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Abstract 

In competitive situations, winning depends on selecting actions that surprise the 

opponent. Such unpredictable action can be generated based on representations of the 

opponent’s strategy and choice history (model-based counter-prediction) or by choosing 

actions in a memory-free, stochastic manner. Across five different experiments using a 

variant of a matching-pennies game with simulated and human opponents we found that 

people toggle between these two strategies, using model-based selection used when 

recent wins signal the appropriateness of the current model, but reverting to stochastic 

selection following losses. Also, after wins, feedback-related, mid-frontal EEG activity 

reflected information about the opponent’s global and local strategy, and predicted 

upcoming choices. After losses, this activity was nearly absent—indicating that the 

internal model is suppressed after negative feedback. We suggest that the mixed-strategy 

approach allows negotiating two conflicting goals: (1) exploiting the opponent’s 

deviations from randomness while (2) remaining unpredictable for the opponent. 
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Balancing Model-Based and Memory-Free Action Selection 1 

under Competitive Pressure 2 

Even the most powerful backhand stroke in a tennis match loses its punch when 3 

the opponent knows it is coming. Competitions that require real-time, fast-paced decision 4 

making are typically won by the player with the greatest skill in executing action plans 5 

and who are able to choose their moves in the least predictable manner (1-4). Yet, how 6 

people can consistently achieve the competitive edge of surprise is not well understood. 7 

The fundamental challenge towards such an unerstanding lies in the fact that our 8 

cognitive system is geared towards using memory records of the recent selection histoy to 9 

exploit regularities in the environment. However, as suggested by decades of research (5-10 

9), these same memory records will also produce constraints on current action selection 11 

that can work against unpredictable behavior. 12 

One such memory-based constraint on unpredictable action selection is that 13 

people often tend to repeat the last-executed action plan. A considerable body of research 14 

with the "voluntary task-switching” paradigm (8, 9) has revealed a robust perseveration 15 

bias, even when subjects are instructed to choose randomly between two different action 16 

plans on a trial-by-trial basis––a regularity that in competitions could be easily exploited 17 

by a perceptive opponent.  18 

Another important constraint is the win-stay/lose-shift bias, that is a tendency to 19 

repeat the most recently reinforced action and abandon the most recently punished action. 20 

Reinforcement-based action selection does not require an internal representation of the 21 

task environment and is therefore often referred to as “model-free”. Previous work has 22 

revealed that reinforcement learning can explain some of the choice behavior in 23 
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competitive situations (10-12). Yet, players who rely on reinforcement-based selection 24 

can also be counter-predicted by their opponent, or run the risk of missing regularities in 25 

their opponents’ behavior. Therefore, recent research indicates that when performing 26 

against sophisticated opponents, model-free choice can be replaced through model-based 27 

selection, where choices are based on a representation of task-space contingencies (13), 28 

including beliefs about the opponent’s strategies (14, 15).  29 

Model-based selection is consistent with the view of humans as rational decision 30 

makers (2, 3), yet also has known limitations. For example, it depends on attentional 31 

and/or working memory resources that vary across and within individuals (16). In 32 

addition, people are prone to judgement and decision errors, such as the confirmation 33 

bias, that get in the way of consistently adaptive, model-based selection (17).  34 

In light of the shortcomings of both standard, model-free choice and model-based 35 

strategies it is useful to consider the possibility that in some situations, actors can chose 36 

in a memory-free and thus stochastic manner (15). Memory-free choice would establish a 37 

“clean-slate” that prevents the system from getting stuck with a sub-optimal strategy and 38 

instead allows exploration of the full space of possible moves. Moreover, it reduces the 39 

danger of being counter-predicted by the opponent (18, 19).  At the same time, an 40 

obvious drawback of stochastic choice is that without a representation of the opponent, 41 

systematic deviations from randomness in the opponent’s behavior remain undetected 42 

and therefore cannot be exploited. In addition, just as is the case for model-based 43 

selection, stochastic selection puts high demands on cognitive control resources (20) and 44 

therefore it is not clear under which circumstances people can consistently ignore or 45 

suppress context representations in order to choose in a memory-free manner (21) 46 
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As the model-based and the memory-free strategy both come with strengths and 47 

limitations, one potential solution is that people use a simple heuristic to move back and 48 

forth between these two modes of selection. Specifically, positive feedback (i.e., wins on 49 

preceding moves) could serve as a cue that the current model is adequate and should be 50 

maintained. In contrast, negative feedback might serve as a signal that the current model 51 

needs to be suspended in favor of a memory-free mode of selection that maximizes 52 

exploration and unpredictability.  53 

In the current work, we used an experimental paradigm that provides a clear 54 

behavioral signature of model-based versus memory-free choices as a function of 55 

preceding win versus loss feedback.  We found that following win feedback, people 56 

tended to choose their next move both on the basis of recent history and a more global 57 

model of the opponent.  However following losses, we did not simply see choice 58 

behavior revert back towards simple memory-driven biases.  Rather choices were less 59 

determined by recent history and task context––in other words more stochastic.  In 60 

addition, we present neural evidence that loss feedback literally “cleans the slate” by 61 

temporarily diminishing the representation of the internal model (15, 22).   62 

Results 63 

Overview 64 

Our experimental situation marries the voluntary task-switching paradigm with a 65 

two-person, matching-pennies game, played for real money against either simulated or 66 

human opponents. As shown in Figure 1a, on each trial players saw a circle, either on the 67 

bottom or the top of a vertically arranged rectangle. By pressing a key that is spatially 68 

compatible to the current circle location, the player could keep the circle at that location 69 
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(a “freeze” choice), whereas the spatially opposite response moved the circle to the 70 

opposite location (a “run” choice). Wins versus losses were signaled through a smiley or 71 

frowny face at the place of the post-response circle position.  Players were assigned either 72 

the role of the “fox” or the “rabbit”. Foxes win a given trial when they “catch the rabbit”, 73 

that is when they pick the same move as the rabbit on that trial. Rabbits win when they 74 

“escape the fox”, that is when they pick the move not chosen by the fox.   75 

 76 

In order to establish the degree to which players utilized a model of their 77 

opponent, we exposed them to a set of simulated opponents that differed in their average 78 

switch rate (e.g., 20%, 35%, 50%, 65%, and 80%), but otherwise behaved randomly. 79 

Variations in opponents’ switch rate provide a diagnostic indicator of both model-based 80 

and stochastic behavior (Figure 1b). Specifically, a model-based agent should appreciate 81 

the fact that when playing against an opponent who switches frequently between run and 82 
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freeze moves (i.e., p>.5), it is best to switch moves after a win (i.e., “following along with 83 

the opponent”), but to stick with the same move after a loss (i.e., “waiting for the 84 

opponent to come to you”); the opposite holds for opponents with a low switch rate (i.e., 85 

p<.5). Thus, model-based behavior would produce a combination of the filled green and 86 

red switch-rate functions in Figure 1b. In contrast, a memory-free agent should produce 87 

random behavior (i.e., a switch rate close to p=.5) irrespective of the opponent’s 88 

strategies (i.e., the blue function in Figure 1b). Thus, our hypothesis of a feedback-89 

contingent mix between model-based and stochastic behavior predicts an increase of 90 

players’ switch rate as a function of their opponents’ switch rate for post-win trials (the 91 

filled green function in Figure 1b), but a switch rate close to p=.5 irrespective of the 92 

opponent’s switch rate on post-loss trials (the blue function in Figure 1b). 93 

In standard, sequential choice paradigms, people choose between simple actions.  94 

In contrast, the fox/rabbit task requires choices between two different action rules.  The 95 

rules, combined with the stimulus determine simple actions that need to be executed 96 

accurately and under time pressure.  This procedure has the advantage of allowing a 97 

distinction between two potential sources of stochasticity.  Stochasticity may simply be 98 

the result of an increase of unspecific information-processing noise in the system, which 99 

would not only lead to more random choices between action rules, also more error-prone 100 

and slower action selection.  Alternatively, choice stochasticity may be specifically due to 101 

reduced choice input from model/context representations.  In this case, an increase in 102 

choice stochasticity should not be associated with more error-prone and slower action 103 

selection.   104 

 105 
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Analytic Strategy for Testing Main Prediction   106 

To test the prediction of loss-induced stochastic behavior, we cannot simply 107 

compare the slopes of post-win and post-loss switch-rate functions.  Such a comparison 108 

would not differentiate between a pattern of post-loss and post-win functions with the 109 

same slope but opposite signs (as would be consistent with the model-based choice 110 

strategy, see Figure 1b) and the predicted pattern of more shallow slopes following 111 

losses. Therefore, as a general strategy, we tested our main prediction by comparing 112 

slopes after selectively inverting the labels for the opponent switch-rate in the post-loss 113 

condition (e.g., 80% becomes 20%). This allows direct comparisons of the steepness of 114 

post-win and post-loss switch-rate functions. In the SI, we also present results from 115 

standard analyses.   116 

Modeling Choice Behavior 117 

Our behavioral indicator of a mix between model-based and stochastic behavior is 118 

expressed in players’ switch rate, which can also be affected by the perseveration and 119 

win-stay/lose-shift bias (see Figure 1B).  In standard sequential-decision paradigms it is 120 

very difficult to distinguish between stochastic behavior and low-level biases.  Therefore, 121 

we attempted to obtain a realistic characterization of the various influences on choice 122 

behavior by using simple choice model to predict the probability of switch choices pswitch: 123 

(1)      pswitch = exp(os * (ms - (wl+1) * .5 * sm)+ pe + wl * ss) / 124 

(1 + exp(os * (ms - (wl+1) * .5 * sm)+ pe + wl * ss) 125 

with: os = ln(pos  / (1- pos)); post-win: wl = 1, post-loss: wl = -1; 126 

where pos is the opponent’s switch rate, which is translated into its log-odds form (os); wl 127 

codes for wins versus losses on trial n-1. The parameter ms (model strength) represents 128 
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the strength of the internal model (ms=1 would indicate direct probability matching 129 

between the opponent’s and the player’s switch probability). The parameter sm (strategy 130 

mix) represents the degree to which the model-based choice is changed on post-loss 131 

relative to post-win trials; a negative sm parameter would indicate suppression of the 132 

model in favor of stochastic choice following losses. In addition, a positive pe 133 

(persevertion effect)  parameter represents the tendency to unconditionally favor the 134 

previously chosen task, and a positive ss (win-stay/lose-shift)  parameter expresses the 135 

strength of the win-stay/lose-shift bias. We present predictions from this model in Figure 136 

2, and report additional details of the modeling results in the SI.  137 

Choice Behavior with Simulated Opponents.  138 

Experiment 1 establishes the basic paradigm. Figure 2 (Exp. 1) shows that 139 

participants increased their switch rate as a function of their opponents’ switch rates 140 

following win trials. In contrast, on post-loss trials, the slope of the function relating 141 

participants’ switch rate to their opponents’ switch rate was although slightly negative, 142 

much smaller than on post-win trials and it was centered at p=.5, a pattern that is 143 

consistent with largely stochastic choice. The condition with an opponent switch-rate of 144 

p=.5 most closely resembles previous studies that have reported a win-stay/lose-shift bias 145 

in competitive situations (10). In fact, for this condition, we did find a significantly 146 

higher switch rate after losses than after wins, indicating that reinforcement-based 147 

tendencies are one factor that affects choice. Likely, win-stay/lose-shift and perseveratory 148 

tendencies are also responsible for participants’ apparent reluctance to fully endorse the 149 

model-based strategy after wins, as indicated by the fact that the slope of the switch-rate 150 

function after wins is substantially smaller than 1. Indeed, here and in the remaining 151 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 6, 2019. ; https://doi.org/10.1101/662700doi: bioRxiv preprint 

https://doi.org/10.1101/662700
http://creativecommons.org/licenses/by/4.0/


 10 

experiments, results from applying our choice model to the data indicate that (a) a strong 152 

tendency towards model-based choices on post-win trials, (b) an increase of stochastic 153 

choice on post-loss trials, (c) a general perseveratory tendency, and (d) a win-stay/lose-154 

shift bias all contribute to the overall choice behavior (see Supplemental Information).  155 

 156 

After feedback from the previous trial, participants had only 300 ms to choose 157 

their move for the next trial in Experiment 1. Therefore, one might argue that the 158 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 6, 2019. ; https://doi.org/10.1101/662700doi: bioRxiv preprint 

https://doi.org/10.1101/662700
http://creativecommons.org/licenses/by/4.0/


 11 

observed stochastic choice is simply a result of negative feedback temporarily interfering 159 

with model-based selection (16).  To examine this possibility, we manipulated the 160 

response-to-stimulus interval (RSI) in Experiment 2 between 300 ms and 1000 ms. As 161 

shown in Figure 2, this manipulation had no effect, indicating that stochastic choice is not 162 

due to loss-induced processing constraints.  163 

The fox/rabbit task was modeled after the voluntary task-switching paradigm in 164 

order to recreate executive control demands of actual competitive situations and to allow 165 

a separation between choice stochasticity and more general increase of noise in the 166 

cognitive system. However, it is important to explore how the observed pattern might 167 

change with less complex response rules than used in this paradigm. We therefore 168 

implemented in Experiment 3 simple choices without any contingencies on external 169 

inputs (i.e., the fox wins when selecting the same up or down location as the rabbit, and 170 

vice versa). Here, we generally found a stronger expression of model-based choice 171 

following both losses and wins, and also much less perseveration bias (see Supplemental 172 

Information for details). Yet the win-loss difference in slopes remained just as robust as 173 

in the other experiments (Figure 2). Thus, the more complex actions that players had to 174 

choose from in Experiments 1 and 2 may have suppressed the overall degree of model-175 

based action selection (Otto et al, 2014). However, response rule complexity did not 176 

appear to affect the win/loss-contingent difference in the relative emphasis on model-177 

based versus stochastic choices.  178 

Competition against Human Players 179 

It is possible that the observed pattern of results is specific to experimental 180 

situations with a strong variation in simulated, opponent switch rates. To examine the 181 
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degree to which this pattern generalizes to a more natural, competitive situation, we used 182 

in Experiment 4a pairs of participants who competed with each other in real time, with 183 

one player of each dyad acting as fox, the other as rabbit (see also Supplemental 184 

Information, for Experiment 4b as a non-competition control experiment). Obviously, the 185 

naturally occurring variation in switch rates was much lower here (see distributions of 186 

individuals average switch rates in Figure 2). Nevertheless, the estimated slopes linking 187 

players’ switch rates to opponents’ switch rates exhibited a very similar pattern as for the 188 

simulated-opponent experiments. In addition, a trial-by-trial version of our choice model 189 

revealed an overall pattern that was qualitatively consistent with the results from the 190 

simulated-opponent experiments (see Supplemental Information for details).    191 

RT and Error Effects 192 

Different from standard choice paradigms (23, 24), the current paradigm allows 193 

us to distinguish between stochasticity during the choice between action rules and general 194 

information-processing noise (25).  If the loss-induced choice stochasticity is due to a 195 

general increase in information processing noise then we should see that greater 196 

stochasticity goes along with more erroneous and/or slower actions.  Figure 3 shows each 197 

individual’s degree of model-based choice (expressed in terms of absolute switch-rate 198 

slopes) after loss and win trials and as a function of both RTs or error rates.  In most 199 

experiments, there is a slight increase in error rates following loss trials.  However, across 200 

individuals, the substantial reduction in model-based choice after loss trials is not 201 

associated with a consistent increase in error rates or RTs.   202 
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 203 

In Figure 3, this is evident in the large portion of individuals with differences in 204 

model-based behavior as a function of post-win and loss trials, but with very similar error 205 

rates or RTs.  Likewise, in multilevel regression models with the absolute switch-rate 206 
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slopes as dependent variable, the post-win/loss contrast remained highly robust after 207 

controlling for RTs and errors as within-subject fixed effects (range of t-values associated 208 

with the post-win/loss predictor: 3.96-10.78).   209 

Loss-induced Increase of Stochastic Choice 210 

So far, we have established that participants were more sensitive to their 211 

opponents’ global strategies (i.e., the average switch rates) following win than following 212 

loss trials. Next, we examined the degree to which these win-loss differences generalized 213 

to players’ consideration of the recent history of their opponents’ and their own choices. 214 

To this end, we used multi-level logistic regression models with the switch/repeat choice 215 

as criterion. The models included the trial n-1 to n-3 switch/repeat decisions for 216 

opponents and for players, along with the opponents’ overall switch rate and were 217 

separately run for post-loss and post-win trials to generate the coefficients presented in 218 

Figure 4.  To directly compare the size of the coefficients, irrespective of their sign, we 219 

again reversed the labels, both for the opponents’ global switch rate, but also for both the 220 

opponent’s and the player’s n-1 to n-3 switch/repeat decisions (e.g., switch becomes 221 

repeat; see section Analytic Strategy for Testing Main Prediction and History Analyses in 222 

the Supplemental Information). Consistent with the prediction that switch/repeat choices 223 

following losses are less dependent on recent history, the coefficients for the opponents’ 224 

history and also the players’ own history were in most cases substantially lower after loss 225 

than after win trials.  226 
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 227 

Neural Evidence for Memory-Free Choice Following Losses 228 

Research with animal models and human, neuroimaging work indicates that 229 

midfrontal brain regions, such as the anterior cingulate cortex are involved in action-230 

relevant representations and in the gating between different modes of action selection 231 

(26-28).  Further, a large body of research suggests that midfrontal EEG activity in 232 

response to action feedback contains prediction error signals (10, 29-33), which in turn 233 

are reflective of action-relevant expectancies (i.e., the current task model). Therefore, it is 234 
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theoretically important to link our behavioral results to this broader literature.  235 

Specifically, it would be useful to show that (a) only on post-win, but not on post-loss 236 

trials, the midfrontal EEG signal contains information about the choice context/model, 237 

and (b) that the context information contained in the EEG signal is in fact predictive of 238 

upcoming choices.   239 

In Experiment 5, we assessed EEG while participants played the fox/rabbit game 240 

against three different types of opponents (25%, 50%, 75% switch rate; see Figures 2 and 241 

3 for behavioral results).  We conducted a two-step analysis.  In the first step, we tested 242 

the prediction that the mid-frontal EEG signal contains less information about the choice-243 

relevant context after loss-feedback than after win-feedback. To this end, we regressed 244 

trial-to-trial EEG signals on A) the opponent’s overall switch rate, B) the opponent’s lag-245 

1 switch/no-switch, C) the player’s lag-1 switch/no-switch, and D) the interaction 246 

between A) and B), that is between the local and global switch expectancies. The latter 247 

term was included to capture the fact that if feedback-related EEG reflects expectancies 248 

about opponents’ switch rates, local switch expectancies may depend on the global 249 

switch-rate context (31).  250 

The standardized coefficients shown in Figure 5a (see caption for details) indicate 251 

the amount of information about each of the four context variables that is contained in the 252 

mid-frontal EEG signal.  As apparent, the EEG signal showed a robust expression of the 253 

history/context variables following win feedback.  Following loss feedback, context 254 

information is initially activated, but then appears to be suppressed compared to post-win 255 

trials, and trends towards zero at the end of the feedback period. Accordingly, 256 

coefficients were significantly larger in post-win trials than in post-loss trials, opponents’ 257 
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overall switch rate: b=0.07, se=0.01 , t(25)=5.22, p<.001, opponents’ lag-1 switch/no-258 

switch: b=0.04, se=0.01, t(25)=4.14, p=.001, player’s lag-1 switch/no-switch: b =0.01, 259 

se=0.009, t(25)=1.19, interaction between opponents’ overall switch rate and lag-1 260 

switch: b =-0.08, se=0.01, t(25)=-7.22, p<.001.  Given that feedback is related to 261 

subject’s propensity of switching on the upcoming trial, it is in principle possible that 262 

these coefficients simply reflect preparation or increased effort for the upcoming switch.  263 

However, as we show in the Figure S7, controlling for upcoming switches has negligible 264 

effects on the results presented in Figure 5a.   265 

Our analytic strategy deviates from the standard approach of analyzing the EEG 266 

signal in terms of feedback-locked, event-related potentials (ERPs; see Figure 5b).  We 267 

used our approach because we did not have a-priori predictions about how exactly the 268 

combination of different history/context variables would affect ERPs.  More importantly, 269 

our regression-based approach naturally yields trial-by-trial indicators of the expression 270 

of context-specific information, which can be used in the second step of our analysis (see 271 

below), and which would be difficult to obtain through standard ERP analyses.  In the 272 

Supplemental Information (Figure S6) we also show that the ERP results are indeed 273 

generally consistent with a prediction-error signal that is more strongly modulated by the 274 

choice context after wins than losses. 275 

 276 

 277 

 278 

 279 

 280 
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 281 

The conclusion that post-loss stochastic behavior occurs because context 282 

representations are suppressed, would be further strengthened by evidence that the 283 
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information contained in the EEG signal is actually relevant for upcoming choices. 284 

Therefore, as the second step, we conducted a psychophysical interaction (PPI) analysis 285 

(34). As only the post-win trials showed robust context information in the EEG signal, we 286 

focus here on these trials (but see Table S4 for an analysis of all trials). In a multi-level, 287 

logistic regression analysis, we predicted players’ trial n switch choices, based on (1) the 288 

trial n-1 residuals from the preceding analysis (reflecting trial-by-trial variations in the 289 

EEG signal after controlling for the four context variables), (2) the set of four context 290 

variables from the preceding analysis for trial n-1, (3) and the corresponding four 291 

interactions between the residuals and the context variables. We found significant main 292 

effects for the residual EEG signal and all context variables (see Table S4). Most 293 

importantly, the residual EEG signal modulated how the upcoming choice was affected 294 

by the opponent’s lag-1 switch/repeat: b=-0.67, se=0.05, t(25)=-3.31, p<.01, and the 295 

opponent’s overall switch rate: b = 0.13, se=0.06, t(25)=2.26, p<.05. These results 296 

indicate that the information about context variables contained in the EEG signal is 297 

indeed relevant for choices.  298 

As a final step, we also examined to what degree variations in the strength of 299 

history/context representations can account for individual differences in choice behavior.  300 

To this end, we derived for each individual and predictor, the average, standardized 301 

coefficient from the analysis presented in Figure 5 across the 300 ms to 700 ms interval. 302 

Separately for post-win and post-loss trials, we correlated these scores with two 303 

behavioral measurements: 1) individuals’ switch-rate functions as an indicator for model-304 

based choice and 2) the overall rate of winning.  For post-loss trials, we again used 305 

opponent-related predictors with reversed labels (see EEG Analysis section for details). 306 
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Thus, for all analyses, more positive scores are indicative of individuals with more 307 

model-conform behavior.  308 

 309 

As shown in Figure 6, coefficients from post-win EEG signals generally predicted 310 

the variability among individuals in the degree of model-based adaptation and the rate of 311 
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winning (except for coefficients of n-1 player’s switch).  In contrast, such relationships 312 

were absent for post-loss trials. We also tested the difference between post-win and post-313 

loss correlations using a z-test for dependent correlations with either non-overlapping (for 314 

switch-rate function slopes) or overlapping samples (for overall rate of winning). For the 315 

switch-rate function slopes, we found significant differences for opponents’ lag-1 316 

switch/no-switch, z(25)=2.87, p=.003, and the interaction between opponent’s overall 317 

switch rate and lag-1 switch/no-switch choice, z(25)=4.26, p<.001, but not for opponent’s 318 

overall switch rate, z(25)=1.38, p=.16 and the player’s lag-1 switch/no-switch, z(25)=-319 

0.76, p=.45. Similarly, for the overall rate of winning, we found significant differences 320 

for opponents’ lag-1 switch/no- switch choice, z(25)=2.33, p=.02, and the interaction 321 

between opponents’ overall switch rate and the lag-1 switch/no-switch, z(25)=2.21, 322 

p=.02, but again not for opponents’ overall switch rate, z(25)=1.54, p=.12, and the 323 

player’s lag-1 switch/no-switch, z(25)=-1.18, p=.23. 324 

Combined, these individual differences results suggest that the degree to which 325 

history/context variables are represented in the EEG signal following win feedback, 326 

predicts both individuals’ reliance on the model of the opponent and their overall 327 

competitive success. Consistent with the idea that following loss-feedback, model-based 328 

representations are suppressed, these relationships are largely absent on post-loss trials. 329 

With its relatively small sample size, this experiment was not designed as an individual 330 

differences study and therefore these exploratory results need to be considered with 331 

caution. However, confidence in these results is strengthened by the fact that they are 332 

consistent with the findings from the within-subject PPI analyses.  333 

 334 
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Discussion 335 

Our results show that people can use two different choice regimes for selecting 336 

their next move in a competitive game. Immediately following a win, participants tended 337 

to rely on an internal model of the opponent’s behavior and his/her general tendency to 338 

switch moves relative to the preceding trial. Following a loss trial, they selected their next 339 

move more stochastically and less influenced by the local or global choice context (15, 340 

22).  At least in humans, the demonstration that after loss feedback, model-based 341 

selection is largely replaced by a more memory-free, stochastic mode of selection is a 342 

theoretically important result.   343 

Past work has characterized behavior in zero-sum game situations as a problem of 344 

a trade-off between model-free, win-stay/lose-shift tendencies and choices based on a 345 

model of the opponent (e.g., 14). In addition, work with the voluntary task-switching 346 

paradigm has suggested that people generally have a tendency to repeat action plans that 347 

were executed in the immediate past (8, 9). Indeed, our modeling results show that each 348 

of these influences is consistently present in our data.  Importantly, the tendency towards 349 

model-based choice and the tendency towards stochasticity on post-loss trials, 350 

independently predicted individuals’ competitive success, and over and above the effect 351 

of the known, lower-level biases (see Table S2 and S3).   352 

Our findings are generally consistent with recent research indicating an increase 353 

of decision noise––defined as deviations from optimal choice––when exploration is 354 

beneficial in a sequential decision situation (35).  However, it is a novel finding that a 355 

stochastic model of selection is turned off and on according to positive versus negative 356 

feedback.  Also, different than in standard sequential-decision paradigms, in our 357 
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paradigm subjects chose action rules rather than specific actions (except for Experiment 358 

3), allowing us to separately examine choices and the efficiency of action execution.  The 359 

fact that the post-loss increase in stochastic choice was not accompanied by a consistent 360 

increase in action errors or RTs, speaks against the possibility that choice stochasticity 361 

results from a general increase in information-processing noise.   362 

The results we report here are reminiscent of an emerging literature on the 363 

asymmetric consequences of positive versus negative feedback(36, 37).  Specifically, 364 

people appear to update their beliefs to a lesser degree following negative feedback than 365 

positive feedback, and this asymmetry may be responsible for a generalized optimism 366 

bias.  However, it is also important not to confuse our results with these existing findings.  367 

The asymmetric updating rate affects representations relevant for the action choice that 368 

preceded the positive or negative feedback.  In contrast, we report here that following 369 

negative feedback, people make less use of relevant representations as they choose the 370 

next action.  Combined, these sets of findings suggest that negative feedback negatively 371 

affects both learning, and the use of existing information.  The degree to which these two 372 

biases share a common, underlying mechanism is an important question for further 373 

research.  374 

In many competitive situations, a model of the opponent is needed to exploit 375 

regularities in the opponent’s behavior (1, 4). At the same time, one’s own choices need 376 

to appear unpredictable to the opponent. The feedback-contingent mix of choice regimes 377 

we report here, may be an attempt to meet the opposing demands within the limitations of 378 

our cognitive system. By this account, wins signal to the system that the current model is 379 

valid and is safe to use. In contrast, losses signal that the current model may be invalid 380 
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and that alternatives should be explored and/or that there is a danger of being exploited 381 

by the opponent. As a result, the current model is temporarily abandoned in favor of 382 

stochastic, memory-free choice.  383 

Viewed by itself, the turn towards stochastic choice following losses is an 384 

irrational bias. Indeed, our modeling results indicate that the degree to which players 385 

switch to stochastic choice after losses, negatively predicts their success in competing 386 

against both simulated and actual opponents (see Tables S2 and S3). Interestingly, this 387 

choice regime also resembles maladaptive, learned-helplessness patterns that are typically 388 

observed across longer time scales and that are often associated with the development of 389 

depressive symptoms (38, 39). To what degree the trial-by-trial phenomenon examined 390 

here and the longer-term, more standard learned-helplessness processes are related is an 391 

interesting question for further research. It is however also important to consider the 392 

possibility that the loss-contingent switch to stochastic choice is adaptive in certain 393 

circumstances. For example, in situations with a greater number of choices or strategies 394 

than were available within the fox/rabbit game, a switch to stochastic choice may allow 395 

the exploration of neglected regions of the task space (29). Also, given known constraints 396 

on consistent use of model-based selection, the ability to revert to stochastic behavior 397 

provides a “safe default” that at the very least reduces the danger of counter-prediction 398 

through a strong opponent.  399 

In this regard, a recent study by Tervo at al. (15) is highly relevant.  These authors 400 

analyzed the choice behavior of rats playing a matching-pennies games against simulated 401 

competitors of varying strength. The animals showed model-based choice behavior 402 

against moderately strong competitors, but switched to a stochastic choice regime when 403 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 6, 2019. ; https://doi.org/10.1101/662700doi: bioRxiv preprint 

https://doi.org/10.1101/662700
http://creativecommons.org/licenses/by/4.0/


 25 

facing a strong competitor. The switch in choice regimes occurred on different time 404 

scales in the Tervo et al. study (i.e., several sessions for each competitor) than in the 405 

current work (i.e., trial-to-trial). Nevertheless, it is remarkable that a qualitatively similar, 406 

failure-contingent switch between choice regimes could be found in both rats and human 407 

players.  408 

Tervo et al. also used circuit interruptions in transgenic rats to show that a switch 409 

to stochastic choice is controlled via noradrenergic input to the anterior cingulate cortex 410 

(ACC), which supposedly suppresses or perturbs ACC-based representations of the 411 

current task model. Interestingly, in our Experiment 5, we found that EEG signals 412 

registered at mid-frontal electrodes, contained robust information about the opponents’ 413 

and the players’ own strategies following win-feedback.  On post-loss trials the EEG 414 

signal initially contained information about the opponent’s global and local behavior, but 415 

this information was all but eliminated by about 400 ms following the feedback signal.  416 

This time-course suggests that context information is available in principle, but is quickly 417 

suppressed on post-loss trials.  Additional analyses indicated that the task-relevant 418 

information contained in the EEG signal was indeed relevant for upcoming choice 419 

behavior. Feedback-contingent, mid-frontal EEG signals are often thought to originate in 420 

the ACC and associated areas (22, 31, 40). Thus, our results are fully consistent with the 421 

theory that these brain areas are critical for representing the current choice-relevant 422 

information.  Further, the noradrenergic perturbation process identified by Tervo et al., 423 

suggests an interesting hypothesis for future research about how in humans, task-relevant 424 

representations might be actively suppressed to promote memory-free, stochastic choice 425 

(41).  More generally, this emerging body of evidence provides one possible answer to 426 
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the fundamental question how a memory-based choice system can produce non-427 

deterministic behavior––namely through selectively “losing” or suppressing memory 428 

records of the choice context. 429 

  430 
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Methods 431 

Participants 432 

Subjects were University of Oregon students who participated after giving 433 

informed consent in exchange for monetary payment or course credits; Experiment 1: 434 

N=56 (38 female), Experiment 2: N=40 (28 female), Experiment 3: N=44 (25 female), 435 

Experiment 4a: N=100 (62 female), Experiment 4b: N=40 (22 female; presented only in 436 

SI), Experiment 5: N=25 (13 female).  Four subjects from Experiment 1 and three pairs 437 

from Experiment 4a were excluded, because the experimental session could not be 438 

completed. The entire study protocol was approved by the University of Oregon’s Human 439 

Subjects Review Board (Protocol 10272010.016). 440 

Stimuli, Tasks and Procedure.  441 

On each trial of the fox/rabbit game, players observed a circle either on the 442 

bottom or the top of a vertically aligned rectangle.  They had to choose between one of 443 

two rules for responding to the circle location. The “freeze rule” implied that the circle 444 

stayed at the same location and it required participants to press among two keys the one 445 

that was compatible with the circle location (‘1’ and ‘4’ on the number pad). The “run 446 

rule” implied that the circle moved to the opposite location within the vertical box and 447 

participants had to press among a separate set of vertically aligned keys (‘5’ and ‘8’ on 448 

the number pad) the key that was incompatible with the circle location (9). On a given 449 

trial, the fox player won 2 cent per trial, when both players chose the same rule, whereas 450 

the rabbit player won when choices were different. Participants had to respond within a 451 

2000 ms interval and after that interval, they received feedback presented for 200 ms with 452 

a smiley face indicating a win trial and a frowny face a loss trial. Any erroneous 453 
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responses were followed by a frowny face. For Experiment 1, 3, and 4, the inter-trial 454 

interval (ITI) was 300 ms. For Experiment 2, the ITI was randomly selected to be 300 ms 455 

or 1000 ms on trial-by-trial basis and for Experiment 5 the ITI was 750 ms to allow 456 

assessment of feedback-related EEG activity. For Experiment 3 (“simple response”), each 457 

trial was initiated by a circle appearing at the center of the vertically arranged stimulus 458 

rectangle. Using the vertically arranged “1” or “4” keys, participants had to shift the 459 

circle up or down within the rectangle. Again, matching moves between opponents 460 

implied a win for the fox and a loss for the rabbit player.     461 

For all experiments except for Experiments 4a and 4b, participants faced a variety 462 

of simulated opponents that differed in terms of switch-rate strategies.  Participants were 463 

instructed that the different simulated players represented common strategies that one 464 

might find in human players.  At the beginning of each block, participants were notified 465 

that they would be facing a new, simulated opponent, and whether they played the role of 466 

the fox or the rabbit, but received no instruction about the specific strategies.  For 467 

Experiment 1, 2, and 3, switch rates varied on a block-by-block basis between 20%, 35%, 468 

50%, 65%, and 80% randomly. For Experiment 5, 25%, 50% and 75% switch rates were 469 

used.  In Experiments 1, 2, and 3, participants worked on 10 blocks with 80 trials each 470 

(i.e., 5 opponent strategies x fox/rabbit roles) and with 24 blocks of 80 trials in 471 

Experiment 5 (i.e., 4 repetitions of 3 opponent strategies x fox/rabbit roles).  In 472 

Experiment 4a participants were paired into fox/rabbit dyads and played in real-time on 473 

two computers within the same room, but without opportunity for direct communication.  474 

Here participants played 7 blocks of 80 trials each.  Experiment 4b served as a non-475 

competition control experiment that was otherwise identical to Experiment 4a.  The only 476 
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difference was that here trial-by-trial wins and losses were completely random and 477 

participants were informed that this was the case.  All experiments started with 80 478 

practice trials without a competitor in order to familiarize participants with response 479 

procedures.  The experiments were programmed in Matlab (Mathworks) using the 480 

Psychophysics Toolbox(42) and presented on a 17-inch CRT monitor (refresh rate: 60Hz) 481 

at a viewing distance of 100 cm. 482 

EEG Recordings 483 

In Experiment 5, Electroencephalographic (EEG) activity was recorded via 20 484 

electrodes and processed using standard procedures (see Supplemental Information for 485 

details). Single trial EEG signals were segmented into 1250 ms epochs starting from 200 486 

ms before the onset of feedback. Thus, each epoch included 700 ms post-feedback 487 

periods and the initial 250 ms intervals of the next trials. Each electrode’s EEG signal 488 

was also pre-whitened by linear and quadratic trends across experimental trials and 489 

blocks. After baselining signals with data from the initial, 200 ms interval, EEG activity 490 

from electrodes Fz and Cz, was averaged. These electrodes were selected based on 491 

previous studies reporting a robust interaction between the feedback and the probability 492 

context during reinforcement learning (43). The resulting signal was regressed via 493 

multilevel modeling with two levels (i.e., trials nested within participants) on context 494 

variables, as described in the Results section. For illustrative purposes, this was done on a 495 

time-point by time-point basis (see Figure 4). To conduct statistical tests of the post-win 496 

versus post-loss regression coefficients for the psychophysiological interaction analysis 497 

predicting choices, for the individual differences (Figure S11), and for the topographic 498 

maps (Figure 4), we averaged the EEG signal for an a-priori defined 300-700 ms interval 499 
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following the feedback signal. This interval is based on the typical time-course of 500 

feedback effects reported in the literature (43). The difference between post-win/loss 501 

models was tested in the same manner as in the multilevel model for history effects, 502 

namely by inverting predictors of opponents’ history/context for post-loss trials (see 503 

section Analytic Strategy for Testing Main Prediction and History Effects Analysis in the 504 

Supplemental Information) 505 

Data Availability Statement 506 

The data that support this study, along with the analysis scripts are available 507 

through the Open Science Foundation repository (https://osf.io/j6beq/).508 
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Figures 
 
 
 
 
 
 
 

 
 

Fig. 1.  a) Sequence of trial events and response rules in the fox/rabbit paradigm.  b) 
Idealized predictions of how different choice strategies and biases are expressed in the 
player’s switch rate as a function of the opponent’s switch rate.  Choices based on an 
internal model of the opponent, lead to a positive relationship between the player’s 
switch rate following wins (green filled line) and to a negative relationship following 
losses (red filled line).  Memory-free, stochastic choice leads to a 50% switch rate 
irrespective of the opponent’s switch rate (blue line).  The hypothesis of model-based 
choice after wins and stochastic choice after losses predicts the combination between 
the filled green and the blue line.  A perseveration bias leads to an unconditional 
reduction of the switch rate (gray line) and a win-stay/lose-shift tendency to a selective 
increase following loss trials and a decrease following win trials (dashed green and red 
lines).  
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Fig. 2.  Average empirical switch rates for post-win and post-loss trials as a function of 
the simulated opponents’ switch rates for Experiments 1, 2, 3, and 5 and the average 
switch rate of each human opponent in Experiment 4a (tick marks on x-axis indicate 
individual averages).  The dashed lines for Experiments 1,2, 3, and 5 show the 
predictions of the theoretical choice model applied to the group average data (see text 
and Supplemental Information for details). Error bars represent 95% within-subject 
confidence intervals.  For the analyses, we regressed the player’s switch rate on the 
opponents’ switch rates, the win-loss contrast, and the interaction between these two 
predictors after reversing the labels of the opponents’ switch-rate predictor for post-loss 
trials (see section Analytic Strategy for Testing Main Prediction). As a test of these 
interactions, we show the corresponding t-values (SE); the unstandardized slope 
coefficients (SE; green=post-win, red=post-loss) were derived from separate analyses 
for post-win and post-loss trials.  
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Fig. 3. Individual participants’ degree of model-based choice (indicated by the slopes of 
switch-rate functions) in relationship to RTs and error rates, separately for post-win 
(green) and post-loss trials (red), and for each experiment using the rule-selection 
paradigm. Each participant is represented both in the post-win and the post-loss 
condition. The green and red vertical lines below the x-axis of each graph indicate 
average RTs and error rates, the horizontal line the corresponding 95% confidence 
interval (within subject).  If the increase of choice stochasticity between post-win and 
post-loss trials were due to greater, general information-processing noise, then the 
win/loss-related decrease in slopes of the switch-rate functions would be accompanied 
by consistent increases in RTs and/or error rates.     
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Figure 4. Standardized coefficients from multi-level logistic regression models predicting 
the trial n switch/no-switch choice on the basis of players’ and opponents’ switch/repeat 
choices on trials n-1 to n-3 and the opponents’ overall switch rate.  Error bars are within-
subject, standard errors around the coefficients. To focus on the difference in the 
strength of relationships rather than their sign, the labels for all opponent-related 
predictors were reversed for post-loss trials (see section Analytic Strategy for Testing 
Main Prediction).  In addition, we also reversed the labels for all player-related predictors 
with a win/loss switch in sign (for signed coefficients, see Figure S6).  For a statistical 
test of the size difference between post-win and post-loss coefficients, all these 
history/context variables were included into one model together with the post-win/post-
loss contrast and the interaction between this contrast and each of the history/context 
predictors.  Significance levels of the interaction terms are indicated in the figure, *<.05, 
**<.01, ***<.001. 
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Fig. 5. a) Standardized coefficients from multi-level regression models relating EEG 
activity at Fz and Cz electrodes to the opponent’s overall switch rate (A), the n-1 
opponent switch/no-switch choice (B), the n-1 player’s switch/no-switch choice, and the 
interaction between A) and B) for each time point and separately for post-win (upper 
panel) and post-loss (lower panel) trials.  Shaded areas around each line indicate within-
subject standard errors around coefficients.  As coefficients for opponent-related 
predictors showed a marked, win/loss flip in sign, we again reversed the labels of the 
post-loss predictors (see section Strategy for Testing Main Prediction and Figures 2 and 
3; for signed coefficients, see Figure S10).  For illustrative purposes, colored bars at the 
bottom of each panel indicate the time points for which the coefficients were significantly 
different from zero (p < .05).  See text for statistical tests of the predicted differences 
between coefficients for post-win and post-loss trials.  The insert shows the topographic 
maps of coefficients that result from fitting the same model for each electrode 
separately. b) Average ERPs for post-win and post-loss trials, showing the standard, 
feedback-related wave form, including the feedback-related negativity (i.e., the early, 
negative deflection on post-loss trials). Detailed ERP results are presented in the 
Supplemental Information (see Figure S8). 
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Fig. 6.  Correlations between individuals’ standardized coefficients from the multi-level 
regression analysis relating the EEG signal to the different history/context variables and 
1) their slopes for the switch-rate functions (left two columns) or 2) their overall win rate 
(right two columns) separately for post-win and post-loss conditions. Coefficients were 
obtained by fitting models with the EEG signals averaged over a 300-700 ms interval of 
the post-feedback period (the shaded interval in Figure 5). 
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SUPPLEMENTAL INFORMATION 

Additional Information on Analyses and Methods 

History Analyses 

To evaluate the predictability of the current choice by the recent choice history, 

we fitted multilevel logistic regression models predicting the switch vs. repeat choice by 

the player’s and opponent’s switch history from n-3, n-2, and n-1 trials, the overall switch 

probability of the opponent, whether trial n-1 was a win or a loss trial, and the 

interactions between win/loss and all history/context variables (i.e., 15 predictors in 

total). We estimated both fixed and random effects of all predictors. For Experiment 4, 

the model had three levels in which trials were nested within players, which in turn were 

nested in dyads. For the other experiments, models included only the first two levels.  

The signature of model-based selection is that predictors representing the opponent’s 

switch rate (e.g., the overall switch probability and opponent’s switch history) is 

positively related with the player’s switch probability on post-win trials and negatively on 

post-loss trials.  The main prediction we wanted to test was that following post-win trials 

the predictive relationship is stronger than following post-loss trials. Therefore, we 

examined the interaction between the post-win/loss contrast and each opponent-related 

predictor after reversing the label of the predictor for post-loss trials (e.g., n–1 opponent 

“switch” is relabeled as “repeat”, 80% overall switch rate becomes 20%). This allowed us 

to test the difference in the strength of the relationship, while ignoring the direction of the 

relationship.  We had no a-priori prediction about the direction of the relationship 

between previous switch/repeat choices and the trial n switch/repeat choice.  

Nevertheless, for a conservative test of post-win/loss differences we again reversed the 
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post-loss label in each case where there was an empirical flip in sign between post-loss 

and post-win coefficients.  We also present in Figure S6 the results without reversing 

labels. 

EEG Recordings 

In Experiment 5, Electroencephalographic (EEG) activity was recorded from 20 

tin electrodes held in place by an elastic cap (Electrocap International) using the 

International 10/20 system. The 10/20 sites F3, Fz, F4, T3, C3, CZ, C4, T4, P3, PZ, P4, 

T5, T6, O1, and O2 were used along with five nonstandard sites: OL midway between T5 

and O1; OR midway between T6 and O2; PO3 midway between P3 and OL; PO4 

midway between P4 and OR; and POz midway between PO3 and PO4. The left-mastoid 

was used as reference for all recording sites. Data were re-referenced off-line to the 

average of all scalp electrodes. Electrodes placed ~1cm to the left and right of the 

external canthi of each eye recorded horizontal electrooculogram (EOG) to measure 

horizontal saccades. To detect blinks, vertical EOG was recorded from an electrode 

placed beneath the left eye and reference to the left mastoid. The EEG and EOG were 

amplified with an SA Instrumentation amplifier with a bandpass of 0.01–80 Hz and were 

digitized at 250 Hz in LabView 6.1 running on a PC. We used the Signal Processing and 

EEGLAB (44) toolboxes for EEG processing in MATLAB. Trials including blinks (> 60 

μv, window size = 200 ms, window step = 50 ms), large eye movements (> 1°, window 

size = 200 ms, window step = 10ms), and blocking of signals (range = -0.01 μv to 0.01 

μv, window size = 200 ms) were rejected excluded from further analysis.  
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EEG Analysis 

Single trial EEG signals were segmented into 1250 ms epochs starting from 200 

ms before the onset of feedback. Thus, each epoch included 700 ms post-feedback 

periods and initial 250 ms intervals of next trials. After baselining signals with data from 

initial 200 ms intervals, EEG activity from electrodes Fz and Cz was averaged and 

transformed into a z-score within subjects.  These electrodes were selected based on 

previous studies reporting a robust interaction between the feedback and the probability 

context during reinforcement learning (43).  Each electrode’s EEG signal was also 

prewhitened by linear and quadratic trends across trials and blocks.  The resulting signal 

was regressed using a multilevel model with two levels (i.e., electrodes nested within 

trials) on context variables, as described in the Results section.  For illustrative purposes, 

this was done for every time sample (see Figure 4).  In addition, for statistical tests of the 

post-win versus post-loss regression coefficients, the analyses predicting choices, and the 

topographic maps, we averaged the EEG signal for an a-priori defined a 300-700 ms 

interval from the post-feedback period, which was derived from the literature on ERP 

feedback effects (29, 43). The difference between post-win/loss models was tested in the 

same manner as in the multilevel model for history effects, namely by reversing 

predictors of opponents’ history/context to obtain the interaction effect of post-win/loss 

(see History Analysis section).  
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Additional Results 

Rate of Success 

Participants’ switching behavior as function of the simulated opponents’ switch 

rate and n-1 win/loss feedback indicates that they used a model of the opponent mainly 

on post-win, but to a lesser degree on post-loss trials.  Obviously, model-based behavior 

can be useful only when the opponent exhibits some degree of regularity.  Therefore, we 

expect that participants show a greater success rate both after win than after loss feedback 

and when the opponent’s switch rate deviates from chance (p=.5).  

 

  

Fig. S1.  Rate of winning as a function of n-1 wins versus losses and opponents’ switch 
rate.  Results for Experiment 2 are collapsed across the two RSI conditions, which 
showed almost identical results. Error bars show 95% within-subject confidence 
intervals. 
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As shown in Figure S1, we found such a pattern for all four experiments with 

simulated opponents: The success rate followed a right-tilted, U-curved function with the 

most wins for the lowest switch rate, followed by the highest switch rate, and then the 

mid-range switch rates.  In addition, this pattern was much more robust for post-win than 

for post-loss trials.  The fact that rate of winning was highest for the opponent with 

lowest switch rate, in particular after win trials is consistent with the fact that participants 

showed greater tendency for model-based behavior when it required them to engage in 

low rather than high rates of switching (see Figure 2). Within each experiment, the main 

effect of n-1 wins versus n-1 losses was highly significant (all Fs>= 24.5, p<.001), as was 

the interaction between this factor and the quadratic trend for opponent switch rates (all 

Fs>= 10.77, p=0.003).   

Action Choices 

Traditionally, when analyzing choice behavior in experimental games, the focus is 

on the how players choose between different options.  Given that our behavioral signature 

for model-based and stochastic behavior was based on the rate of switching between 

action choices, we focused on the switch/repeat choice as our primary dependent 

variable.  To ensure that we are not missing important results by only focusing on switch 

rate, we also examined for all experiments the allocation of choices between the “freeze” 

and the “run” option (or “up” and “down” for Experiment 3), as well as the degree to 

which choices were affected by our key independent variables (post-win/post-loss and 

opponent switch rate).  In all experiments, the choices were fairly evenly distributed (i.e., 

close to 50% for either option). The independent variables had at best only very small 

effects that were not consistent across experiments. Figure S2 shows example results 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 6, 2019. ; https://doi.org/10.1101/662700doi: bioRxiv preprint 

https://doi.org/10.1101/662700
http://creativecommons.org/licenses/by/4.0/


 

 

6 

 

from Experiment 1; the pattern for the remaining experiments is very similar.  Thus, there 

are no obvious results in the pattern of action choices that would qualify the conclusions 

form the switch-rate data.   

 

  

Fig. S2.  Probability of choosing the “run” option as a function of n-1 wins versus losses 
and opponents’ switch rate for Experiment 1. Error bars show 95% within-subject 
confidence intervals. 
 

 

Are Feedback Effects Temporary? 

Our model assumes that the effect of loss-feedback does not eliminate the model 

of the opponent, but rather depresses it temporarily.  Thus, we should expect that that 

win-loss feedback has a large effect on the next-trial choice, and either no, or only a small 

effect thereafter. Figure S3 shows for Experiment 1 the switch-rate function from Figure 

2, but further conditioned on the trial n-2 win-loss feedback.  As apparent, choice 

behavior is dominated by the effect of trial n-1 feedback.  There was is a small additional 

effect of trial n-2 feedback, such that model-based behavior is strengthened following 

two consecutive wins and stochastic behavior is strengthened following two loss trials 

(i.e., after two win-trial in a row, the switch-rate function slope become more positive, 
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after two loss-trials the function becomes more shallow).  Analyzing these data with an 

ANOVA with the factors trial n-2 and trial n-1 feedback as well as a linear contrast for 

the opponent switch-rate factor, revealed a strong n-1 feedback x switch-rate interaction, 

F(1,51)=58.45, p<.001, eta2=.53, and a much weaker, but still reliable n-2 feedback x 

switch-rate interaction, F(1,51)=15.02, p<.001, eta2=.23, and no three-way interaction, 

F(1,51)=.25, p=.91.  The results from the remaining experiments were similar to this 

pattern, but generally showed slightly weaker n-2 feedback effects.  The fact that there 

was a small, cumulative effect of trial n-2 feedback indicates some degree of adaptation 

to consistent win or loss feedback contingencies.  Yet, the fact that choices are mainly 

dominated by trial n-1 feedback indicates that loss feedback only temporarily depresses 

the model representation, allowing quick recovery of the last-used model representation 

following a subsequent win.  

 

 

Fig. S3.  Empirical switch rate as a function of opponents’ switch rate and both trial n-1 
win versus loss feedback and trial n-2 win versus loss feedback for Experiment 1.  Error 
bars show 95% within-subject confidence intervals. 
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History Analyses 

Our analyses to test the win/loss difference in the strength of the relationships 

between history/context and current choices involved selectively reversing labels of some 

of the predictors (see Figure 3).  In Figure S4, we show the, original, signed coefficients.  

As apparent, for the opponent-related predictors, coefficients were generally positive 

following win feedback and negative, albeit smaller in size, following loss feedback.  

This pattern is consistent with our mixed-strategy account, by which choice is model-

driven after win trials, but less influenced by the opponent’s global or local choice 

context following losses.   

Our predictions were mainly with regard to the influence of opponents’ choices 

and we had no clear expectations about how the player’s own choice history would 

influence future choices. In fact, the pattern of player-related effects was not as consistent 

as for the opponent-related predictors.  However, with few exceptions, the strength of the 

effects seemed stronger following win than following loss trials.  This result is consistent 

with the conclusion that loss-feedback dampens the influence of the recent task context in 

general, not just as it relates to the opponents’ behavior.   

We also conducted a more straightforward assessment of the effect of history on 

switch/repeat choices that did not require selective recoding of predictors.  Specifically, 

we performed individual, logistic regression analyses for each subject, and separately for 

post-win and post-loss trials.  Given that the effect of overall switch context was already 

demonstrated in our initial analyses (see Figure 2), we only included here the players’ 

and the opponents’ trial n-1 to n-3 switch/repeat choices as predictors.  Figure S5 shows 

for each experiment the post-win and post-loss distributions of R2 scores resulting from 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 6, 2019. ; https://doi.org/10.1101/662700doi: bioRxiv preprint 

https://doi.org/10.1101/662700
http://creativecommons.org/licenses/by/4.0/


 

 

9 

 

these analyses (45).  As apparent, post-win distributions were in all cases significantly 

farther to the right than post-loss distributions.  Thus, these analyses confirm that 

following wins, switch/no-switch decisions are overall more dependent on history than 

post-loss decisions.   

 

Fig. S4.  Signed standardized coefficients from multi-level logistic regression models 
predicting the trial n switch/repeat choice on the basis of players’ and opponents’ 
switch/repeat choices on trials n-1 to n-3 and the opponents’ overall switch rate, run 
separately for post-win and post-loss trials.  Error bars are within-subject standard errors 
around the coefficients.  
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Fig. S5.  Histogram of Cox and Snell pseudo R2-square scores from logistic regression 
models fitted within subjects (dark green shading indicates overlapping regions of the 
distributions). The difference in fit scores between post-win/loss was tested via t-test 
after converting R2 values into z-score. Fit scores are generally higher for post-win 
models compared to post-loss models.  
 
 

Modelling of Switch Choices 

Figure 2 in the main paper contains predictions from the following probabilistic 

model that captures four different, potential influences on subjects’ average switch rates 

pswitch across conditions: 

𝑃𝑠𝑤𝑖𝑡𝑐ℎ =  
exp(𝑜𝑠 ∗ 𝑚𝑠 − (𝑤𝑙 + 1) ∗  .5 ∗  𝑠𝑚) + 𝑝𝑒 + 𝑤𝑙 ∗ 𝑠𝑠)

1 +  exp(𝑜𝑠 ∗ 𝑚𝑠 − (𝑤𝑙 + 1) ∗  .5 ∗  𝑠𝑚) + 𝑝𝑒 + 𝑤𝑙 ∗ 𝑠𝑠)
 

with 𝑜𝑠 = ln(𝑃𝑜𝑠 (1 −  𝑃𝑜𝑠)), and 𝑤𝑙 = 1 for post-win, 𝑤𝑙 = -1 for post-loss⁄  
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where pos is the experimentally manipulated probability of a switch by the simulated 

opponent, which is translated into its log-odds form (os), and wl codes for wins versus 

losses on trial n-1.  The parameter ms (model strength), represents the strength of the 

internal model (e.g., ms=1 would indicate direct probability matching between the 

opponent’s and the player’s switch probability).  The parameter sm (suppression of  

model),  within the term (wl+1) * .5 * sm represents the degree to which the model-based 

choice is changed on post-loss relative post-win trials.  A negative sm parameter would 

indicate suppression of the model in favor of stochastic choice following losses. In 

addition, a positive pe (perseveration effect), parameter would represent the tendency to 

unconditionally favor the previously choses task; and a positive ss (win-stay/lose-shift),   

parameter indicates that choices are dominated by the win-stay/lose-shift strategy. 

We applied this model both to the average data for each experiment, and to the 

subject-specific averages.  Table S1 shows the estimated parameters for each of the four 

experiments, their confidence intervals, as well as model fits (R2) for the group-average 

data and also the parameters and confidence intervals for the averages of the individual-

specific estimates.  Across experiments and individuals, each of the four different 

influences are relevant for characterizing participants’ propensity to switch from one trial 

to the next.  For group-average data, the model strength parameter ranged between .48 

and .87, indicating that overall, the opponent’s switch rate affected the participant’s 

switch rate in an incentive-compatible manner.  Average ms values below 1.0 also 

indicate that participants overall engaged in “imperfect” probability matching (a value of 

1.0 would indicate perfect probability matching, values above 1.0 a maximizing 
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tendency).  There is a substantial literature indicating that probability matching is the 

dominant, albeit suboptimal strategy in serial decision tasks (46, 47).   

Table S1.  Parameter estimates and 95% confidence intervals from fitting the choice 
model to group average and individual data from Experiments 1, 2, 3, and 5. 
 

 Fitting Group Averages Fitting Individuals’ Data  

Parameters ms sm pe ss R2 ms sm pe ss 

Simulated Opp.          

Exp. 1 .48±.10 -.38±.09 .21±.06 .20±.06 .975 .61±.19 -.50±.16 .24±.14 .22±.11 

Exp. 2, 300 ms .74±.12 -.47±.15 .28±.07 .30±.07 .988 .96±.26 -.66±.24 .34±.10 .36±.14 

Exp. 2, 1000 

ms 

.74±.13 -.49±.17 .19±.08 .26±.08 .984 .93±.24 -.67±.21 .25±.11 .33±.13 

Exp. 3 .86 ±.11 -.44±.14 .07±.04 .24±.06 .993 1.13±.28 -.68±.23 .11±.10 .29±.11 

Exp. 5 .87±.17 -.50±.21 .11±.09 .30±.09 .998 1.10±.39 -.71±.30 .16±.10 .36±.24 

Human Dyads          

Exp. 4      .16±.10 -.14±.13 .11±.9 .31±.9 

 
Note.  ms=model strength, sm=suppression of model, pe = perseveration effect, ss = 
win-stay/lose-shift tendency.  For Experiment 2, fits are reported separately for the 300 
ms and the 1000 ms RSI condition.  Fits for individual subjects in Experiments 1, 2, 3, 
and 5 are on the basis of each subject’s condition averages.  For Experiment 5, we 
report parameters resulting from modeling individuals’ trial-by-trial choices. 

 

The lower-level perseveration and win-stay/lose-shift biases had modest, but 

statistically robust effects on choice.  For example, the pe of .21 found in Experiment 1 

translates into a switch probability of p=.45, when all other factors are ignored––a small 

overall perseveration bias.  Similarly, the ss of .20 found in Experiment 1 implies a 

switch probability of p=.45 following wins and of p=.55 following losses, again all other 

factor ignored.  Most importantly, the theoretically critical, strategy mixture parameter sm 

ranged from -.38 to -.50 and was reliably lower than 0 across all experiments.  These 

parameters estimates implied that on 50-80% of post-loss trials, the model-based 

influence was replaced by stochastic choice.  

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 6, 2019. ; https://doi.org/10.1101/662700doi: bioRxiv preprint 

https://doi.org/10.1101/662700
http://creativecommons.org/licenses/by/4.0/


 

 

13 

 

The individual-specific parameter estimates also allowed us to examine the degree 

to which the different influences on choice were tied to successful competitive behavior.  

To this end, we entered each individual’s four different parameter estimates as fixed-

effect predictors into a two-level regression analysis with experiment as random factor 

and overall success as criterion variable.  While on average, pe and ws indicated the 

expected perseveration and win-stay/lose-shift biases (i.e., pe<0 and wl<0), there were 

substantial individual differences in these parameters that included individuals with 

alternation or win-shift/lose-stay biases (i.e., pe>0 and ss>0).  Given that any bias can 

imply a deviation from optimal performance, we coded these two parameters in absolute 

terms. 

 
Table S2.  Using parameter estimates from the choice-model fitted to individual’s 
condition means to predict individual’s competitive success.  

 
 b se t-value 

intercept .504   

ms .086 .007 12.31 

sm  .064 .008  8.03 

abs(pe) -.016 .006 -2.56 

abs(ss) -.001 .001 -0.10 

Note.  Shown are raw, fixed-effect coefficients (b), the standard error around the 
coefficients (se), and the associated t-value.  Experiment was coded as a random 
grouping factor.  Absolute values for the pe and the wl effect were used to account for 
biases in either direction.  Note, that the more negative the sm parameter, the greater 
the suppression of model-based choice on post-loss trials.  Thus, a positive coefficient in 
this analysis indicates that more suppression leads to worse performance.    

 

As shown in Table S2, model strength has a highly robust positive effect on 

success, whereas either a perseveration or an alternation bias reduced the amount of 
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money earned; no corresponding effect was found for the win-stay/lose-shift parameter.  

As would be expected, the main effect of the strategy-choice parameter was positive, 

implying that less stochastic behavior after losses produced greater overall success.   

Modeling of Switch Choices in Experiment 4a (Dyads) 

In Experiment 4a, each participant played against another participant within 

seven, 80-trial blocks.  Different from the other experiments, where the simulated 

opponent’s behavior was under experimental control, we here had to utilize the natural, 

within-session variability of each player’s switch rate within a trial-by-trial version of our 

choice model.  For this purpose, the pos parameter, which represents the opponent’s 

choice behavior was calculated as a running average of the opponent’s switch rate within 

each block.  The ending running average of block n-1 (or p=.5 for block n=1) was used as 

a starting value for block n, allowing some carry-over of prior knowledge of the 

opponent’s previous-block behavior.   

Results from this model are shown in the bottom row of Table S1.  Not 

surprisingly, the model strength parameter ms was substantially smaller than in the 

preceding experiments, but still significantly larger than 0.  Also, the perseveration 

parameter pe and the win-stay/lose-shift parameter ss were robust and roughly in a 

similar range as in the remaining experiments.  Importantly, the theoretically critical 

suppression of model parameter sm, was also statistically significant and of about the 

same size as the model-strength parameter ms, indicating that on post-loss trials the effect 

of the model is essentially eliminated.   

We also used a multi-level regression model with participants grouped within 

dyads to predict each participant’s success (in terms of probability of win trials) as a 
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function of the four model parameters.  As in the preceding model (Table S2), we again 

used absolute values from the perseveration and the win-stay/lose-shift scores in order to 

capture biases in in either direction (very similar results would have been obtained with 

signed values).  As shown in Table S3, greater reliance on the model, a smaller tendency 

to disregard the model after losses (i.e., a less negative sm score), a smaller, absolute 

perseveration score, and a larger absolute win-stay/lose-shift all contributed to greater 

success.  Aside from the result for the win-stay/lose-shift score, the overall pattern was 

qualitatively very similar to the results from the simulated-opponent experiments. The 

relatively strong positive link between the win-stay/lose-shift bias and success rate is 

noteworthy.  Exploring it further goes beyond the scope of this paper. However, it is 

important to emphasize that these analyses do not reveal the causal pathway and therefore 

do not necessarily imply that a stronger win-stay/lose-shift bias leads to greater success.  

It is just as plausible that players who are more successful are more inclined to repeat 

successful moves, which then might go unnoticed by their weaker opponents.   

Table S3.  Using parameter estimates from the choice-model fitted to individual’s trial-
by-trial data to predict the proportion of win trials (n=94) in Experiment 4a.  
 

 b se t-value 

intercept -.530 .005  

ms .043 .015 2.91 

sm  .034 .012 2.97 

abs(pe) -.080 .019 -4.11 

abs(ss) .062 .014 4.48 

Note.  Shown are the unstandardized regression coefficients (b), the standard error 
around the coefficients (se), and the associated t and p values.  Note, that the more 
negative the sm parameter, the greater the suppression of model-based choice on post-
loss trials.  Thus, a positive coefficient in this analysis indicates that more suppression 
leads to worse performance.    
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Event-related Potentials 

Our key interest in Experiment 5 was in the amount of information about 

history/context variables that was contained in the EEG signal following the feedback 

signal, and how that information predicted behavior.  Therefore, we present in Figure 4 

analyses that capture the degree to which history/context variables are expressed in the 

EEG signal, using coefficients from multi-level regression analyses.  These analyses are 

adequate as we had no strong a-priori predictions about how the different context 

variables and interactions between them would be expressed in the EEG signal and the 

regression-based analyses yielded trial-by-trial estimates of “representational strength” 

that we used in the PPI analyses (see below).  Nevertheless, it can be informative to 

examine how the different variables affect the EEG signal when examined in the 

traditional manner, namely in terms of event-related potentials (ERPs).   

Figure S6 shows the ERPs from all relevant conditions. Following the feedback 

(200 to 300 ms after the onset), we observed a typical feedback-related negativity (FRN), 

with a peak that was more negative for loss feedback compared to win feedback. 

Consistent with the results of multi-level modeling (Figure 4 and Figure S6), the 

amplitude of the FRN was affected by the combination of feedback and context variables.  

Specifically, it appears that the FRN amplitude was most negative for unexpected 

opponent switch or repeat choices, that is for opponent switch choices for 25% switch-

rate opponents and (to a lesser degree) for repeat choices when facing 75% switch-rate 

opponents).  These effects in turn, were considerably more pronounced following win 

than loss trials.   
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Fig. S6.  Event related potentials (grand average EEG activity for electrodes Fz and Cz) 
grouped by all factors used in the EEG analysis: the opponent’s overall switch rate 
(20,50,75%), the n-1 opponent switch/no-switch choice, and the n-1 player’s switch/no-
switch choice. The EEG signal was low-pass filtered (Butterworth, 25Hz), time-locked to 
the onset of feedback, and subtracted from the average across the 200 ms baseline 
period prior to the feedback signal.  The shaded area indicates within-subject 95% 
confidence intervals around the average signal.    
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Within the large literature on feedback-related EEG effects (31, 48-50), there is 

no general agreement to what degree the main components (in particular the FRN) reflect 

an unsigned prediction error (i.e., surprise) or a signed prediction error (i.e., a 

reinforcement signal).  The fact that we generally find a larger negativity during the 

typical FRN time range (200 to 300 ms after the onset of feedback) following loss trials is 

consistent with a negative prediction error account.  However, the fact that we also see a 

clear expectancy modulation of the FRN for post-win trials (i.e., a larger positivity when 

opponents with low switch rates do switch or opponents with high switch rate do not) is 

also consistent with the FRN as an unsigned prediction error.  The literature does not 

provide much information on the degree to which context modulates the FRN signal 

differentially for negative versus positive feedback (32). One interesting exception is a 

study by Cohen et al. (10) who reported that learned reward expectations decreased the 

FRN amplitude selectively on gain trials, but not on loss trials.  Thus, as in our results, 

this finding suggests that expectations about task contingencies are expressed more 

strongly after positive than after negative feedback in the feedback-related EEG signal.   

Controlling for Upcoming Switch 

Figure 4 shows the degree to which history/context variables are expressed in the 

EEG.  It is possible that the feedback-related differences for the history/context 

coefficients shown in Figure 4 are due to the fact that feedback affects the probability of 

an upcoming switch. Therefore, the EEG effects may reflect preparatory processes 

associated with an upcoming switch, such as the allocation of effort.  We show in Figure 

S7 results from the same analyses presented in Figure 4, but in addition entering the 

switch on the next trial (coded 0/1) as predictor.  As evident, here was indeed a small, 
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significant relationship between the EEG signal and the upcoming switch.  However, the 

overall pattern of history/context effects remains the same even when controlling or this 

variable.   

 
Fig. S7.  Standardized coefficients from multi-level regression models relating EEG 
activity at Fz and Cz electrodes to main predictors and the control variable (players’ 
upcoming switch). Shaded areas around each line indicate within-subject standard 
errors around coefficients. 
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Fig. S8.  Signed standardized coefficients from multi-level regression models relating 
EEG activity at Fz and Cz electrodes to the opponent’s overall switch rate (A), the n-1 
opponent switch/no-switch choice (B), the n-1 player’s switch/no-switch choice, and the 
interaction between A) and B) for each time point and separately for post-win and post-
loss trials.  Shaded areas around each line indicate within-subject standard errors 
around coefficients. 

Signed Coefficients 

In Figure 4, we had reversed the labels for the opponent-related predictors 

because our predictions referred to the amount of information about the competitive 

context, not how exactly that information is expressed in the EEG signal.  Figure S8 
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presents the identical analyses as in Figure 4, however plotted using the original 

predictors (i.e., without reversing labels on post-loss trials).  Inspection of the signed 

coefficients reveals a clear distinction between post-loss and post-win signals.  For all 

opponent-related predictors, the effect on the EEG signal was not only reduced following 

losses, it was also flipped in sign relative to post-win trials.  Note, that opponents’ local 

and global switch behavior has very different implications for the subject’s behavior 

depending on whether one is currently winning or losing (e.g., see Figure 1b).  Thus, one 

might speculate that this flip in sign is indicative of the win/loss-contingent difference in 

interpretation (or behavioral implication) of the information provided through the 

opponent.  

PPI Analysis 

In the main article, we present a psychophysiological interaction (PPI) analysis 

that predicts trial-by-trial switch choices from the degree to which history/context is 

expressed in the EEG signal.  Given that we only found a robust representation of context 

in the EEG signal following win trials (Figure 4), we restricted our analysis to these 

trials.  Note also that the theoretical status of post-loss trials is much less obvious than 

that of post-win trials.  Given the reduced context representation following losses, there 

may simply be too little meaningful variability to establish a reliable relationship with 

behavior.  At the same time, the remaining variability might also still have a detectable 

influence, just with a smaller overall effect on behavior.  Therefore, there is no strong, 

theoretical reason to test post-win and post-loss relationships against each other.  

Nevertheless, in Table S4 we show the results of PPI analyses separately for post-win and 

post-loss trials.  The results indicate that the relationship between the EEG representation 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 6, 2019. ; https://doi.org/10.1101/662700doi: bioRxiv preprint 

https://doi.org/10.1101/662700
http://creativecommons.org/licenses/by/4.0/


 

 

22 

 

of the global, opponent switch rate and behavior was equally strong for post-win as for 

post-loss trials.  Note, that the combination between the identical sign for the EEG-

behavior relationship across post-win and post-loss trials and the flipped sign for the 

opponent switch rate/EEG relationship (Figure S8) is consistent with the reversal of 

relationship between opponent, overall switch rate and player switch rate depending on 

win or loss feedback (e.g., Figure 2).  For the local, history variables, we found robust 

effects only following win trials, but not following loss trials.   

 

Table S4.  Coefficients from the PPI analysis predicting upcoming choices using 
residuals of MLM regression model for post-win and post-loss trials. 

 Post-win Post-loss 

 b se z-value b se z-value 

residual EEG 0.20 0.03 6.39 0.07 0.04 2.05 

Opponent Switch Rate(A) 0.11 0.05 2.26 -0.11 0.05 -2.37 

n-1 Opponent Switch (B) -0.13 0.04 -3.36 -0.03 0.03 -0.95 

n-1 Player Switch -0.11 0.03 -3.36 -0.12 0.03 -0.36 

(A) x (B) -0.06 0.06 -0.89 0.08 0.06 1.37 

Note.  Shown are the unstandardized regression coefficients (b), the standard error 
around the coefficients (se), and the associated z values.  
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