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Abstract 

Combining both short and long-read sequencing, we have estimated the almond Prunus 

dulcis cv. Texas genome size in 235 Mbp and assembled 227.6 Mb of its sequence. The 

highly heterozygous compact genome of Texas comprises eight chromosomes, to which 

we have anchored over 91% of the assembly. We annotated 27,042 protein-coding genes 

and 6,800 non-coding transcripts. High levels of genetic variability were characterized 

after resequencing a collection of ten almond accessions. Phylogenomic comparison with 

the genomes of 16 other close and distant species allowed estimating that almond and 

peach diverged around 5.88 Mya. Comparison between peach and almond genomes 

confirmed the high synteny between these close relatives, but also revealed high numbers 

of presence-absence variants, many attributable to the movement of transposable 

elements (TEs). The number and distribution of TEs between peach and almond was 

similar, but the history of TE movement was distinct, with peach having a larger 

proportion of recent transpositions and almond preserving a higher level of polymorphism 

in the older TEs. When focusing on specific genes involved in key characters such as the 

bitter vs. sweet kernel taste and the formation of a fleshy mesocarp, we found that for one 

gene associated with the biosynthesis of amygdalin that confers the bitter kernel taste, 

several TEs were inserted in its vicinity only in sweet almond cultivars but not in bitter 

cultivars and Prunus bitter kernel relatives, including P. webbii, P. mume, and other 

species like peach and cherry. TE insertions likely to produce affects in the expression of 

six more genes involved in the formation of the fleshy mesocarp were also identified. 

Altogether, our results suggest a key role of TEs in the recent history and diversification 

of almond with respect to peach. 
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Introduction 

Almond, Prunus dulcis (Miller) D.A. Webb (syn. P. amygdalus Batsch), is a rosaceous 

tree species cultivated for its seeds, which has a diploid (2n=2x=16) and compact genome 

(~250 Mbp). The Prunus genus comprises a group of approximately 200 species, some 

of which of high economic value, such as the stone fruit (peach, apricot, cherry and plum) 

and almond. The high level of genomic resemblance and synteny in the species of this 

genus (Dirlewanger et al. 2004) enables producing hybrids between some of them that 

are often fertile.  

Humans used almond as food long before the advent of agriculture, and the oldest remains 

have been found in Israel, dating from 19,000 years ago (Kislev et al. 1992), although its 

domestication occurred probably 14,000 years later (Spiegel-Roy 1976). The origin of 

the almond tree is not well established, with its closest wild relatives living in Central and 

Western Asia, stretching from the Himalayas to the eastern Mediterranean basin (Yazbek 

and Al-Zein, 2014). Based on the distribution of the cultivated species, two alternative 

hypotheses place the domestication site of almond in the Levant (Browicz and Zohary, 

1996) or in central Asia (Ladizinsky 1999). Diamond (1997) proposed almond as an 

example of simple domestication, where a dominant mutation at a single gene conferring 

sweet taste to the otherwise bitter and toxic kernel would result in an edible and cultivable 

crop. This gene, sweet kernel Sk/sk, was initially described by Heppner (1923) and later 
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mapped to the central region of chromosome 5 (Sánchez-Pérez et al. 2007), although the 

causal DNA sequence remains to be identified. The closest relatives of almond are within 

the Amygdalus subgenus, encompassing peach [P. persica (L.) Batsch] and a group of 25 

wild species (Yazbek and Al-Zein, 2014). Peach and almond hybrids are fertile. In fact, 

peach was proposed by Darwin (1868) as a possible direct derivative of almond with a 

fleshy, non-dehiscent and juicy mesocarp. However, molecular phylogenetics has 

identified a clear separation between peach and almond consistent with their geographic 

origin and distribution: peach and its closest relatives are native to China and eastern Asia, 

whereas almond and its wild relatives are native to central and western Asia (Delplancke 

et al. 2016).  

The genome sequences of some Prunus species are available, including the high-quality 

genome of peach (Verde et al. 2013), and those of sweet cherry (P. avium L.) (Shirasawa 

et al. 2017), mume (P. mume L.), a relative of apricot (Zhang et al. 2012), and P. 

yedoensis, a wild cherry tree (Baek et al. 2018), the latter two used for ornamental 

purposes. In this paper, we present the whole genome sequence of almond cv. Texas, a 

self-incompatible and highly heterozygous genotype that was obtained in the United 

States from materials imported from Western Europe. Texas (also called Texas Prolific 

and Mission) was bred at Houston, Texas (US), as a seedling of French cultivar 

Languedoc (Wickson 1910), and became one of the leading cultivars of California in the 

last century along with ‘Nonpareil’ (Kester et al. 1991). Texas was also one of the parents 

- the other was peach cv. Earlygold - of the interspecific progeny used for the construction 

of the reference linkage map of Prunus (Joobeur et al. 1998). In this paper we describe 

the genome sequence of Texas almond and compare it with other sequenced genomes, 

including that of its close relative peach. We found that, in addition to other aspects of 
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diversity between these genomes already reported (Velasco et al. 2016; Yu et al. 2018), 

transposable elements (TEs) played a key role in their short-term diversification.       

 

Methods 

DNA extraction, sequencing and K-mer analysis 

Fresh young leaves of the Texas almond were ground in liquid nitrogen to a fine powder, 

and 100 mg of ground leaves were used for DNA extraction using the DNeasy® Plant 

Mini Kit (Qiagen, Valencia) according to the instructions of the manufacturer. The same 

method was employed for the extraction of ten additional almond cultivars (Aï, Belle 

d’Aurons, Cristomorto, Desmayo largueta, Falsa Barese, Genco, Marcona, Nonpareil, 

Ripon and Vivot), eleven peach cultivars (Armking, Belbinette, BigTop, Blanvio, 

Catherine, Earlygold, Flatmoon, Nectalady, Platurno, Sweetdream and Tiffany) and one 

accession of the wild almond P. webbii (R755). For sequencing with Oxford Nanopore 

Technologies (ONT) nanopore-based MinION sequencer, high molecular weight DNA 

from Texas almond was extracted with the method described by Mayjonade et al. (2016). 

For Texas, whole genome shotgun sequencing was performed using the Illumina 

HiSeq2500 and MiSeq sequencing instruments. The standard Illumina protocol with 

minor modifications was followed for the creation of short-insert paired-end libraries 

(Illumina Inc., Cat. # PE-930-1001). In brief, three libraries were generated from >2.0 μg 

of genomic DNA each. For one library the DNA was amplified by PCR while the other 

two libraries (and majority of sequence), the DNA was not amplified in order to reduce 

GC-bias. Then the DNAN was sheared on a Covaris™ E220, the fragmented DNA was 

size selected on an agarose gel to obtain three PE libraries with incremental insert sizes 

of 263 bp, 317 bp and 354 bp. The fragments were end-repaired, adenylated and ligated 
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to Illumina indexed paired-end adaptors. The PE libraries were run on the of Illumina 

HiSeq2000 platform in 2x101 paired end mode according to standard Illumina operation 

procedures. Primary data analysis was carried out with the standard Illumina pipeline 

(HCS 2.0.12.0, RTA 1.17.21.3). A total of 97 Gb of raw sequence (>350x coverage) were 

produced. Post-processing of sequence reads involved detection and trimming of Illumina 

adapter sequence with cutadapt, quality trimming with trim_galore, and paired end 

overlap detection and merging with FLASH. 

For the almond cultivars other than Texas and the peach and P.webbii accessions, we 

developed PE libraries of insert size 263 and Illumina sequenced as described in the 

previous paragraph. 

Mate pair (MP) libraries of Texas DNA (3.1 and 5.2 kb fragment sizes) were constructed 

according to the Nextera Mate Pair Preparation protocol, which leaves a linker of known 

sequence at the junction. The resulting libraries were run on the HiSeq2000 platform in 

2x101bp read length runs. Post-processing of sequence reads involved detection and 

trimming of the Nextera linker sequence with cutadapt, and quality trimming with 

trim_galore. 

A Texas fosmid library was constructed in the pNGS vector (Lucigen). Sixty-eight pools 

of ~500 clones per pool were made, and the purified DNA used to construct short-insert 

paired-end libraries. TruSeq™DNA Sample Preparation Kit v2 (Illumina Inc.) and the 

KAPA Library Preparation kit (Kapa Biosystems) were used.  Briefly, 2.0 µg of genomic 

DNA were sheared on a Covaris™ E220, size selected and concentrated using AMPure 

XP beads (Agencourt, Beckman Coulter) in order to reach the fragment size of about 

250bp. The fragmented DNA was end-repaired, adenylated and ligated to Illumina 

specific indexed paired-end adaptors. All libraries were quantified by Library 

Quantification Kit (Kapa Biosystems). The pools were sequenced using TruSeq SBS Kit 
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v3-HS (Illumina Inc.), in paired-end mode, 2x150bp (45 libraries) and 2x250bp (23 

libraries), in a fraction of a sequencing lane of HiSeq2500 flowcell (Illumina Inc.) 

according to standard Illumina operation procedures.  

Jellyfish v2.2.6 (Marçais & Kingsford 2011) was run on the PE300 library (insert size 

317bp, 2x100nt reads) with the Canonical kmer (-C) option and a mer-size of 21. 

GenomeScope (Vurture et al. 2017) was then used to analyze the resulting k-mer 

distribution. ONT reads were error-corrected using Canu (v1.5) (Koren et al. 2017). 

Corrected trimmed reads were used for hybrid assembly, scaffolding and assembly 

correction. 

 

Genome assembly 

Given the relatively small size of the genome, we had the opportunity to experiment with 

different assembly strategies: 

1. Whole genome shotgun (WGS) assembly based on paired-end (PE) and mate-pair 

(MP) 100nt read Illumina libraries. 

2. Fosmid pool sequencing (150-250nt PE reads) and assembly combined with the WGS 

data. 

3. Long read (ONT nanopore reads) and short read (Illumina PE) WGS hybrid assembly. 

The short read WGS assembly with AbySS v1.3.6 (Simpson et al. 2009) resulted in a 

fragmented assembly (N50=4867 bp) with inflated genome size (512 Mbp). 

Heterozygosity and repeats were clearly going to be a problem. Fosmid-pool sequencing 

and assembly as previously described (Cruz et al. 2016; Abascal et al. 2016) increased 
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contiguity (N50=142 kb) and reduced the assembly size (238 Mbp); however, the 

resulting assembly exhibited high levels of discordance with the available genetic maps, 

as well as with the peach assembly (v2.0.1). The final strategy, which included additional 

nanopore sequencing, resulted in the best balance of contiguity and concordance with the 

genetic map. 

MaSuRCA v3.2.3 (Zimin et al. 2013) was run with default parameters (no linking mates; 

Celera assembly of super-reads). The input were the two PE Illumina libraries of insert 

sizes 317bp and 354bp for a total of 285x coverage (Table S1) and the self-corrected ONT 

reads for a total of ~20x coverage. 

Redundans v0.13 (Pryszcz & Gabaldón 2016) was run on the non-deduplicated output of 

MaSuRCA (the step 9-terminator genome.ctg.fasta file totaling 470Mb with N50=53kb) 

using the --longreads option for scaffolding, reducing the size of the assembly to 248Mb, 

211Mb of which was scaffolded further with the ONT reads.  

A first round of corrections to the assembly was carried out using consistency with 

nanopore data as the main criteria. Nanopore reads were mapped to the assembly with 

NGM-LRv0.2.6 (Sedlazeck et al. 2018), the assembly was broken at regions of zero 

coverage and then re-scaffolded with SSPACE-LongRead v1.1 (Boetzer and Pirovano 

2014). A second round of corrections was made utilizing collinearity with the (Texas 

almond x Earlygold peach; TxE) genetic F2 and BC1 (to Earlygold) maps (Donoso et al. 

2015) as the main criterion, with break points guided by synteny with the peach genome 

and coverage of nanopore reads. Peach transcripts (annotation Pp2.01a) were mapped to 

the almond assembly with GMAP v2014-12-23 (Wu and Watanabe 2005). Marker 

sequences were mapped with BWA mem keeping those mappings with mapping quality 
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≥20 and identity ≥90%. The broken assembly was again scaffolded with SSPACE-LR. 

The assembly at this stage had a contig N50 of 99kb and scaffold N50 of 151kb. 

A third round of corrections was performed with improvements in mapping and break 

detection. First, peach transcripts were mapped only in the sense direction, and second, 

discrepant marker mappings were screened for mapping artifacts. Moreover, Sniffles 

v1.0.11 (Sedlazeck et al. 2018) was used for structural variant detection. Additional 

breaks were made and duplicate sequences were also detected. In the end, we were able 

to merge 30Mb with minimus2 from AMOS v3.1.0 (Sommer et al. 2007; Treangen et al. 

2011) and remaining duplicate sequence (>99% identical, >5kb) was manually reviewed. 

Overlapping regions were joined into new longer contigs using nanopore read mappings 

to confirm new joins. Also at this stage, putative chloroplast sequence was identified by 

coverage and homology and set aside. 

Finally, the assembly was anchored to pseudomolecules using both the TxE genetic map 

and synteny with the peach genome using ALLMAPS (jcvi-0.7.3) (Tang et al. 2015), with 

more weight given to the map marker order. Remaining conflicts were resolved manually. 

ALLMAPS uses a genetic algorithm for placing and orienting scaffolds, and sometimes 

it does not converge completely on the optimal solution, even with a large number of 

generations. Thus, we had to manually review and fix the order and orientation of some 

scaffolds which still exhibited discordance with either the genetic map or synteny with 

peach. Further improvement to the assembly was made by joining adjacent scaffolds if 

they could be linked together with split nanopore read mappings. A few additional 

overlaps were also detected in this fashion and longer contigs were constructed. 

Assembly completeness was estimated in two ways. First, gene completeness was 

determined by running BUSCO v3.0.2 (Simão et al. 2015) using the embryophyta_odb9 
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database comprising 1,440 single-copy plant orthologous groups (BUSCOs). Second, a 

pairwise comparison of k-mers present in both input reads and the assembly was 

performed using KAT (Mapleson et al. 2017) using all WGS PE Illumina reads and a k-

mer length of 27 (Figure S1). 

 

Comparison of the P. dulcis anchored assembly to the linkage map and peach 

v2.0 a1 genome sequence 

The almond assembly was compared to the TxE linkage map that contains 1,833 SNP 

markers (Donoso et al. 2015). Markers were mapped onto the almond pseudomolecule-

based assembly using BLAST and coordinate data of both almond and peach were used 

as input in MapChart software (Voorrips et al., 2002) for representing graphically the 

comparison between the two species. Genetic and physical distance of SNP markers from 

the TxE population were used for calculating the recombination rate across the 

pseudomolecules of the almond assembly. In-house python scripts were used for 

generating the corresponding graphs. 

The peach genome sequence and annotation data were downloaded from GDR ftp site 

(ftp://ftp.bioinfo.wsu.edu/species/Prunus_persica/Prunus_persica-genome.v2.0.a1/). 

Synteny between almond with peach genomes was assessed using the SyMap software 

v4.2 (Soderlund et al., 2006) with default parameters, except that the “min dot” parameter 

was set to 25. 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted June 6, 2019. ; https://doi.org/10.1101/662676doi: bioRxiv preprint 

ftp://ftp.bioinfo.wsu.edu/species/Prunus_persica/Prunus_persica-genome.v2.0.a1/
https://doi.org/10.1101/662676


11 
 

 

Annotation 

The annotation of the P. dulcis genome assembly was performed by combining transcript 

alignments, protein alignments and ab initio gene predictions. A flowchart of the 

annotation process is shown in Figure S2 

First, almond RNAseq reads were downloaded from NCBI with the accession number 

SRR1251980 and aligned to the genome with STAR (v-2.5.3a) (Dobin et al. 2013). 

Transcript models were subsequently generated using Stringtie (v1.0.4) (Pertea et al. 

2015) and, along with the P. persica transcriptome (annotation Pp2.0a) and 4,509 almond 

ESTs downloaded from NCBI on July 2015, were assembled into a non-redundant set by 

PASA (v2.3.3) (Haas et al. 2008). The TransDecoder program, which is part of the PASA 

package, was run on the PASA assemblies to detect coding regions in the transcripts. 

Second, the complete Rosaceae proteome was downloaded from Uniprot on July 2015 

and aligned to the genome using Exonerate (v2.4.7) (Slater and Birney, 2005). Third, ab 

initio gene predictions were performed on the repeat masked pdulcis26 assembly with 

three different programs: GeneID v1.4 (Alioto et al. 2018), Augustus v3.2.3 (Stanke et al. 

2006) and GeneMark-ES v2.3e (Lomsadze et al. 2014) with and without incorporating 

evidence from the RNAseq data. Finally, all the data was combined into consensus CDS 

models using EvidenceModeler-1.1.1 (EVM) (Haas et al. 2008). Additionally, UTRs and 

alternative splicing forms were annotated through two rounds of PASA annotation 

updates. 

The annotation of non-coding RNAs was produced by running the following steps. First, 

the program cmsearch v1.1 (Cui et al. 2016) from the INFERNAL package (Nawrocki 

and Eddy 2013) was run against the RFAM (Nawrocki et al. 2015) database of RNA 
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families (v12.0). Also, tRNAscan-SE v1.23 (Lowe & Eddy 1997) was run to detect the 

transfer RNA genes present in the genome assembly. To annotate long non-coding RNAs 

(lncRNAs) we first selected PASA-assemblies that had not been included in the 

annotation of protein-coding genes. Those longer than 200bp and whose length was not 

covered at least in an 80% by a small ncRNA were incorporated into the ncRNA 

annotation as lncRNAs. The resulting transcripts were clustered into genes using shared 

splice sites or significant sequence overlap as criteria for designation as the same gene. 

 

Functional annotation 

Functional annotation was performed using an in-house pipeline that integrates several 

data sources to infer protein function based on sequence similarity to annotated sequences 

or/and presence of particular domains and sequence motifs. We used InterPro (Hunter et 

al. 2011), KEGG (Kanehisha et al. 2012), signalP (Petersen et al. 2011), and NCBI 

CDsearch (Manchler-Bauer et al. 2011) databases.  InterProScan v.5.19-58 (Zdobnov et 

al. 2001) was used to scan though all available InterPro databases, including PANTHER, 

Pfam, TIGRFAM, HAMAP and SUPERFAMILY. Initial sequence similarity search was 

determined using BLASTP v.2.6.0+ against NCBI non-redundant (NR) collection of 

protein sequences (release 2018-08). KEGG orthology (KO) groups were assigned by 

KEGG Automatic Annotation Server (KAAS) (Moriya et al. 2007) using the bi-

directional best hit (BBH) method against a representative gene set from 27 different 

species, which includes a core set of species for gene annotation and additional plant 

species from the Rosaceae family. KO identifiers were then used to retrieve the KEGG 

relevant functional annotation using the KEGG REST-based API service, KEGG release 

v.87.1. 
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To predict plant disease resistance genes, each protein was searched against a manually 

curated list of ‘reference’ R-genes with the DRAGO pipeline (Sanseverino et al. 2013). 

For each hit, classes were assigned based on combination of specific domains, such as 

TIR (Toll-Interleukin like Region), NBS (Nucleotide Binding site), LRR (Leucine-Rich 

Region), or coiled-coil domain. Putative transcription factor genes were predicted by 

using the Plant Transcriptional Factor database (Jin et al. 2017) v.4.0 

 

 

Annotation and analysis of transposable elements in genome assemblies 

 

The Ilumina paired-end reads corresponding to the resequencing of the almond and 

peach varieties described in section 2.1 have been trimmed with SKEWER (version 0.2.2, 

--mean-quality 25, --min 35) and aligned to their respective reference genome with BWA-

aln/sampe1 (version 0.7.5, parameters: -t 6, -n 5, -o 1, -e 3) (Li and Durbin, 2009) and 

SAMTOOLS (version 0.1.18) (Li 2011). Bam files were later submitted to the package 

PINDEL (version 0.2.5, parameters: -T 4, -x 5, -r false, -t false, -A 35) (Ye et al. 2009) to 

identify deletions in samples. Transposable elements (TE) were annotated in P. dulcis 

and P. persica assemblies using TEdenovo and TEannot pipelines of the REPET package 

(Quesneville et al., 2005; Flutré et al, 2011) installed in the PiRATE virtual machine 

(Berthelier et al., 2018). Classification of TEdenovo consensus sequences at the order 

level was done with PASTEC (Hoede et al., 2014). 

TE annotation for masking purposes was obtained using RepeatMasker 

(www.repeatmasker.com) with a reduced TE representative library. The TE 

representatives obtained using the TEdenovo pipeline library were screened for coding 

domains with hmmscan (HMMER 3.1b1, hmmer.org) against the PFAM database (Finn 
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et al., 2016). TE representatives containing regions potentially coding for known domains 

of non-TE proteins usually found in multigene families (kinases, NB-ARC, LRR, TIR) 

or with an N content higher than 30% or a with length shorter than 200 nucleotides were 

discarded. Moreover, all TE representatives not categorized in one of the classical TE 

superfamilies (defined as “noCat” by TEdenovo) were also removed. In total, 661 

representatives were removed from the library. The final library contains 6,898 TE 

representatives. 

MITE-hunter (Han and Wessler, 2010) was run to detect potential MITE families. In order 

to complete the annotation the potential almond MITE families were combined with the 

P. persica family annotation available in PMITE database (families carrying TSD) (Chen 

et al. 2014). These sequences were grouped in clusters of 90% identity with cd-hit (Fu et 

al., 2012) to remove redundancy and produce a final library of family representatives. 

RepeatMasker (http://www.repeatmasker.org/) was run to annotate all regions having 

significant similarity to MITE families, and the results were filtered to retain only full-

length elements (consensus length ± 20%). The same pipeline was used to identify MITEs 

in the P. persica assembly. 

Long Terminal Repeat retrotransposon (LTR-retrotransposon) candidates were predicted 

by running LTRharvest (Ellinghaus et al. 2008) with default parameters. The internal 

conserved domains of these elements were identified using HMMER hmmscan (Johnson 

et al. 2010) and only coding elements were retained for further analyses. Elements 

displaying either a single hit on the genome, more than 10% of gaps or more than 50% of 

tandem repeats were filtered out. Classification of the remaining elements (hereafter 

referred as “coding LTR-retrotransposons”) into Copia and Gypsy superfamilies was 

performed based on the order of the internal coding domains, as defined by Xiong & 

Eickbush (1990). Elements lacking one or more domains were tagged as “incomplete”.  
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The LTR regions of every coding element were extracted and aligned with MUSCLE 

(Edgar et al. 2004). Kimura 2P distance of every aligned LTR pair was calculated and 

used to estimate insertion ages following the approach described in San Miguel et al. 

(1998), using a substitution rate of 10−8 nucleotides per site per year and a generation time 

of 10 years (Velasco et al. 2016). 

The flanking sequences (500bp) of every coding LTR retrotransposon were extracted 

from P. dulcis and used as query for a BLASTn (Altschul et al. 1990) search (cut off E 

value < e-10) against the P. persica assembly, and vice-versa. Concordant mapped flanks 

were defined when both flanks of an element mapped in the same scaffold at a distance 

smaller than 25 kb. Every internal region between two concordant mapped flanks was 

aligned to the putative orthologous element using EMBOSS Needle (Rice et al. 2000). 

The two elements were considered orthologous if they could be aligned over 80% of their 

length with at least 80% of identity. To assess the orthology of MITE insertions the 

approach followed was as the one described for LTR retrotransposons except that the 

sequences flanking the insertions were mapped to the corresponding genome using 

BBmap (https://sourceforge.net/projects/bbmap/) instead of Blast.  

In order to search for polymorphic LTR-retrotransposon and MITE insertions within or 

close to genes we used BEDTools (version 2.27.0) (Quinlan and Hall, 2010). Only TEs 

located within genes or at less than 1000 nt upstream of a gene were kept.  

 

Analysis of DNA methylation in almond and peach 

After bisulfite conversion, DNA from P. dulcis (cv. Texas, almond) and P. persica (var. 

“Earlygold”, peach) young leaves was sequenced using Illumina (Hi-Seq, 2 × 101‐nt read 
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length). Raw reads were trimmed with TrimGalore! version 0.4.5 

(http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/). Low quality bases 

(Phred score < 20) were trimmed before adapter removal and reads with a length less than 

20 were discarded. The total of trimmed reads was 82,073,678 and 94,040,426 in almond 

and peach, respectively. Trimmed reads of each species were mapped to their respective 

reference genome and methylation was analyzed using Bismark version 0.19.1 (Krueger 

and Andrews, 2011). The gene/TE methylation was analyzed with SeqMonk version 1.41 

(http://www.bioinformatics.babraham.ac.uk/projects/seqmonk/). Only cytosine positions 

that had been sequenced at least three times were included.  

 

Analysis of the CYP71AN24 locus in Prunus related species and almond 

varieties. 

A two Mb region of the P. dulcis genome containing the CYP71AN24 gene was compared 

to the corresponding genome regions of P. avium, P. mume, P. persica using Mauve 

(Darling et al. 2004). Resequencing data from the P. dulcis varieties Texas, Marcona, 

Cristomorto, D05-187 (SRX245830) and S3067 (SRX245832), as well as from P. webbii 

(R755), were mapped to the almond reference genome using BWA aln/sampe (Li and 

Durbin, 2009) 

 

P. dulcis phylome reconstruction 

 

The P. dulcis and P. persica phylomes – i.e. the complete collection of evolutionary 

histories of all encoded genes - were reconstructed using the PhylomeDB pipeline 

(Huerta-Cepas et al., 2011). In brief, for each protein-coding gene in the almond and 
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peach genome we searched for homologs (Smith-Waterman Blast search, e-value cutoff 

< 1e-05, minimum contiguous overlap over the query sequence cutoff ≥50%) in a 

database containing the proteomes of 17 species with sequenced genomes representing 

most of the important plant families (Table S2). The most similar 150 homologues were 

aligned using three different programs MUSCLE (Edgar, 2004), MAFFT (Katoh et al., 

2005) and KALIGN (Lassmann & Sonnhammer, 2005) in forward and reverse 

orientation. These six alignments were combined using M-COFFEE (Wallace et al., 

2006), and trimmed with trimAl v.1.3 (Capella-Gutiérrez et al., 2009), using a consistency 

cut-off of 0.16667 and a gap threshold of 0.1. Phylogenetic trees were built using a 

Maximum Likelihood approach as implemented in PhyML v3.0 (Guindon & Gascuel, 

2003) using the best fitting model among seven different ones (JTT, LG, WAG, 

Blosum62, MtREV, VT and Dayhoff). The model best fitting the data was determined 

comparing the likelihoods estimated on an initial Neighbor Joining tree topology and 

using the AIC criterion. In all cases we used four rate categories and inferred the fraction 

of invariant positions and rate parameters from the data. Then, these phylomes were 

filtered to remove the gene trees that contain proteins associated to transposon-related 

functional terms. All alignments and trees are available for browsing or download at 

PhylomeDB with the PhylomeID 406 (almond phylome) and 407 (peach phylome) 

(Huerta-Cepas et al., 2014; www.phylomedb.org).     

Orthology and paralogy relationships were predicted based on phylogenetic evidence 

from the almond and peach phylomes. We used ETE v3 (Huerta-Cepas et al., 2010) to 

infer duplication and speciation relationships using a species overlap approach and a 

species overlap score of 0. The relative age of detected duplications was estimated using 

a phylostratigraphic approach that uses the information on which species diverged prior 

and after the duplication node (Huerta-Cepas & Gabaldón, 2011). Duplication 
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frequencies at each node in the species tree were calculated by dividing the number of 

duplications mapped to a given node in the species tree by all the gene trees that contain 

that node. For this analysis, we excluded gene trees that contained large (more than 5 

paralogs) species-specific expansions (expansions that contained more than five 

members). All orthology and paralogy relationships are available through PhylomeDB 

(Huerta-Cepas et al., 2014). 

Gene Ontology (GO) term enrichment analysis was performed using FatiGO (Al-

Shahrour et al., 2007). We compared three lists of proteins against all the other proteins 

encoded in the genome. The three lists were composed of the proteins involved in a 

duplication at the ancestral node of all Prunus species, the proteins specifically lost in 

almond, and the proteins specifically lost in peach. 

The trimmed alignments of 262 genes that had single-copy orthologs in the 17 species 

considered were selected and concatenated. The final alignment containing 141,911 

amino acid positions was used to reconstruct the maximum likelihood species tree with 

PhyML v3.1 (Guindon et al., 2010) using the LG amino acid substitution model, and 100 

bootstrap replicates. Additionally, a super-tree was reconstructed using all trees in the 

phylome and a gene tree parsimony approach as implemented in duptree (Wehe et al. 

2008). 

Divergence dates were estimated on the topology derived from the Maximum Likelihood 

approach by using the Bayesian relaxed molecular clock approach as implemented in 

PhyloBayes v4.1c (Lartillot et al. 2013). An uncorrelated relaxed clock model was 

applied, and four fossil constraints specified to the most recent common ancestor: Prunus 

(47.8 Mya, Li et al. 2011), Rosaceae (98.25 Mya, Crepet and Nixon, 1996, Zhang et al. 

2017), split between Fagales and Cucurbitales (84 Mya, Herendeen et al. 1995, Sims et 

al. 1998, Wikström et al. 2001), Eudicots (124 Mya, Hughes and McDougall, 1990). 
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These calibration constraints were used with soft bounds (Yang and Rannala, 2006) under 

a birth-death prior, and a prior on the root of the tree (183 Mya) (Bell et al., 2010). Two 

independent MCMC chains were run for 20,000 cycles, sampling posterior rates and dates 

every 10 cycles. The initial 25% were discarded as burn-in. Posterior estimates of 

divergence dates and associated 95% credibility intervals were then computed from the 

remaining samples of each chain. 

 

Resequencing of almond cultivars and almond-peach structural genome 

variability comparison 

Genetic variability analysis was performed on ten almond traditional cultivars and one 

peach cultivar, Earlygold, that was used as outgroup. These accessions were resequenced 

using paired-end Illumina sequencing as described in section 2.1. Selection of the almond 

lines was based on their origin as representing a range of the major areas of production in 

Europe (France, Spain, Italy) and the USA, and morphological characteristics (shell 

hardness, bloom time and self-incompatibility) (Table S3). Earlygold is the peach cultivar 

that was used with Texas almond to create the linkage map that is used as the reference 

for Prunus (Dirlewanger et al. 2004).  

Paired-end Illumina sequencing data from the almond varieties were trimmed (length ≥ 

35bp, mean sliding window of 4bp phred quality score ≥ 20) using Trimmomatic (Bolger 

AM et al., 2014) and the output was quality checked using FastQC 

(https://www.bioinformatics.babraham.ac.uk/projects/fastqc/). Trimmed data were 

aligned against the almond assembly using the BWA-MEM algorithm v0.7.16a-r1181 

(http://bio-bwa.sourceforge.net/bwa.shtml) with default parameters. After removal of 

unmapped reads and marking of PCR duplicates, variant calling was performed using 
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Samtools v1.5 (Li 2011) with default parameters, except from the following: -q 10 -Q 20. 

Variant calling format (VCF) files were filtered by applying the following criteria: global 

quality ≥ 30, genotype quality ≥ 30, 8≤depth≤ 300, biallelic sites, 0.1≤MAF. Graphical 

representation of variant distributions was done with Circos (Krzywinski et al. 2009) in 

non-overlapping windows. 

Large deletions between almond and peach resequencing data were identified by 

comparing with the almond assembly using Pindel (Ye et al. 2009) using default 

parameters and an insert size of 300bp for all the samples. Peach- and almond-specific 

deletions were obtained by selecting positions with at least 20 reads/cultivar supporting 

the event. We also removed deletions that overlapped with N-regions (±1000bp) in the 

almond genome. We considered that a position overlaps with a TE if at least one of the 

two elements, the deletion or the TE, had at least 80% of its sequence overlapping with 

the other element. 

 P. dulcis contigs were aligned to the P. persica reference genome using Nucmer from 

the Mummer3 package (Delcher et al. 2003). Assemblytics (Nattestad and Schatz, 2016) 

was used to filter the alignment and detect genome-wide variants with the following cut-

offs: Unique sequence length required for considering an alignment = 10, 000 bp, 

minimum variant size= 20bp, maximum variant size= 25,000 bp.  Structural variants were 

intersected with TE annotations of P. dulcis (insertions and repeat expansions) and P. 

persica (deletions and repeat contractions). A variant was considered to be TE-associated 

when at least 50% of its sequence was spanned by a TE.  

 

 

Results  

Sequence analysis and genome size estimation 
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A total of 97 Gb of paired-end Illumina sequence (>350x coverage) and 31.6 Gb of 

Illumina mate-pair sequence were produced. The yield per fosmid pool was on average 

5.2 Gb (3.4 – 9.0 Gb) of raw sequence, corresponding to a sequencing depth of 250x (170-

450x). Oxford Nanopore (ONT) sequencing produced 10.2 Gb of sequence with Q≥7.0 

with a read N50 length of 7.3 kb. More than 82% of reads had an average Q score ≥ 10. 

Error correction with Canu yielded 4.5 Gb of corrected trimmed reads with a read N50 of 

11.5 kb, which were used for assembly. A summary of sequencing library statistics is 

given in Table S1. By analyzing k-mer frequency (Jellyfish/Genomescope), the genome 

size was estimated to be 238 Mb. A plot of k-mer coverage is shown in Figure S3.  

 

Sequence assembly and annotation 

We performed a hybrid assembly strategy combining Illumina and Oxford Nanopore 

sequence data. We collapsed the assembly into a haploid representation and performed a 

series of mis-assembly detection and correction steps before anchoring the assembly to 

eight pseudomolecules, the number of the haploid almond chromosome complement. The 

final assembly, P. dulcis Texas v2.0 (a.k.a. pdulcis26) totals 227.6 Mb (91.5% of which 

is anchored to the eight pseudomolecules) and has a contig and scaffold N50s of 103.9kb 

and 381.5kb, respectively (Table 1). This assembly is available at the Genome Database 

for the Rosaceae (GDR; https://www.rosaceae.org) 

The completeness of the assembly as determined by BUSCO analysis is 96.4%: 95.4% 

complete (89.4% unique and 6.0% duplicated), 1.0% fragmented and 3.6% missing 

BUSCOs. A k-mer analysis (Figure S3) comparing the coverage of k-mers extracted from 

the Illumina reads and their multiplicity in the final assembly confirms the BUSCO 

results, with a small fraction of missing unique sequence as well as some level of 
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duplicated sequence, which can be attributed to the difficulties associated with 

assembling highly heterozygous genomes such as this one. 

In total, we have annotated 27,042 protein-coding genes that produce 33,119 transcripts 

(1.22 transcripts per gene) and encode for 31,654 unique protein products. We were able 

to assign some type of functional annotation to 92% of them. The annotated transcripts 

contain 4.37 exons on average, with 81% of them being multi-exonic (Table 1). In 

addition, we annotated 6,800 non-coding transcripts, of which 3,604 and 3,196 are long 

and short non-coding RNA genes, respectively. 

 

Comparison of the anchored almond assembly with the linkage map and the 

peach sequence 

Out of the 1,833 SNPs that comprise the TxE linkage map (Donoso et al. 2015), 1,609 

(87.8%) mapped onto the almond assembly with single high quality hits (percentage 

identity ≥90% and marker coverage ≥ 90%) (Table S4), with 1,597 (93.4%) mapping onto 

the anchored assembly. Of the anchored SNPs, 1,578 aligned with the pseudomolecules 

and were syntenic and collinear to the eight chromosomes of peach. Only 19 SNPs had a 

different order on the assembly, 12 of which mapped onto a pseudomolecule or scaffold 

that was different from the linkage group of the TxE map (Table S4). Graphs generated 

with MapChart show the high synteny between the almond pseudomolecules and their 

corresponding linkage groups in the TxE genetic map. Minor discrepancies were 

observed for all the pseudomolecules except Pd05 (Figure S4; Table S4), which we 

attributed to contig reordering or minor misassemblies. Similarly, we observed high 

synteny and collinearity between the genome sequence of peach v2.0 a1 (Verde et al. 

2017) and that of the almond Texas generated here (Figure S5). The comparison of 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted June 6, 2019. ; https://doi.org/10.1101/662676doi: bioRxiv preprint 

https://doi.org/10.1101/662676


23 
 

physical vs. genetic distances of the eight pseudomolecules is presented in Figure S6. 

Regions of low recombination rates (horizontal fragments of the curve or fragments with 

low slope) usually coincide with pericentromeric regions and occurred at similar regions 

for every almond chromosome as in the peach genome (Verde et al. 2013). 

 

Transposable element landscape 
 

Using the REPET pipeline we annotated the 38.21% of the almond genome as TE-related 

sequences (Table S5 and S6). The distribution of TEs along almond pseudochromosomes 

shows an inverse correlation with respect to the gene density, with TE-rich regions 

showing low gene density per chromosome, coinciding with pericentromeric regions, and 

lower TE densities in the gene-rich chromosomal arms (Figure 1A). The almond TE 

landscape was compared with that of peach. For that purpose, we annotated peach TEs 

with the same strategy and found very similar results: 37.60% of TE content (Table S5 

and S6) and a comparable TE and gene distribution to that of almond chromosomes 

(Figure 1B). 

In addition to the general TE annotation, we performed a dedicated annotation of the 

LTR-retrotransposons and MITEs in the almond and peach genomes. A conservative 

search for LTR-retrotransposons with a well-preserved structure (i.e. presence of LTRs 

and coding capacity for retrotransposon-related proteins) allowed annotating 

approximately 2,200 elements in both almond and peach (Table S7). Whenever possible, 

these elements were classified as Copia or Gypsy (i.e. when coding regions for both 

integrase and reverse transcriptase were detected, which allowed to classify them) or 

remained as unclassified LTR-retrotransposons. Although the content of these elements 

was similar in both genomes, the number of LTR-retrotransposons that remained 

unclassified in almond was slightly higher. The distribution of the almond and peach 
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retrotransposons along chromosomes was also highly similar, with Gypsy elements 

showing a tendency to concentrate in a central region of chromosomes, probably 

coinciding with the centromeric regions, whereas Copia elements more evenly distributed 

(Figure 1). A conservative search for MITEs with well-preserved TIRs rendered 10,460 

MITEs in almond and 8,738 MITEs in peach (Table S7). The distribution of these 

elements along chromosomes is similar in peach and almond and follows that of Copia 

LTR retrotransposons (Figure 1). 

 

LTR retrotransposon dynamics in almond and peach 

To gain insight into the evolution of almond and peach LTR-retrotransposons, we 

grouped all almond and peach elements into clusters showing sequence identity higher 

than 80% along more than 80% of their length. Most of the elements (66.2%) were 

grouped into clusters of, at least, two elements. Two hundred and fifty-nine clusters (81%) 

were mixed-clusters, and contained 93% of the almond and peach elements. An analysis 

of the insertion times of these LTR-retrotransposons shows that the number of recent (≤5 

Mya) LTR-retrotransposons is clearly higher in peach than in almond (Figure 2A). An 

analysis of the insertion time distribution of individual clusters within LTR 

retrotransposon families (belonging to Gypsy and Copia superfamilies, or that are 

unclassified), shows that many of them contain insertions that are younger in peach as 

compared with almond (Figure S7).  

To further understand LTR-retrotransposon dynamics we analyzed the prevalence in the 

species of the LTR-retrotransposon insertions found in peach and almond reference 

genomes by analyzing resequencing data from ten peach and ten almond cultivars. This 

analysis shows that the LTR-retrotransposon insertions are frequently polymorphic 
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among almond cultivars whereas they appear often fixed in peach. An analysis of the 

insertion time distribution of fixed and polymorphic LTR-retrotransposons in both 

species shows that, whereas an important number of LTR-retrotransposon insertions older 

than the estimated speciation time (see section 3.6) are polymorphic in almond, peach 

contains very few old polymorphic insertions suggesting that they were lost this species 

(Figure S8).  

As all these analyses may be somewhat biased by the different quality of peach and 

almond genome assemblies, we performed a detailed analysis of the LTR-retrotransposon 

insertions comparing orthologous loci in both species. We were able to unambiguously 

identify the orthologous locus to 1,155 full-length LTR retrotransposon peach insertions 

and 1,134 almond insertions (around 51% of the insertions in both species). These 

correspond to 142 insertions found intact in both species (conserved insertions), 592 and 

440 new insertions in peach and almond, respectively, 422 peach insertions partially 

deleted or rearranged in almond and 562 almond insertions partially deleted or rearranged 

in peach. An analysis of the ages of these LTR retrotransposon insertions belonging to 

the different categories showed that, as expected, the majority of the new insertions in 

both genomes were younger than the estimated speciation date. Almond contained a 

larger fraction of new insertions that are older, which probably corresponds to elements 

that were polymorphic in the ancestor and that were subsequently lost in peach. Also as 

expected, the vast majority of the conserved insertions were older than the estimated 

speciation time of peach and almond (Figure S9). In addition, while almost all of 

insertions were fixed in peach, an important fraction was polymorphic in almond (Figure 

2B).  
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Phylogenome analysis 

To shed light on the evolutionary history of the genome of P. dulcis in the context of 

sixteen other sequenced plant species (Table S2), we generated the complete phylomes. 

These phylomes were filtered to remove the gene trees that contain proteins associated to 

transposons. After filtering, a total of 18,475 gene trees were kept for almond, and 20,812 

gene trees, for peach. This filtered phylomes were scanned to infer duplications and 

speciation events and derive orthology and paralogy relationships from individual gene 

trees (Gabaldón, 2008).  

To reconstruct evolutionary relationships, we concatenated the protein alignments of 262 

genes, which had single-copy orthologs in all the 17 species considered. The resulting 

highly supported topology (Figure 3A) was congruent with current views on plant 

phylogeny (Shaw & Small, 2004) and results in P. dulcis and P. persica forming a clade, 

to the exclusion of P. mume and P. avium (Badenes & Parfitt, 1995; Scholz et al., 2013). 

The same topology was obtained when all individual gene trees were combined into a 

single species phylogeny by using a gene tree parsimony approach. We estimated the 

divergence times among these species using a Bayesian relaxed molecular clock 

approach. According to our results, P. dulcis diverged from P. persica approximately 5.88 

Mya, from P. mume 20.84 Mya, and from P. avium 62.04 Mya (Figure 3A, Table S8).  

We then calculated the duplication frequency (i.e. average number of duplications per 

gene) for each node of the species tree, and observed a slightly high duplication frequency 

(~0.20, Figure 3B) at the ancestral node of all Prunus species, which was supported by 

both almond and peach phylomes. A functional analysis of protein families duplicated at 

this node in each phylome shows enrichment of some molecular functions such as 

methyltransferase activity, ionotropic glutamate receptor activity, terpene synthase 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted June 6, 2019. ; https://doi.org/10.1101/662676doi: bioRxiv preprint 

https://doi.org/10.1101/662676


27 
 

activity, oxidoreductase activity and transferase activity. In addition, some biological 

processes were enriched: response to auxin, metabolic process and oxidation-reduction 

process (Table S9).  

Then we focused on duplications specific to each almond and peach, including large 

expansions. A total of 1,175 (4.4%) almond proteins and 831 (3.1%) peach proteins have 

an in-paralog (a recent paralog resulting from a duplication that specifically occurred in 

the almond and peach lineage, respectively). Those paralogs could be assigned to 542 

almond specific gene expansions, and 367 peach specific gene expansions. In both, 

almond and peach, most expansions (540, 99.6% - almond; 363, 98.9% - peach) have a 

moderate size (2-5 in-paralogs, Figure S10). Some almond expansions of size two encode 

putative members of the lignin biosynthesis pathway (Vanholme et al., 2010) such as 

caffeic acid 3-O-methyltransferase (COMT, Prudul26A009858P1-Prudul26A011895P1), 

shikimate O-hydroxycinnamoyl transferase (HCT, Prudul26A003924P1-

Prudul26A028947P1, Prudul26A000852P1-Prudul26A022843P2).  Interestingly, these 

genes have undergone parallel duplications in P. persica, P. mume, and P. avium. 

We next analyzed protein gains and losses in the lineages leading to almond and peach. 

When we analysed the almond phylome, a total of 1,471 proteins were gained in almond 

and 1,146 were lost in peach. For the peach phylome we found that 1,984 proteins were 

gained in peach and 3,157 were lost in almond. Functional analysis shows that the 

proteins lost in almond respect to peach are enriched in functions related to serine-type 

endopeptidase inhibitor activity, nutrient reservoir activity, lipid transport, response to 

auxin, oxidation-reduction process and ion transport. Conversely, genes lost in peach with 

respect to almond are mainly enriched in functions related to transferase activity, 

transcription and ATP synthesis coupled proton transport (Table S10).  
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Variability of almond cultivars 

Read mapping rate, depth and genome coverage 

Alignment of reads from the ten almond varieties resulted in an average mapping rate of 

89.2%. Specifically, 825,914,441 out of the 919,019,814 reads mapped onto the almond 

assembly, with Nonpareil and Vivot, and Falsa Barese and Genco showing the highest 

(94%) and lowest (79%) mapping rate, respectively (Table S11). Regarding sample depth 

and genome coverage, an average of 39.7 read depth was detected for the ten varieties 

whereas 93% of the assembly was covered by the resequencing data on average. Marcona 

and Falsa Barese had the highest (51.4X) and lowest (27,7X) read depth, respectively, 

whereas Nonpareil and Falsa Barese had the highest (95%) and lowest (90%) coverage, 

respectively (Table S11). 

 

Variant calling and phylogenetic analysis 

Genetic variabiltity analysis resulted in the detection of 2,253,377 variants composed of 

2,203,582 (87%) SNPs and 330,795 (13%) INDELs. Genome-wide distribution of SNPs 

and INDELs can be seen in Table S12. Nonpareil had the highest number of SNPs and 

INDELs, 1,072,759 and 142,142, respectively, whereas Ripon had the lowest number of 

SNPs and INDELs, 827,397 and 94,070, respectively. Average SNP density was 

calculated as 6.2 SNPs/Kb, whereas the average heterozygosity for the ten cultivars was 

0.44 (Table S13). Our results on SNP density and heterozygosity for almond are lower 

(SNP density of 19.1 and heterozygosity of 0.69) from those published recently (Yu et al. 

2018) most probably due to the use of the peach genome as a reference sequence for the 

variant calling, a varietal panel of larger genetic diversity, or different filters and tools 
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used for variant calling, which overall may have resulted to the additional detection of 

homozygous variants in the almond varieties. 

A graphical representation of SNP and INDEL distribution in windows of 100 kbp 

showed a similar profile for most of the almond varieties analyzed (Figure S11). 

Nevertheless, Ripon and Falsa Barese displayed lower variant density in the region from 

28Mb to the end of Pd01 and in the region from 13Mb to the end of Pd07. Also local 

decrease in the number of SNPs and INDELs could be detected for specific varieties by 

examining the distribution profiles (Figure S11).  

The analysis of deletions in the collection of almond cultivars is presented in Table S14. 

For small deletions (1-50 bp), numbers were about half of those estimated for INDELs in 

Table S12 (~60,000 vs ~120,000 per cultivar), as expected considering that only deletions 

and not insertions are taken into account. On average, 27% of these deletions overlapped 

with TEs. Considering large deletions (>50bp), we detected 1,219 unique events, the 

majority of which fell within the 51-500bp range, with an average number of 88 deletions 

per variety. Marcona had the largest number of deletions (219) whereas Ripon had the 

lowest number (12) (Table S14). Five hundred and eighty-eight large deletions (48.2% of 

the total) overlapped with TE elements. For deletions larger than 500bp, almost all the 

events were found to overlap with TEs (92.6% at range 501-10000 and 100% at range 

10001-50000; Table S14; Figure S12). Overlap with TEs was very similar among 

varieties and represented an average of 48.2% of large deletions, with Nonpareil and 

Ripon showing more than 50% of overlap with TEs and Cristomorto with the least 

percentage of overlap (38.8%).  
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A SNP-based phylogenetic analysis grouped the almond varieties into two main clades 

where the first clade contained Cristomorto, Falsa Barese and Genco whereas the second 

clade was split into two subclades; the first containing Aï, Belle d’Aurons, Nonpareil and 

Ripon and the second Desmayo largueta, Marcona and Vivot (Figure S13). These data of 

genetic relatedness are in agreement with the geographical origin of the analyzed 

cultivars, grouping the Italian cultivars, the French and US cultivars and finally the 

Spanish cultivars in the same clade. The fact that French and US cultivars are clustered 

together is in agreement with the known origin of US materials coming from French 

imported accessions (Kester et al. 1991).  

 

Analysis of indel variants between peach and almond genomes and its relationship with 

TE sequences 

To assess the structural variability between almond and peach genomes we aligned 

almond genome contigs to the peach reference genome. A total of 92.96% of the almond 

Texas assembly could be aligned with that of the reference peach genome sequence of 

Lovell with an average identity of 95.59%. We detected a total of 20,418 variants 

accounting for 18 Mb of sequence, equivalent to 8% of the almond genome (Table S15). 

Whereas only a 25% of indels between 50-500 bp colocalized with annotated TE 

insertions, 65% of indels in the range of 500-10,000 bp and the vast majority (86%) of 

indels in repetitive regions involved TEs.  

Similarly to the analysis of deletions reported in the previous section with almond 

cultivars, we mapped resequencing data from the peach variety Earlygold with the almond 

reference genome. The number of deletions found in an average almond cultivar 

compared with the almond reference sequence was on average 62,238, whereas that of 
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the peach cultivar studied was more than double (126,137) (Table S14). However, when 

taking only those of larger size (>50 bp), peach deletions were more than tenfold (1,436 

vs. 120) more frequent than almond deletions.  

 

Transposon-induced variability in peach and almond traits 

The almond fruit resembles that of peach and other Prunus species, the major differences 

being that in almond the mesocarp does not develop to produce the fleshy tissue typical 

of some other Prunus fruits, and that the almond seed does not accumulate the high levels 

of the cyanogenic diglucoside amygdalin that renders the seeds of peach and other Prunus 

bitter and toxic. In order to shed light on the genetic differences underlying these 

phenotypic differences we have compared the genomic regions containing the genes 

known to control the expression of these characters in both species. 

It has been recently shown that the sweet almond phenotype is due to the reduced 

expression of the genes encoding two cytochrome P450 enzymes catalyzing the first steps 

of the amygdalin biosynthesis in sweet almond varieties as compared with bitter almond 

varieties (Thodberg et al. 2018). It has also been shown that this reduced expression is 

not related with differences in the gene sequence, which points to a difference in the 

regulation of the expression of those genes (Thodberg et al. 2018). We have compared 

these two almond genes with their homologs in peach, sweet cherry and P. mume and 

found that they are highly conserved (not shown). However, one of the two genes, 

CYP71AN24, is flanked by several almond-specific TE insertions, and in particular two 

MITE insertions in its proximal upstream region (Figure 4A). A preliminary analysis of 

the methylation of this region shows that the almond-specific TE insertions flanking the 

CYP71AN24 gene are highly methylated. The insertion of TEs in the proximal upstream 
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region of the CYP71AN24 gene may have affected directly or indirectly its expression 

due to its high methylation. In addition, the presence of the TEs also correlates with a 

much higher methylation of this gene in almond as compared with peach (11.6% 

methylation at CG, and 0,1% methylation at CHG in almond versus 0,1% methylation at 

CG, and 0,02% at CHG in peach), which may be the result of methylation spreading from 

the TEs. An analysis of the structure of this locus in P. webbii, a wild species closely 

related to almond which produces bitter seeds, and in two almond sweet varieties 

(Cristomorto and Marcona) and two almond varieties producing bitter seeds (D05-187 

and S3067), shows that the presence of the TE insertions (and in particular that of the 

MITE named TIR2), perfectly correlate with the sweet vs. bitter seed phenotype (Figure 

4B).  

The analysis of model plant species, such as Arabidopsis and tomato, has shown that the 

development of the fruit is the result of the combined regulation of meristem organization, 

flower development, and fruit cell proliferation and expansion. We selected 97 genes 

(Table S16) that belong to gene families involved in these processes, including 

WUSCHEL (WUS) and CLAVATA (CLV) genes involved in the control of the meristem 

and whose mutants lead to larger fruits in tomato and genes known to control fruit shape 

(Rodriguez et al. 2011). We have analyzed the structure of these genes in peach and 

almond and found that six of them present differential TE insertions within the genes in 

their proximal (less than 1000 nt) upstream region that probably contains their promoter. 

These species-specific TE insertions are all highly methylated and may have altered their 

expression regulation (Table S17). Moreover, and in addition to the potential mutation of 

transcriptional regulatory elements, MITE insertions could have provided new 

transcription factor binding sites (TFBS), as MITEs have been shown to frequently 

amplify and mobilize TFBS in plants (Morata et al 2018). 
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Discussion 

Using a hybrid strategy based on short and long read DNA sequences and the information 

provided by existing linkage maps we have assembled the highly heterozygous genome 

of almond cv. Texas into a highly-complete, contiguous and low-redundant assembly 

with eight pseudomolecules corresponding to the eight chromosomes and comprising 

227.6 Mbp of sequence. Annotation of this genome has resulted in the identification of 

27,042 protein-coding genes and 6,800 non-coding transcripts. The assembled sequence 

was highly syntenic with the genome sequence of peach (Verde et al. 2013) as expected 

considering previous information on the close genetic similarity between these two 

species (Dirlewanger et al. 2004).  

Based on molecular data and the use of fossil records we estimated the divergence times 

of P. dulcis with respect to other sequenced Prunus and a diverse sample of 17 plant 

species. Our estimate of 5.88 Mya for the divergence of peach and almond from a 

common ancestor is similar to that of recent molecular evidence that places this figure 

between 5.0 and 8.0 Mya (Delplancke et al. 2013; Velasco et al. 2016; Yu et al. 2018). 

This is compatible with the separation of the ancestral species by the uplift of the Central 

Asian massif in two subpopulations that faced completely different environments: one 

(almond and its close relatives) in the arid steppes of central and western Asia and the 

other (peach) in the subtropical climate of southwestern China, near to where the first 

fossil endocarps were found dated of 2.6 Mya (Su et al. 2013).   

In agreement with the results of other sequenced diploid Prunus genomes (Verde et al. 

2013; Zhang et al. 2012; Shirasawa et al. 2017; Baek et al. 2018) we have not found 

evidence on any recent whole-genome duplication of almond. Analysis of duplicated gene 

sequences indicated a parallel gene expansion for all sequenced Prunus species genomes 
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for genes involved in lignin biosynthesis, such as caffeic acid 3-O-methyltransferase and 

shikimate O-hydroxycinnamoyl transferase. One of the distinctive aspects of Prunus is 

that its fruit is a drupe, characterized by the formation of a strongly lignified mesocarp 

(the “stone”), unlike most of its closest taxa that have follicetum and nuculanium as fruit 

types (Xiang et al. 2016). These duplications may be at the origin of the formation of the 

stone, determine its characteristics and be crucial to understand its evolution and possible 

modification, with important consequences for plant breeding, including the production 

of stoneless cultivars in Prunus fruit (Callahan et al. 2015).  

 As we have shown from the comparison of the peach and almond reference genomes, as 

well as the analysis of the structural polymorphisms between both genomes, 

insertion/deletion events seem to explain a substantial part of the divergence of peach and 

almond genomes from their common ancestor. In this paper we show that most of such 

structural differences, particularly those of larger sizes, were related to TE sequences. 

LTR-retrotransposons and MITEs constitute the two most prevalent superfamilies of TEs 

in plants (Casacuberta and Santiago 2003). While the proportion of the almond genome 

consisting of TEs (38%) was similar to that of other sequenced genomes of similar size 

(i.e. from 30% in peach (Verde et al. 2013) and 43-47% in other Prunus (Zhang et al. 

2012; Shirasawa et al. 2017; Baek et al. 2018) and with a very similar distribution of TEs 

along the almond and peach chromosomes, the detailed analysis of the dynamics of LTR 

retrotransposon evolution revealed key aspects of the divergence of almond and peach 

genomes after their speciation. In short, almond has maintained more ancestral LTR-

retrotransposons, which are still in some cases polymorphic within the species. 

Conversely, peach has lost most polymorphic ancestral insertions but has undergone a 

higher recent retrotransposition activity. Slight differences in the mechanisms controlling 

transposon activity, triggered in peach by strong genetic changes determined by the 
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adoption of the self-compatible mating behavior (Yu et al. 2018), could explain a higher 

LTR-retrotransposon activity in this species. Additionally, the contrasting data on the 

polymorphism of ancestral TEs between peach and almond may be explained by i) the 

mating types: selfing in peach and outcrossing in almond, and ii) differences in their 

recent history, with a strong reduction of population size in peach prior to its recent 

expansion as a cultivated species 2,000 years ago (Velasco et al. 2016; Yu et al. 2018), 

while almond population sizes remained higher (Yu et al. 2018). Further analyses should 

help to clarify this in the future. In any case, the results presented here suggest that LTR-

retrotransposons, and in general TEs, may explain an important fraction of the 

interspecific variability between peach and almond, as well as the intraspecific variability 

of both species.  

LTR-retrotransposons are at the origin of somatic mutations in plant species, some of 

which of high agricultural value (Foster and Aranzana, 2018). Only in peach, white vs. 

yellow fruit color (Falchi et al, 2013) hairy vs. glabrous fruit (Vendramin et al, 2014) and 

stonyhard vs. melting flesh texture (Tatsuki et al. 2018) are caused by the action of 

transposon movement. MITE insertions have also been linked to crop traits, such as sex 

determination in melon (Martin et al. 2009) or a drought tolerance phenotype in maize 

(Mao et al. 2015).  The analysis of almond x peach interspecific progenies identified 11 

Mendelian genes explaining the inheritance of some key agronomic characters: one of 

them, responsible for the formation of a thick mesocarp that constitutes the peach flesh, 

and another, conferring juiciness to the fleshy mesocarp, both critical aspects of the 

difference between almond and peach fruits (Donoso et al. 2016). Our results suggest that 

TEs could be responsible for some of the genomic changes at the origin of the agronomic 

traits that distinguish peach from almond, such as mesocarp development and bitterness 

of the kernel. For one of them, sweet vs. bitter kernel, essential for the domestication of 
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the almond, we show here that the sweet almond phenotype correlates with TE insertions 

surrounding gene CYP71AN24, involved in the synthesis of one of the key enzymes of 

the amygdalin pathway (cytochrome P450), and that could be responsible for the lower 

expression of this gene in the seed tegument of sweet almonds (Thodberg et al. 2018). 

Additionally, we identified six more genes related with fruit flesh formation that had 

similar patterns differing between almond and peach. We have not been able to associate 

any of these genes with the position of major genes or QTLs described so far in these 

species, although they are clear candidates for further studies. 

The genome sequence of almond that we present in this paper will foster the knowledge 

on the genetics and breeding of this species by providing useful information on genes and 

markers with an unprecedented level of detail. For example, in addition to the variability 

for SNP markers that is described here, we found a high number of insertion/deletion 

variants of sizes >20 within almond and many more between almond and peach, that can 

be used as simple and cheap markers for genetic analysis as it has been done in other 

species (Wu et al. 2013; Li et al. 2015; Jain et al. 2019). Prunus crops are unique in the 

sense of being an economically important group of species that share an essentially 

common genome (Aranzana et al. 2019). Knowledge of the genome sequence opens new 

venues for the understanding of the evolution of closely related species that have in 

addition a slower rate of evolution due to their long intergeneration period, which may 

allow to detect modes and aspects of evolution that could be different or difficult to 

identify in herbaceous crops.   
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Tables 

Table 1. Texas genome assembly and annotation statistics 

 

Assembly length 227.6 Mb 

Contig N50 103.9 kb 

Scaffold N50 381.5 kb 

Pseudomolecule N50 24.8 Mb 

Percent anchored to 
pseudomolecules 

91.47% 

BUSCO complete genes  95.4% 

BUSCO fragmented genes  1.0% 

BUSCO missing genes  3.6% 

Genomic GC  content 37.65% 

Number of protein-coding genes 27,042 

Median gene length (bp) 2,315 

Number of transcripts 33,119 

Number of exons  144,681 

Number of coding exons 136,958 

Coding GC content  44.91% 

Median intron length (bp) 172 

Exons/transcript 4.37 

Transcripts/gene 1.22 

Multi-exonic transcripts  81% 

Gene density (kb/gene) 8.41.42 
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Figures           
 

 

 

                      
                                      
 

                                     
 
 

Figure 1. Distribution of gene and TE abundance along P. dulcis (A) and P. persica (B) 

chromosomes. Outer to inner tracks represent the coverage per 100 kb of Genes, TEs, Copia LTR 

retrotransposons, Gypsy LTR retrotransposons, and MITEs  
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Figure 2. Dynamics of LTR-retrotransposons in peach and almond. A. Insertion time of 

complete LTR-retrotransposons in P. persica and P. dulcis. B. Insertion time of polymorphic and 

fixed orthologous LTR-retrotransposons in almond (left) and peach (right).  
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Figure 3. Species tree obtained from the concatenation of 262 widespread single-gene families. A) Full 

species tree. All Prunus species are highlighted in pink. All bootstrap values that are not maximal (bootstrap 

100%) are indicated in red. Green numbers correspond to the nodes in Table S9. Bars at the nodes indicate 

the uncertainty around mean age estimates based on 95% credibility intervals. Scale at the bottom shows 

the divergence time in Mya. Green dots represent selected calibration points. B) Zoom in of the Prunus 

group. Numbers indicate the duplication ratio for each branch calculated with the phylome of almond (red) 

and peach (blue).  
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Figure 4. Analysis of the locus of the CYP71AN24 gene in almond varieties and 

Prunus related species. A. Nucleotide conservation of the CYP71AN24 region 

between P. avium, P. mume, P. persica and P. dulcis based on a Mauve multiple 

alignment (physical distance scale is in bp). White boxes represent inserted regions in P. 

dulcis.  IGV tracks of the gene and TE annotations of P. dulcis and P. persica along 

with their DNA methylation levels in the three different contexts (CG, CHG and CHH) 

are shown below. B. IGV spnapshot of the region containing the CYP71AN24 gene and 

the polymorphic TE insertions displaying the coverages of mapped DNAseq reads from 

resequencing data of sweet- and bitter-kernel P. dulcis varieties, as well as from that of 

the closely related P. webbi. 
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