inversions segregating at low frequencies (e.g. crossover suppression is not469
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expected in inversion homozygotes), we predict a negative relationship to dominate in these pop-470

ulations, as the majority of polymorphic inversions are young, segregate at low frequencies, and471

show elevated LD along their lengths perhaps due to the actions of natural selection (Corbett-Detig472

and Hartl, 2012; Lack et al., 2015).473

While polymorphic inversions exert strong effects on recombination landscapes, support for474

their role in explaining the most diverged regions among populations was mixed—we found that475

population-specific recombination rate outliers, but not global outliers, were significantly enriched476

within the inversions known to segregate in these populations (Figure 6). Moreover, our predictions477

for the relative rates of recombination among populations, based on inversion frequencies per478

chromosome, were largely not met—the inversions In(2L)t, In(2R)NS, and In(3L)Ok segregate at the479

highest frequencies in Zambia, yet this population also has the highest average recombination480

rate for these three chromosomes. One might speculate that such a result could be due to the481

reapportioning of crossovers that occurs due to the interchromosomal effect (Schultz and Redfield,482

1951), although we have no firm evidence for this. Chromosome 3R, however, did match these483

predictions, having inversions segregating at the highest frequencies of any chromosome (e.g.484

pIn(3R)K = 0.9 in Cameroon) and also both the lowest coefficient of determination (R2 = 0.43) and485

population-specific recombination rates ranked in accordance with inversion frequencies (Figure 6).486

Interestingly, while we identified two individual outlier regions characterized by numerous487

selective sweeps, we did not observe a significant enrichment of sweeps overlapping either global488

or population-specific outliers when these outliers were treated as a class of genomic elements.489

This is perhaps surprising, given that selective sweeps are known to create characteristic elevations490

of LD (Kim and Nielsen, 2004), and perhaps could mimic regions with very divergent levels of491

recombination in a population-specific way. A number of other evolutionary forces might explain492

the existence of our outlier regions as well. For example, mutation rate heterogeneity along493

the chromosomes could, in principle, generate spurious peaks or troughs in our estimates of494

recombination rate, as ReLERNN in effect scales its per-base recombination rate estimates by495

a mutation rate that is assumed to be constant along the chromosome (Figure S9, Figure S8).496

Moreover, introgression from diverged populations might affect patterns of allelic association in a a497

local way along the genome (Schrider et al., 2018; Schumer et al., 2018). Taken together, our results498

suggest that while both inversions and selection can influence population-specific differences in the499

landscape of recombination, the preponderance of these differences likely have complex causes.500

While ReLERNN currently stands as a functional end-to-end pipeline for measuring recombina-501

tion rates, the modular design herein presents a number of important opportunities for extension,502

with the potential to address myriad questions in population genomics. For example, the RNN503

structure we exploit here could be used for inferring the joint distribution of gene conversion504

and crossover events, or for inferring the distribution of selection coefficients and/or migration505

rates from natural populations. In addition, ReLERNN presents an excellent opportunity for the506

implementation of transfer learning, whereby ReLERNN could be trained in-house on an otherwise507

prohibitively extensive parameter space, allowing end-users to make accurate predictions by gen-508

erating only a small fraction of the current number of simulations and training epochs presently509

required. The application of machine learning, and deep learning in particular, to questions in popu-510

lation genomics is ripe with opportunity. The software tools that we provide with ReLERNN support511

a simple foundation on which the population genetics community might begin this exploration.512

Materials and Methods513

The ReLERNN workflow514

The ReLERNNworkflow proceeds by the use of four pythonmodules—ReLERNN_SIMULATE, ReLERNN_TRAIN,515

ReLERNN_PREDICT, and ReLERNN_BSCORRECT (or alternatively ReLERNN_SIMULATE_POOL, ReLERNN_TRAIN_POOL,516

and ReLERNN_PREDICT_POOL when analysing Pool-seq data). The first three modules are mandatory,517

and include functions for estimating parameters such as �W and Ne from the inputs, functions for518
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masking genotypes and inaccessible regions of the genome, functions for simulating the training,519

validation, and test set, functions for training the neural network, and functions for predicting520

rates of recombination along the chromosomes. The fourth module, ReLERNN_BSCORRECT, can be521

used both with individually sequenced data and Pool-seq data. This module is optional (though522

recommended) and includes functions for estimating 95% confidence intervals and implementing523

a correction function to reduce bias. The output from ReLERNN is a list of genomic windows and524

their corresponding recombination rate predictions (reported as per-base crossover events), along525

with 95% confidence intervals and corrected predictions through the use of ReLERNN_BSCORRECT.526

Estimation of simulation parameters and coalescent simulations527

ReLERNN takes as input a VCF file of phased or unphased biallelic variants. A minimum of four528

sample chromosomes must be included, and users should ensure proper quality control of the529

input file beforehand—e.g. filtering low-coverage, low-quality, and non-biallelic sites. ReLERNN530

for Pool-seq takes a single file of genomic coordinates and their corresponding pooled allele531

frequency estimates (example files can be found at https://github.com/kern-lab/ReLERNN/tree/532

master/examples). ReLERNN then steps along the chromosome in non-overlapping windows of533

length l, where l is the minimum window size for which the number of segregating sites, S, in534

all windows is ≤ 1750. By default, we require that S ≤ 1750, as extensive experimentation during535

development showed that S >> 1750 has the potential to cause the so-called exploding gradient536

problem to arise during training (see Pascanu et al., 2013). However, S is a user-configurable537

parameter (− − maxW inSize), and can be increased at the expense of potential training failures.538

The minimum number of sites in a window is another user-configurable parameter (− − minSites539

in ReLERNN_PREDICT) and is set to 50 by default. As a result of independently estimating l for540

each chromosome, the output predictions file may return different window sizes for different541

chromosomes, depending on SNP densities.542

Once l has been estimated, ReLERNN_SIMULATE uses the coalescent simulation software, msprime543

(Kelleher et al., 2016), to independently generate 105 training examples and 103 validation and544

test examples. By default, these simulations are generated under assumptions of demographic545

equilibrium using the following parameters in msprime: [sample_size = n, where n is the number546

of chromosomes in the VCF; Ne = Ne, where Ne =
�w

4�̄lmax
and �̄ is the assumed genome-wide per-547

base mutation rate, lmax is the maximum value for l across all chromosomes, and �w = Smax
an
where548

Smax is the genome-wide maximum number of segregating sites for all windows and an =
∑n−1

i=1
1
i
;549

mutation_rate = U(�low, �ℎigℎ), where �low = 2�̄
3
and �ℎigℎ = �̄+ �̄

3
; recombination_rate = U(0.0, rmax), where550

rmax = �max
�̄
, and lengtℎ = lmax]. In addition to simulating under equilibrium, ReLERNN can also551

simulate under a population size history inferred by one of three programs: stairwayplot (Liu and552

Fu, 2015), SMC++ (Terhorst et al., 2016), or MSMC (Schiffels and Durbin, 2014). This is handled553

by proving the raw final output file to ReLERNN_SIMULATE using the − − demograpℎicHistory option.554

When a demographic history is supplied to ReLERNN, the Ne parameter in msprime is substituted555

with a history of population size changes through time, but the mutation_rate, recombination_rate, and556

lengtℎ parameters are the same as when simulating under equilibrium. After each simulation is557

completed, ReLERNN writes both the genotype matrix and a vector of SNP coordinates to temporary558

.npy files, which are later used during batch generation.559

Sequence batch generation and network architectures560

To reduce the large memory utilization common to the analysis of genomic sequence data, we took561

a batch generation approach using the fit_generator function in Keras—i.e. only small batches562

(defaulty batcℎ_size = 64) of simulation examples are called into memory at any one time. Moreover,563

both the order of examples within each batch, and the order of individuals within a single training564

example are randomly shuffled (i.e. sample 1 is not always at the top of the genotype matrix).565

Data normalization and padding occurs when a training batch is called, and the genotype and566

position arrays are read into memory. The zeroth axis of the genotype and positions arrays is then567
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padded with 0s (pad_size = 5) to max(Smax, Ssim), where Smax is the genome-wide maximum number568

of segregating sites for all windows in the samples and Ssim is the maximum number of segregating569

sites generated across all training, validation, and test simulations.570

The targets for each training batch are the per-base recombination rates used by msprime571

to simulate each example. These targets are z-score normalized across all training examples.572

Genotypes and positions are not normalized, per se. Rather, the genotype matrix encodes alleles as573

reference (−1), alternative (1), or padded/missing data (0), and variant positions are encoded along574

the real number line (0−1). In the case of ReLERNN for Pool-seq, we convert the simulated genotypes575

into allele frequencies by sampling with replacement the vector of alternative and reference alleles576

for all sites to the assumed mean read depth of the pool (a user supplied parameter). We then577

exclude any site where the sampled variant is fixed or where p < 0.05, and stack this newly created578

allele frequency vector with the vector of positions. Here, allele frequencies (but not positions) are579

z-score normalized. The normalized and padded genotype, position, and allele frequency arrays580

form the input tensors to our neural networks, and take the shapes defined in Figure S1.581

ReLERNN trains a recurrent neural network with Keras (Chollet et al., 2015) using a Tensorflow582

backend (Abadi et al., 2015). The complete details of our neural architecture can be found in the583

python module https://github.com/kern-lab/ReLERNN/blob/master/ReLERNN/networks.py, and584

a detailed flow diagram showing the connectivity between layers as well as network parameters585

can be found in Figure S1. Briefly, the ReLERNN neural network utilizes distinct input layers for586

the genotype and position tensors, which are later merged using a concatenation layer in Keras.587

The genotype tensor is first fed to a GRU layer, as implemented with the bidirectional wrapper588

in Keras, and the output of this layer is passed to a dense layer followed by a dropout layer. On589

the positions side of the network, the input positions tensor is fed directly to a dense layer and590

then to a dropout layer. Dropout (Srivastava et al., 2014) was used extensively in our network,591

and accuracy was significantly improved when employing dropout relative to networks without592

dropout. Once concatenated, output from the dropout layer is passed to a final round of dense593

and dropout layers, and the final dense layer returns a single z-score normalized prediction for594

each example, which is unnormalized back to units of crossovers per-base. ReLERNN implements595

early stopping to terminate training (min_delta = 0.01, patience = 100) and uses the "Adam" optimizer596

(Kingma and Ba, 2014) and a Mean Squared Error (MSE) loss function. Our hyper-tuning trials597

were completed via a grid search over the set of parameters: recurrent layer output dimensions598

(64, 82, 128), loss function (MSE,MAE), input merge strategy (concatenate, average), and dense599

layer output dimensions (64, 128), optimizing forMSE.600

Total runtime estimates are highly dependent on 1) the number of epochs needed to train601

before the early stopping threshold is met (which can vary extensively) and 2) the coalescent602

simulation parameters (most notably recombination rate and population size). As an example, the603

total runtime for ReLERNN_SIMULATE, ReLERNN_TRAIN, and ReLERNN_PREDICT on a 1 Mb chromosome604

with 90290 segregating sites [parameters: n = 20, r̄ = 7.6 × 10−9, and �̄ = 2.5 × 10−8], which trained605

for 348 epochs before terminating, was 8527 seconds (40 cores Intel Xeon, 1 NVIDIA 2070 GPU).606

Total runtimes are not strongly influenced by genome size—e.g. the time needed for ReLERNN to607

make predictions on the 90290 SNPs in the example above was less than 8.2 seconds.608

Parametric bootstrap analysis and prediction corrections609

ReLERNN includes the option to generate confidence intervals around each predicted recombina-610

tion rate and correct for potential biases generated during training. To accomplish this we used611

parametric bootstrapping, as implemented by ReLERNN_BSCORRECT in the following way: after the612

network has been trained and predictions have been generated, ReLERNN_BSCORRECT simulates 103613

test examples for each of 100 recombination rate bins drawn from the distribution of recombination614

rates used to train the network. The parameters for each new simulation example are drawn from615

the same distribution of parameters used to simulate the original training set, with the exception616

of recombination_rate, which is held constant for each rate bin. Predictions are then generated for617
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these 105 simulated test examples using the previously trained network, generating a distribution618

of predictions for each respective recombination rate bin. 95% confidence intervals are calculated619

for each bin by taking the upper and lower 2.5% predictions from this distribution of rates.620

The distribution of test predictions can potentially be biased in systematic ways—e.g. predictably621

underestimating rates of recombination for those examples with the highest simulated crossover622

events, possibly due to the limited ability to resolve high recombination rates with a finite number623

of SNPs. From our inferred confidence intervals we can correct for inferred bias in the following624

way. The bias correction function takes each empirical prediction, rpredicted , and identifies the nearest625

median value, Ỹ , from the distribution of 105 bootstrap rate predictions (Figure S3). Because each626

Ỹ was generated from a rate bin corresponding to the true recombination rate, Y , we can apply627

the correction function, f (rprediction) = rprediction + (Ỹ − Y ), to all predictions. This method has the628

effect of increasing rpredicted in areas of parameter space where we are reasonably confident that we629

are underestimating rates and reducing rpredicted in areas where we are likely to be overestimating630

rates. ReLERNN_BSCORRECT is provided as an optional module for this task, as the resimulation of631

105 test examples has the potential to be computationally expensive, and may not be warranted632

in all circumstances. However, as stated above, the extent of the computational expense is highly633

dependent on the parameters used in the coalescent simulation, and may not always contribute634

substantially to total runtimes. For example, ReLERNN_BSCORRECT increased the total runtime in the635

example mentioned above by 8.6 percent (9266 seconds compared to 8527 seconds).636

Testing the accuracy of ReLERNN on simulated recombination landscapes637

To test the accuracy of ReLERNN at recapitulating a dynamic recombination landscape, we ran our638

complete ReLERNN workflow on simulation data replicating chromosome 2L of D. melanogaster.639

Using crossover rates estimated by Comeron et al. (2012), we simulated varying numbers of samples640

of D. melanogaster chromosome 2L with msprime using the RecombinationMap class [parameters:641

n ∈ {4, 20, 50}, �̄ = 2.8 × 10−9, Ne = 2.5 × 105]. Simulated samples were exported to a VCF file using642

ploidy = 1, and all simulations were generated under demographic equilibrium. We used these643

simulated VCF files as the input to our ReLERNN pipeline, where we varied the assumed �̄ and644

the assumed ratio of �max to � given to ReLERNN. The assumed �̄ was varied from 50% less than645

the rate used in simulations (2.8 × 10−9) to 50% greater than the true rate. Likewise, the ratio of646

�max to � was either held constant, resulting in the training set containing on average higher or647

lower per-base recombination rates than the true rate, or was adjusted to correctly reflect the648

true maximum per-base recombination rate used—i.e. approximately 1.2 × 10−7 crossovers per649

base. To run ReLERNN on simulated Pool-seq data we used the same VCFs generated above, but650

converted all variants to allele frequencies in the following way: for all sites in the VCF, we resampled651

the variant haplotypes with replacement to a simulated read depth of d ∈ { n
2
, 1n, 2n, 5n} and then652

excluded all sites where the resampled variant was fixed or where p < 0.05.653

Comparative methods654

We chose to compare ReLERNN to three published methods for estimating recombination rates—655

FastEPRR (Gao et al., 2016), a 1-dimensional CNN recently described in Flagel et al. (2018) and both656

LDhat (McVean et al., 2002) and LDhelmet (Chan et al., 2012). We generated a training set (used657

by ReLERNN and the CNN) with 105 examples and tested all of the methods on an identical set658

of 5 × 103 simulation examples. We generated two classes of simulations, one simulated under659

demographic equilibrium and one using a demographic history derived from European humans660

(CEU model; detailed in "ReLERNN_demographic_models.py"; Tennessen et al., 2012; Gravel et al.,661

2011). Both classes of simulations were generated for n ∈ {4, 8, 16, 32, 64}, where n is the number of662

chromosomes sampled from the population. All simulations were generated in msprime with the663

common set of parameters [recombination_rate = U(0.0, 6.25e−8), mutation_rate = U(1.875e−8, 3.125e−8),664

lengtℎ = 3e5].665

For both ReLERNN and the CNN, the same training set consisting of 105 examples was used666
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to train each neural network, and the same test examples were used to compare the predictions667

produced by each method. Comparisons with LDhat and LDhelmet where made using the above668

training examples to parameterize the generation of independent coalescent likelihood lookup669

tables. For each set of examples of sample size n, we used the known value of �max from the670

simulated training examples, and we then calculated the average per-base values for � from the671

simulated test examples using Watterson’s estimator. These parameter values were passed to672

the functions for lookup table generation in LDhat and LDhelmet [LDhat options: −n, −rℎomax,673

−tℎeta and −n_pts101; LDhelmet options: −r0.00.110.01.0100.0]. For LDhelmet we also ran the pade674

function using the options [−x12 and −−defect_tℎresℎold40]. The resulting tables were used tomake675

predictions on our 5 × 103 test examples using the pairwise function for LDhat and max_lk function676

for LDhelmet [options: − − max_lk_start0.0 and − − max_lk_resolution0.000001]. Comparisons with677

FastEPRR were made by transforming the genotype matrices resulting from our test simulations678

into fasta-formated input files, and running the FastEPRR_ALN function [using format = 1] in R. As679

LDhat, LDhelmet, and FastEPRR all predict �, the resulting predictions were transformed to per-base680

recombination rates for direct comparison with ReLERNN using the function r = �pred×�true
�W

, where681

�pred is the prediction output by each method, and �W and �true are Watterson’s estimator and the682

true per-base mutation rate used in the simulation example, respectively. To compare accuracy683

among methods we directly compared the distribution of absolute errors (|rpredicted − rtrue|) for each684

method for each set of examples of sample size n.685

To test the effects of model misspecification on predictions, we simply directed ReLERNN and686

the CNN to use a training set generated under demographic equilibrium for making predictions687

on a test set generated under the CEU model, and vice versa. To test for the effects of model688

misspecification in LDhat and LDhelmet, we generated a lookup table using parameter values689

estimated from the misspecified training set (e.g. the lookup table used for predicting the CEU690

model test set was generated by using parameter values directly inferred from training simulations691

under equilibrium. We did not directly test the effect of model misspecification using FastEPRR,692

as this method takes as input only a fasta sequence file, and therefore the internal training of the693

model was not able to be separated from the input sequences. To address the effects of model694

misspecification, we also directly compared the distribution of absolute errors (|rpredicted − rtrue|).695

Additionally, we compared the marginal error directly attributable to model misspecification among696

methods. We defined marginal error as �m − �c , where �m and �c are equal to |rpredicted − rtrue| when697

the model is misspecified and correctly specified, respectively. We simulated gene conversion test698

sets using ms (Hudson, 2002), with a mean conversion tract length of 352 bp (corresponding to699

the mean empirically derived tract length in D. melanogaster (Hilliker et al., 1994)) and simulated a700

range of gene conversion to crossover ratios,
rGC
rCO

∈ {0, 1, 2, 4, 8}.701

Training on missing genotypes and inaccessible regions of the genome702

Deep neural networks, through their aptitude for pattern recognition, can be trained to infer703

information from missing data. To harness this ability, we took two different approaches: 1) we704

infer patterns of recombination when some fraction of individual genotype calls are absent (missing705

genotypes), and 2) we infer these patterns when some fraction of all sites cannot be sequenced706

(genome inaccessibility). To simulate levels of missing genotypes similar to those found in real data,707

we first sample the distribution of all missing genotypes from the input VCF. We then generate a708

missing genotype mask for all windows in the genome and write this mask as a temporary file to709

the disk. Simulation proceeds as if all genotypes are present, however during batch generation,710

one random mask is drawn from the genomic distribution of masks and applied to the generated711

genotype matrix, setting some fraction of genotype calls to 0 (the same element used to pad).712

This has the effect of training the network to infer recombination, even where genotype calls713

are missing in real data. To infer recombination in the face of genome inaccessibility, we take a714

similar approach. Here, ReLERNN accepts an empirical accessibility mask similar to that provided715

by the 1000 Genomes project (Consortium et al., 2015). This is provided in BED format, which is716
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then fragmented into smaller arrays corresponding to the window size used by ReLERNN_SIMULATE.717

After simulation proceeds with all sites present, we randomly draw a mask from the distribution718

of empirical accessibility masks, and apply it during batch generation, removing all sites marked719

inaccessible from the array. We then remove the corresponding sites from the positions array, and720

train as usual.721

To test ReLERNN’s ability to learn recombination rates in the face of missing genotypes and722

genome inaccessibility, we simulated a 1 Mb randomize dynamic recombination landscape in723

msprime. Here we randomly selected 39 sites along the chromosome to serve as recombi-724

nation rate breakpoints, generating 40 windows of different rates. For each rate multiplier,725

m ∈ {3, 3, 3, 3, 3, 5, 5, 5, 5, 5, 7, 7, 7, 10, 10, 10}, we randomly selected a window to have the recombina-726

tion rate mr̄, were r̄ = 2.5×10−9 is the simulated background recombination rate. To simulate missing727

genotypes, we randomly set genotype calls in the simulated VCF to a ., corresponding to a fraction728

of total genotypes ∈ {0.0, 0.10, 0.25, 0.50}. To simulate an empirical accessibility mask we simply729

sampled directly from the phase 3 1000 Genomes accessibility masks (Consortium et al., 2015) and730

removed sites in the VCF corresponding to a fraction of total genomic sites ∈ {0.0, 0.25, 0.50, 0.75}. To731

directly compare between the predictions made by ReLERNN and LDhelmet, we then broke the VCF732

into windows of the same length (e.g. 22 kb for n = 4 and 10 kb for n = 20 for the simulations with733

missing genotypes). We then ran both ReLERNN and LDhelmet as described above, and compared734

the distribution of absolute errors (|rpredicted − rtrue|) for each method for each set of examples of735

sample size n ∈ {4, 20}.736

Recombination rate variation in D. melanogaster737

We obtained D. melanogaster population sequence data from the Drosphila Genome Nexus (DGN;738

https://www.johnpool.net/genomes.html; Lack et al., 2015; Pool et al., 2012). We converted DGN739

"consensus sequence files" to a simulated VCF format, excluding all non-biallelic sites and those740

containing missing data. We chose to analyze populations from Cameroon, Rwanda, and Zambia,741

as these populations contained at least 10 haploid embryo sequences per population and each742

population includedmultiple segregating chromosomal inversions (supplemental table 1). To ensure743

roughly equivalent power to compare rates among populations, we downsampled both Rwanda744

and Zambia to 10 chromosomes. We selected individual haploid genomes for each population by745

requiring that our sampled inversion frequencies for each of the six segregating inversions—In(1)Be,746

In(2L)t, In(2R)NS, In(3L)Ok, In(3R)K, and In(3R)P—closely approximate their population frequencies as747

measured in the complete set of haploid genomes for that population. All sample accessions and748

their corresponding inversion frequencies are located in the supporting materials.749

Before running ReLERNN, we first set out to model the demographic history for each population750

using each of three methods: stairwayplot (Liu and Fu, 2015), SMC++ (Terhorst et al., 2016), and751

MSMC (Schiffels and Durbin, 2014). With the exception of MSMC, all methods were run using default752

parameters. For MSMC, the use of default parameters generated predictions that were unusable753

(Figure S22). For these reasons, and after direct communication with MSMC’s authors, we deter-754

mined that running MSMC with a sample size of two chromosomes would be the most appropriate.755

Using all three methods, we show that inferred historical population sizes are unreliable for these756

populations—no two methods recapitulate the same history, and the histories generated by MSMC757

vary dramatically depending on the number of samples used (Figure S21, Figure S22). For these758

reasons, and because results from our simulations suggest that marginal error due to demographic759

misspecification is quite low for our method (Figure S18), we decided to simulate our training760

data under the assumptions of demographic equilibrium [options: − − estimateDemograpℎyFalse761

− − assumedMu3.27e − 9 − − upperRℎoTℎetaRatio35].762

We measured the correlation in recombination rates between each African D. melanogaster763

populations by recalculating the raw rate for 100 kb sliding windows, as ReLERNN will predict the764

rates of recombination in slightly different window sizes, depending on � for each chromosome.765

The recombination rate for each 100 kb window was calculated by taking the average of all raw766
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rate windows predicted by ReLERNN, weighted by the fraction that each window overlapped the767

larger 100 kb sliding window. Recombination rate outliers were identified in two ways: as global768

outliers and population-specific outliers. Global outliers were identified by first calculating the769

mean and standard deviation in recombination rates for all three populations in each 100 kb sliding770

window. We then used the top 1% of outliers from the distribution of residuals, after fitting a linear771

model to the standard deviation on the mean. Population-specific outliers were identified by using772

a modification of the population branch statistic (herein PBS*; Yi et al., 2010), whereby we replaced773

pairwise FST with the pairwise differences in recombination rates. We then used the top 1% of all774

PBS* scores as our population-specific outliers, with each outlier corresponding to a PBS* score for775

a single population.776

To test the effect of inversion frequency on predicted recombination rates, we resampled777

10 haploid chromosomes from the available set of haploid genomes from Zambia to generate778

sampled populations containing In(2L)t at varying frequencies, p ∈ {0.0, 0.2, 0.6, 1.0}. We then ran779

ReLERNN on chromosome 2L for each of these resampled Zambian populations. We classified780

recombination windows by their overlap with the coordinates of In(2L)t (as defined in Corbett-Detig781

and Hartl, 2012), defining windows within the breakpoints (inside), windows up to 3 Mb outside the782

breakpoints (flanking), and windows > 3 Mb outside the breakpoints (outside). Recombination rates783

were negatively correlated with inversion frequency in our sample, not only within the inversion,784

but also in regions 3 Mb outside the inversion (flanking regions) (�Spearman′s = −1; P = 0.04 for both785

comparisons). We also saw a similar negative correlation outside the flanking regions, although this786

association was weakened relative to that within or flanking the inversion (Figure S27). Importantly,787

varying the size of the flanking regions (from 1-5 Mb) produced patterns that were qualitatively788

identical, suggesting that the effect of inversions on recombination suppression extends far beyond789

the inversion breakpoints themselves (Figure S28).790

We also expect that rates of recombination should be correlated with distance to the inversion791

breakpoint on smaller spatial scales. Likewise, recombination rates in the inversion interior (> 2 Mb792

from the breakpoints) are expected to be higher than in those regions immediately surrounding793

the breakpoints. To test this we looked at the recombination rates in our African D. melanogaster794

populations, binned by distance to the nearest inversion breakpoints segregating in these popula-795

tions. We classified windows by their overlap with inversion interiors (> 2 Mb inside the inversion796

breakpoints) and their overlap with windows within 200 Kb, 500 Kb, 1 Mb, and 2 Mb of inversion797

breakpoints. We found that recombination rates in the flanking regions are positively correlated798

with distance to inversion breakpoints in both Rwanda and Zambia (�Spearman′s = 1; P = 0.04 for799

both comparisons) but not in Cameroon (�Spearman′s = 0.8; P = 0.17; Figure S25). However, with the800

exception of Cameroon (Inversion interior compared to < 250 Kb from breakpoint; PW TT = 0.035),801

we did not observe this pattern (PW TT ≥ 0.057; Figure S25).802

We tested for an enrichment of both global and population-specific outliers within inversions803

by randomization tests, permuting the labels for outliers 104 times and counting the overlap with804

inversions for each permutation to calculate the empirical p-values. We also tested for an effect of805

selection on recombination rates in these populations, by running diploS/HIC (Kern and Schrider,806

2018) to detect selective sweeps. We ran diploS/HIC on each population, training on simulations807

generated under demographic equilibrium. For each population we simulated 2000 training808

examples from each of the five classes of regions required by diploS/HIC using the coalescent809

simulation software discoal (Kern and Schrider, 2016). For simulations which included sweeps we810

drew the selection coefficient from a uniform distribution such that s ∼ U (0.0001, 0.005), the time of811

completion of the sweep from � ∼ U (0, 0.05), and the frequency at which a soft sweep first comes812

under selection as f ∼ U (0, 0.1). We drew � from U (65, 654) and we drew � from an exponential813

distribution with mean 1799 and the upper bound truncated at triple the mean. For the discoal814

simulations we simulated 605 kb of data with the goal of classification of the central most 55 kb815

window. We looked at the overlap with "sweep" windows (those classified as either "hard" or "soft")816

and those windows classified as "neutral" by diploS/HIC. Our complete diploS/HIC pipeline for these817
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samples is available in the supporting materials online. All statistical tests were completed in R (R818

Core Team, 2018), with the exception of empirical randomization tests, which were completed using819

Python.820

Data availability821

ReLERNN is currently available at https://github.com/kern-lab/ReLERNN. Supporting information,822

tables, and figures will be deposited online at the publication journal.823
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Figure S1 (A, left) Generalized form for a recurrent neural network trained on a genomic se-
quence alignment. (A, right) Generalized form of each gated recurrent unit, where r, z, ℎt, and ℎ̃t
correspond to the reset gate, update gate, activation, and candidate activation, respectively (Cho
et al., 2014). (B) Cartoon depicting the neural network architectures used in ReLERNN for indi-
vidually sequenced genomes or (C) pooled sequences. Tensor shapes are shown for the default
parameters [batcℎsize = 64, padsize = 5].
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Figure S2 ReLERNN training and test results. (Top) Scatter plot of raw (unnormalized) predictions
for 1000 test examples using ReLERNN with the same parameters used in Figure 2. Mean abso-
lute error and mean squared error are shown. (Bottom) Line graph showing the convergence of
loss (measured by mean squared error) over time (epochs) during training on the same data as

above, for both the training set (blue lines) and the validation set (purple lines).
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Figure S3 A characteristic example distribution of parametric bootstraping predictions, as imple-
mented by ReLERNN_BSCORRECT. Lines represent the minimum (blue), lower 5% (orange), lower
25% (green), median (red), upper 25% (purple), upper 95% (brown), and maximum (pink) bounds

for each of 1000 replicate simulations and predictions (y-axis) across 100 recombination rate bins

(x-axis)
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Figure S4 Recombination rate predictions for a simulated Drosophila chromosome (black line)
using ReLERNN (red line). The recombination landscape was simulated for n = 4 chromosomes
under mutation-drift equilibrium using msprime (Kelleher et al., 2016), with per-base crossover
rates derived from D. melanogaster chromosome 2L (Comeron et al., 2012). Gray ribbons repre-
sent 95% confidence intervals. R2 is reported for the general linear model of predicted rates on
true rates and mean absolute error was calculated across all 100 kb windows.
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Figure S5Mean squared error for ReLERNN predictions on 10 replicates of 1000 test simulations
using 100% correctly phased input genotypes and completely unphased genotypes. All simula-

tions used the recombination map derived from D. melanogaster chromosome 2L (Comeron et al.,
2012).
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Figure S6 Recombination rate predictions from Pool-seq data for a simulated Drosophila chro-
mosome (black line) using ReLERNN (red line). The recombination landscape was simulated for

n = 50 chromosomes and a read depth of 50X, under mutation-drift equilibrium using msprime
(Kelleher et al., 2016), with per-base crossover rates derived from D. melanogaster chromosome
2L (Comeron et al., 2012). Gray ribbons represent 95% confidence intervals. R2 is reported for the
general linear model of predicted rates on true rates and mean absolute error was calculated

across all 100 kb windows.
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Figure S7 Recombination rate predictions from Pool-seq data for a simulated Drosophila chro-
mosome (black line) using ReLERNN (red line). The recombination landscape was simulated for

n = 50 chromosomes and a read depth of 250X, under mutation-drift equilibrium using msprime
(Kelleher et al., 2016), with per-base crossover rates derived from D. melanogaster chromosome
2L (Comeron et al., 2012). Gray ribbons represent 95% confidence intervals. R2 is reported for the
general linear model of predicted rates on true rates and mean absolute error was calculated

across all 100 kb windows.

R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911R2 = 0.911
MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08MAE = 1.23e−08

0.0e+00

2.5e−08

5.0e−08

7.5e−08

1.0e−07

0 5 10 15 20

Chromosome position (Mb)

R
ec

om
bi

na
tio

n 
ra

te
 (

c/
bp

) Dmel  2L   
ReLERNN

Figure S8 Recombination rate predictions for a simulated Drosophila chromosome (black line)
using ReLERNN (red line). The recombination landscape was simulated for n = 20 chromosomes
under mutation-drift equilibrium using msprime (Kelleher et al., 2016), with per-base crossover
rates derived from D. melanogaster chromosome 2L (Comeron et al., 2012). Here the per-base
mutation rate was assumed to be 50% less than the rate used for simulation. Gray ribbons repre-

sent 95% confidence intervals. R2 is reported for the general linear model of predicted rates on
true rates and mean absolute error was calculated across all 100 kb windows.
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Figure S9 Recombination rate predictions for a simulated Drosophila chromosome (black line)
using ReLERNN (red line). The recombination landscape was simulated for n = 20 chromosomes
under mutation-drift equilibrium using msprime (Kelleher et al., 2016), with per-base crossover
rates derived from D. melanogaster chromosome 2L (Comeron et al., 2012). Here the per-base
mutation rate was assumed to be 50% greater than the rate used for simulation. Gray ribbons

represent 95% confidence intervals. R2 is reported for the general linear model of predicted rates
on true rates and mean absolute error was calculated across all 100 kb windows.
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Figure S10 Recombination rate predictions for a simulated Drosophila chromosome (black line)
using ReLERNN (red line). The recombination landscape was simulated for n = 20 chromosomes
under mutation-drift equilibrium using msprime (Kelleher et al., 2016), with per-base crossover
rates derived from D. melanogaster chromosome 2L (Comeron et al., 2012). Here the per-base
mutation rate was assumed to be equal to the true rate, but �max was assumed to be

�max
5
. Gray

ribbons represent 95% confidence intervals. R2 is reported for the general linear model of pre-
dicted rates on true rates and mean absolute error was calculated across all 100 kb windows.
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Figure S11 Recombination rate predictions for a simulated Drosophila chromosome (black line)
using ReLERNN (red line). The recombination landscape was simulated for n = 20 chromosomes
under mutation-drift equilibrium using msprime (Kelleher et al., 2016), with per-base crossover
rates derived from D. melanogaster chromosome 2L (Comeron et al., 2012). Here the per-base
mutation rate was assumed to be equal to the true rate, but �max was assumed to be

�max
2
. Gray

ribbons represent 95% confidence intervals. R2 is reported for the general linear model of pre-
dicted rates on true rates and mean absolute error was calculated across all 100 kb windows.
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Figure S12 Recombination rate predictions for a simulated Drosophila chromosome (black line)
using ReLERNN (red line). The recombination landscape was simulated for n = 20 chromosomes
under mutation-drift equilibrium using msprime (Kelleher et al., 2016), with per-base crossover
rates derived from D. melanogaster chromosome 2L (Comeron et al., 2012). Here the per-base
mutation rate was assumed to be equal to the true rate, but �max was assumed to be 2�max. Gray
ribbons represent 95% confidence intervals. R2 is reported for the general linear model of pre-
dicted rates on true rates and mean absolute error was calculated across all 100 kb windows.
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Figure S13 (A) Fine-scale rate predictions generated by ReLERNN for simulated recombination
hot spots of varying lengths (lengtℎ ∈ {2kb, 4kb, 6kb, 8kb, 10kb}, rbackground = 2.5e−9, rℎotspot = 1.25e−7)
for n = 4 and (B) n = 20 chromosomes.
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Figure S14 Distribution of absolute error (|rpredicted − rtrue|) for each method across 5000 simulated
chromosomes (1000 for FastEPRR). Independent simulations were run under a model of demo-

graphic equilibrium. Sampled chromosomes indicate the number of independent sequences that

were sampled from each msprime (Kelleher et al., 2016) coalescent simulation. LDhelmet was
not able be used with n = 64 chromosomes, and FastEPRR was not able to be used with n = 4.
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Figure S15 Distribution of absolute error (|rpredicted − rtrue|) for each method across 5000 simulated
chromosomes (1000 for FastEPRR). Independent simulations were run under a model of popula-

tion size expansion (see methods). Sampled chromosomes indicate the number of independent

sequences that were sampled from each msprime (Kelleher et al., 2016) coalescent simulation.
LDhelmet was not able be used with n = 64 chromosomes, and FastEPRR was not able to be used
with n = 4.
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Figure S16 Distribution of absolute error (|rpredicted − rtrue|) for each method across 5000 simulated
chromosomes after model misspecification. For the CNN and ReLERNN, predictions were made

by training on demographic simulations while testing on sequences simulated under equilibrium.

For LDhat and LDhelmet, the lookup tables were generated using parameters values that were

estimated from simulations where the model was misspecified in the same way as described

for the CNN and ReLERNN above. Sampled chromosomes indicate the number of independent

sequences that were sampled from each msprime (Kelleher et al., 2016) coalescent simulation.
LDhelmet was not able be used with n = 64 chromosomes and the demographic model could not
be intentionally misspecified using FastEPRR.
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Figure S17 Distribution of absolute error (|rpredicted − rtrue|) for each method across 5000 simulated
chromosomes after model misspecification. For the CNN and ReLERNN, predictions were made

by training on equilibrium simulations while testing on sequences simulated under a model of

population size expansion. For LDhat and LDhelmet, the lookup tables were generated using

parameters values that were estimated from simulations where the model was misspecified in

the same way as described for the CNN and ReLERNN above. Sampled chromosomes indicate

the number of independent sequences that were sampled from each msprime (Kelleher et al.,
2016) coalescent simulation. LDhelmet was not able be used with n = 64 chromosomes and the
demographic model could not be intentionally misspecified using FastEPRR.
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Figure S18 Distribution of marginal error attributed to model misspecification across 5000 simu-
lated chromosomes. Predictions were made by training on equilibrium simulations and testing

on sequences simulated under a demographic model (left) or training on demographic simu-
lations and testing on sequences simulated under equilibrium (right). Here, marginal error is
represented as �m − �c , where �m and �c are equal to |rpredicted − rtrue| when the model is misspecified
and correctly specified, respectively. Sampled chromosomes indicate the number of independent

sequences that were sampled from each msprime (Kelleher et al., 2016) coalescent simulation.

0

1

2

3

4

5

0 1 2 4 8
Gene conversion to crossover ratio

P
re

di
ct

ed
 / 

tr
ue

LDhelmet
ReLERNN

Figure S19 Distribution of predicted rates of recombination over true rates for 5000 examples
simulated with gene conversion and n = 8. The ratio of gene conversion to crossovers was drawn
from U (0, rGC

rCO
), with rGC

rCO
∈ {0, 1, 2, 4, 8}. Gene conversion tract lengths were fixed at 352 bp. All

simulations were completed in ms (Hudson, 2002).
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Figure S20 (A) Distribution of raw error (rpredicted − rtrue) for LDhelmet (Chan et al., 2012) and ReL-
ERNN when presented with varying levels of genome inaccessibility for simulations with n = 4 and
(B) n = 20 chromosomes. (C) Fine-scale rate predictions generated by ReLERNN for a recombina-
tion landscape (grey line) simulated with varying levels of genome inaccessibility, for n = 4 and (D)
n = 20 chromosomes.
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Figure S21 Historical population size estimates were inferred for Cameroon, Rwanda, and Zam-
bia using three separate methods, all of which disagree with one another. Inferences are based

on 10 samples for both stairwayplot (grey line) and SMC++ (orange line), and 2 samples for

MSMC (purple line).
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Figure S22 Historical population size estimates were inferred for Cameroon, Rwanda, and Zam-
bia using three separate methods. Here, inferences are based on 10 samples for both stairway-

plot (grey line) and SMC++ (orange line), and 10 samples for MSMC (purple line).

Cameroon Rwanda Zambia

Epochs

Figure S23 ReLERNN test results for Cameroon, Rwanda, and Zambia when trained under as-
sumptions of mutation-drift equilibrium. (Top) Scatter plot of raw (unnormalized) predictions for
1000 test examples using ReLERNN with the same parameters used in Figure 2. Mean absolute
error and mean squared error are shown for each population. (Bottom) Line graph showing the
convergence of loss (measured by mean squared error) over time (epochs) during training on the

same data as above, for both the training set (blue lines) and the validation set (purple lines).
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Figure S24 Genome-wide recombination landscapes for D. melanogaster populations from
Cameroon (teal lines), Rwanda (purple lines), and Zambia (orange lines). Rates are compared

to those experimentally derived by Comeron et al. (2012) (black lines). All rates have been scales
to 1 Mb windows by using a weighted average (see Materials and Methods). Sample sizes (n = 10)
are the same for all populations.
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Figure S25 (Left) Recombination rate estimates for genomic windows > 2 Mb inside, < 250 kb
surrounding, < 500 kb surrounding, < 1 Mb surrounding, and < 2 Mb surrounding all inversion

breakpoints. (Right) Recombination rate estimates for all genomic windows overlapping win-
dows predicted as either hard/soft sweeps (purple) or as neutral (white) by diploS/HIC (Kern and
Schrider, 2018).

Figure S26 Confusion matrix showing the fraction of test simulation windows assigned to each
of five prediction categories by diploS/HIC (Kern and Schrider, 2018): hard, hard-linked, soft, soft-
linked, and neutral. The y-axis shows the location of the window being classified relative to the

selected window.
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Figure S27 (Top) Recombination landscapes for Zambian D. melanogaster surrounding In(2L)t,
sampled at different inversion frequencies. The grey box denotes the inversion boundaries of

In(2L)t in Drosophila (Corbett-Detig and Hartl, 2012). (Bottom) Recombination rate estimates
from genomic windows within the inversion, within a 3 Mb region flanking the inversion, and 3

Mb outside the inversion, sampled at different inversion frequencies.
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Figure S28 Recombination rate estimates using flanking window sizes from 1-5 Mb. Rates are
shown for genomic windows within the inversion, within regions flanking the inversion, and for

regions outside both the inversion and flanking regions. All estimates are from chromosome 2L

with In(2L)t sampled at different inversion frequencies
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