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Abstract10

Background: Mutations in BRCA1 and BRCA2 cause deficiencies in homologous recombination repair (HR),11

resulting in repair of DNA double-strand breaks by the alternative non-homologous end-joining pathway,12

which is more error prone. HR deficiency of breast tumors is important because it is associated with better13

response to platinum salt therapies and to PARP inhibitors. Among other consequences of HR deficiency are14

characteristic somatic-mutation signatures and transcriptomic patterns. The term “BRCAness” describes15

tumors that harbor an HR defect but have no detectable germline mutation in BRCA1 or BRCA2. A better16

understanding of the genes and molecular aberrations associated with BRCAness could provide mechanistic17

insights and guide development of targeted treatments.18

Methods: Using The Cancer Genome Atlas (TCGA) genomic data from breast cancers in 1101 patients, we19

identified tumors with BRCAness based on somatic mutations, homozygous deletions, and hypermethylation20

of BRCA1 and BRCA2. We then evaluated germline mutations, somatic mutations, homozygous deletions,21

and hypermethylation of 24 other breast-cancer predisposition genes. Using somatic-mutation signatures, we22

compared these groups against tumors from 44 TCGA patients with germline mutations in BRCA1 or23

BRCA2. We also compared gene-expression profiles of tumors with BRCAness versus tumors from BRCA124

and BRCA2 mutation carriers. A statistical resampling approach enabled objective quantification of25

similarities among tumors, and dimensionality reduction enabled graphical characterizations of these26

relationships.27

Results: Somatic-mutation signatures of tumors having a BRCA1/BRCA2 somatic mutation, homozygous28

deletion, or hypermethylation (n = 64) were markedly similar to each other and to tumors from29

BRCA1/BRCA2 germline carriers (n = 44). Furthermore, somatic-mutation signatures of tumors with30

germline or somatic events in BARD1 or RAD51C showed high similarity to tumors from BRCA1/BRCA231

carriers. These findings coincide with the roles of these genes in HR and support their candidacy as genes32

critical to BRCAness. As expected, tumors with either germline or somatic events in BRCA1 were enriched33

for basal gene-expression features.34

Conclusions: Somatic-mutation signatures reflect the effects of HR deficiencies in breast tumors.35

Somatic-mutation signatures have potential as biomarkers of treatment response and to decipher the36

mechanisms of HR deficiency.37

Keywords: Breast cancer, mutational signature, cancer subtypes, multiomic, BRCAness, expression profiles38
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Introduction39

Approximately 1-5% of breast-cancer patients carry a pathogenic germline variant in either BRCA1 or40

BRCA21–5. These genes play important roles in homologous recombination repair (HR) of double-stranded41

breaks and stalled or damaged replication forks6,7. When the BRCA1 or BRCA2 gene products are unable to42

perform HR, cells may resort to non-homologous end-joining, a less effective means of repairing43

double-stranded breaks, potentially leading to an increased rate of DNA mutations8–11. Patients who carry44

biallelic loss of BRCA1 and BRCA2 due to germline variants and/or somatic mutations often respond well to45

poly ADP ribose polymerase (PARP) inhibitors and platinum-salt therapies, which increase the rate of DNA46

damage, typically causing the cells to enter programmed cell death12–16.47

The downstream effects of BRCA mutations are distinctive. For example, BRCA1 and BRCA2-mutant tumors48

exhibit an abundance of C-to-T transitions across the genome18–20. Other downstream effects include49

characteristic transcriptional responses. For example, it has been shown that the “Basal” gene-expression50

subtype is enriched for tumors with BRCA1 mutations21–24, that BRCA1 mutations are commonly found in51

breast tumors with triple-negative hormone-receptor status25,26, and that gene-expression profiles may predict52

PARP inhibitor responses27. These patterns are consistently observable, even in the presence of hundreds of53

other mutations in the tumors24,28.54

In 2004, Turner, et al. coined the term BRCAness to describe patients who do not have a pathogenic germline55

variant in BRCA1 or BRCA2 but who have developed a tumor with an impaired ability to perform HR29. This56

category may be useful for clinical management of patients and especially for predicting treatment57

responses29,30. Recent estimates suggest that the proportion of breast-cancer patients who fall into this58

category may be as high as 20%31. Davies, et al. demonstrated an ability to categorize patients into this59

category with high accuracy based on high-level mutational patterns31. Polak, et al. confirmed that somatic60

mutations, large deletions, and DNA hypermethylation of BRCA1 and BRCA2 are reliable indicators of61

BRCAness32–35. They also showed a relationship between BRCAness and germline mutations in PALB2 and62

hypermethylation of RAD51C32. However, a considerable portion of breast tumors with HR deficiency lack a63

known driver. Furthermore, little is known about whether the downstream effects of germline variants,64

somatic variants, large deletions, and hypermethylation are similar to each other or whether these effects are65

similar for different genes.66

An underlying assumption of the BRCAness concept is that the effects of HR deficiency are similar across67

tumors, regardless of the genes that drive those deficiencies and despite considerable variation in genetic68
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backgrounds, environmental factors, and the presence of other driver mutations. Based on this69

assumption—and in a quest to identify candidate markers of BRCAness—we performed a systematic70

evaluation of multiomic and clinical data from 1101 patients in The Cancer Genome Atlas (TCGA)24. In71

performing these evaluations, we characterized each tumor using two types of molecular signature: 1)72

weights that represent the tumor’s somatic-mutation profile and 2) mRNA expression values for genes used to73

assign tumors to the PAM50 subtypes36,37. In this way, we sought to characterize the effects of HR defects in74

a comprehensive yet clinically interpretable manner. To evaluate similarities among tumors based on these75

molecular profiles, we used a statistical-resampling approach designed to quantify similarities among patient76

subgroups, even when those subgroups are small, thus helping to account for rare events. We use aberration77

as a general term to describe germline mutations, somatic mutations, copy-number deletions, and78

hypermethylation events.79

Methods80

Data preparation and filtering81

We obtained breast-cancer data from TCGA for 1101 patients in total. To determine germline-mutation82

status, we downloaded raw sequencing data from CGHub38 for normal (blood) samples. We limited our83

analysis to whole-exome sequencing samples that had been sequenced using Illumina Genome Analyzer or84

HiSeq equipment. Because the sequencing data files were stored in BAM format, we used Picard Tools85

(SamToFastq module, version 1.131, http://broadinstitute.github.io/picard) to convert the files to FASTQ86

format. We used the Burrows-Wheeler Alignment (BWA) tool (version 0.7.12)39 to align the sequencing87

reads to version 19 of the GENCODE reference genome (hg19 compatible)40. We used sambamba (version88

0.5.4)41 to sort, index, mark duplicates, and flag statistics for the aligned BAM files. In cases where multiple89

BAM files were available for a single patient, we used bamUtil (version 1.0.13,90

https://github.com/statgen/bamUtil) to merge the BAM files. When searching for relevant germline variants,91

we focused on 26 genes that had been included in the BROCA Cancer Risk Panel and that had a known92

association with breast-cancer risk (http://tests.labmed.washington.edu/BROCA)42,43. We extracted data for93

these genes using bedtools (intersectBed module, version 2)44.94

We used Picard Tools (CalculateHsMetrics module) to calculate alignment metrics. For exome-capture95

regions across all samples, the average sequencing coverage was 44.4. The average percentage of target96
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bases that achieved at least 30X coverage was 33.7%. The average percentage of target bases that achieved at97

least 100X coverage was 12.3%.98

To call DNA variants, we used freebayes (version v0.9.21-18-gc15a283)45 and Pindel99

(https://github.com/genome/pindel). We used freebayes to identify single-nucleotide variants (SNVs) and100

small insertions or deletions (indels); we used Pindel to identify medium-sized insertions and deletions.101

Having called these variants, we used snpEff (version 4.1)46 to annotate the variants and GEMINI (version102

0.16.3)47 to query the variant data. To expedite execution of these steps, we used the GNU Parallel103

software48. The scripts and code that we used to process the germline data can be found in an open-access104

repository: https://bitbucket.org/srp33/tcga_germline/src.105

Geneticists experienced in variant interpretation (BHS, TW, SG, MCK) further filtered the germline variants106

for pathogenicity using available sources of information on variants, following accepted guidelines for107

variant classification as previously described49. Accordingly, these germline calls were independent of108

variant-classification calls used in prior studies of TCGA109

data[50;koboldtComprehensiveMolecularPortraits2012]. To assess loss of heterozygosity (LOH), we used110

data from Riaz, et al.51. They had made LOH calls for a large proportion of the breast-cancer patients in our111

study.112

We identified somatic SNVs and indels for each patient by examining variant calls that had been made using113

Mutect52; these variants had been made available via the Genomic Data Commons53. We used the following114

criteria to exclude somatic variants: 1) synonymous variants 2) variants that snpEff classified as having a115

“LOW” or “MODIFIER” effect on protein sequence, 3) variants that SIFT54 and Polyphen255 both suggested116

to be benign56, and 4) variants that were observed at greater than 1% frequency across all populations in117

ExAC57. For BRCA1 and BRCA2, we examined candidate variants based on all available sources of evidence118

and the University of Washington, Department of Laboratory Medicine clinical database as described119

previously58. We compared our classifications to those publicly reported in the ClinVar database59 when120

available and found complete concordance. Based on these criteria, we categorized each variant as121

pathogenic, likely pathogenic, variant of uncertain significance (VUS), likely benign, or benign. Then we122

examined the ClinVar database60 for evidence that VUS or likely benign variants had been classified by123

others as pathogenic; however, none met this criterion. To err on the side of sensitivity, we considered any124

BRCA1 and BRCA2 mutation to be “mutated” if it fell into our pathogenic, likely pathogenic, or VUS125

categories.126
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Using the somatic-mutation data for each patient, we derived mutation-signature profiles using the127

deconstructSigs (version 1.8.0) R package61. As input to this process, we used somatic-variant calls that had128

not been filtered for pathogenicity, as a way to ensure adequate representation of each signature. The output129

of this process was a vector for each tumor that indicated a “weight” for each signature19. Figures S1-S2130

illustrate these weights for two tumors that we analyzed.131

We downloaded DNA methylation data via the Xena Functional Genomics Explorer62. These data were132

generated using the Illumina HumanMethylation27 and HumanMethylation450 BeadChip platforms. For the133

HumanMethylation27 arrays, we mapped probes to genes using a file provided by the manufacturer134

(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GPL8490). For the HumanMethylation450 arrays, we135

mapped probes to genes using an annotation file created by Price, et al.63 (see136

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GPL16304). Typically, multiple probes mapped to a137

given gene. Using probe-level data from BRCA1, BRCA2, PTEN, and RAD51C, we performed a preliminary138

analysis to determine criteria for selecting and summarizing these probe-level values. Because these genes139

are tumor suppressors, we started with the assumption that in most cases, the genes would be methylated at140

low levels. We also assumed that probes nearest the transcription start sites would be most informative. Upon141

plotting the data (Figure S3), we decided to limit our analysis to probes that mapped to the genome within142

300 nucleotides of each gene’s transcription start site. In some cases, probes appeared to be faulty because143

they showed considerably different methylation levels (“beta” values) than other probes in the region (Figure144

S3). To mitigate the effects of these outliers, we calculated gene-level methylation values as the median beta145

value across any remaining probes for that gene. Then, to identify tumors that exhibited relatively high beta146

values—and thus could be considered to be hypermethylated—we used the getOutliersII function in the147

extremevalues R package (version 2.3.2)64 to detect outliers. When invoking this function, we specified the148

following non-default parameter values: distribution = "exponential", alpha = c(0.000001,149

0.000001).150

We downloaded copy-number-variation data from the Xena Functional Genomics Explorer62. These data had151

been generated using Affymetrix SNP 6.0 arrays; CNV calls had been made using the GISTIC2 method65.152

The CNV calls had also been summarized to gene-level values using integer-based discretization. We153

focused on tumors with a gene count of “-2”, which indicates a homozygous deletion.154

We used RNA-Sequencing data that had been aligned and summarized to gene-level values using the original155

TCGA pipeline24. To facilitate biological and clinical interpretation, we limited the gene-expression data to156

The Prosigna™ Breast Cancer Prognostic Gene Signature (PAM50) genes66. Netanely, et al. had previously157
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published PAM50 subtypes for TCGA breast cancer samples; we reused this information in our study67. For158

each of these genes, we also sought to identify tumors with unusually low expression levels. To do this, we159

used the getOutliersI function in the extremevalues package to identify outliers. We used the following160

non-default parameter values: alpha = c(0.000001, 0.000001), distribution = "lognormal",161

FLim = c(0.1, 0.9).162

We parsed demographic, histopathological, and surgical variables for TCGA samples from the repository163

prepared by Rahman, et al.68. We obtained drug-response data from the TCGA legacy archive164

(https://portal.gdc.cancer.gov/legacy-archive) and standardized drug names using synonyms from the165

National Cancer Institute Thesaurus69.166

Quantitative analysis and visualization167

To prepare, analyze, and visualize the data, we wrote computer scripts in the R programming language70. In168

writing these scripts, we used the following packages: readr71, dplyr72, ggplot273, tidyr74, reshape275,169

ggrepel76, cowplot77, data.table78, UpSetR79, BSgenome.Hsapiens.UCSC.hg3880,81, and Rtsne82. We170

created a series of R scripts that execute all steps of our analysis and generate the figures in this paper; these171

documents are available at https://osf.io/9jhr2.172

To reduce data dimensionality for visualization purposes, we applied the Barnes-Hut t-distributed Stochastic173

Neighbor Embedding (t-SNE) algorithm83,84 to the mutation signatures and PAM50 expression profiles. This174

reduced the data to two dimensions, which we plotted as Cartesian coordinates. To quantify homogeneity175

within a group of tumors that harbored a particular aberration, we calculated the pairwise Euclidean distance176

between each patient pair in the group and then calculated the median pairwise distance85. When comparing177

two groups, we used a similar approach but instead calculated the median distance between each pair of178

individuals in either group. To determine whether the similarity within or between groups was statistically179

significant, we used a permutation approach. We randomized the patient identifiers, calculated the median180

pairwise distance within (or between) groups, and repeated these steps 10,000 times. This process resulted in181

an empirical null distribution against which we compared the actual median distance. We then derived182

empirical p-values by calculating the proportion of randomized median distances that were larger than the183

actual median distance.184
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Results185

We used clinical and molecular data from breast-cancer patients in TCGA to evaluate the downstream effects186

of BRCA1 and BRCA2 germline mutations. We evaluated two types of downstream effect: 1) expression187

levels of genes that are used to classify tumors into the PAM50 subtypes36,37 and 2) signatures that reflect a188

tumor’s overall somatic-mutation profile in a trinucleotide context18,19. We used expression data for the189

PAM50 genes due to their biological and clinical relevance. We used somatic-mutation signatures because190

they reflect the genomic effects of HR defects and have been associated with BRCA1/BRCA2 mutation191

status18,19. First, we assessed whether either of these profile types are more homogeneous in BRCA1/BRCA2192

germline carriers than in randomly selected patients. Next we evaluated the robustness of potential criteria193

for classifying tumors into the “BRCAness” category. These criteria included somatic mutations,194

homozygous deletions, and DNA hypermethylation of BRCA1 and BRCA2. Similarly, we assessed whether195

these types of aberration in 24 other breast-cancer predisposition genes have similar effects to196

BRCA1/BRCA2 aberrations. Before classifying any gene as a candidate BRCAness gene, we required that the197

effects of these aberrations be consistent across multiple aberration types.198

Of 993 breast-cancer patients with available germline data, 22 harbored a pathogenic SNV or indel in199

BRCA1; 22 harbored a BRCA2 variant (Figure 1A). All but 3 BRCA1 carriers and all but 7 BRCA2 carriers200

experienced loss of heterozygosity (LOH) in the same gene (Figures S4-S5). BRCA1 carriers fell into the201

“Basal” (n = 17); Her2 (n = 1), Luminal A (n = 2), and Luminal B (n = 1) gene-expression subtypes (Figure202

S6)21,36,37. Most BRCA2 carriers fell into the Luminal A subtype (n = 13); the remaining individuals were203

dispersed across the other subtypes. As demonstrated previously19, the primary somatic-mutation signature204

for most BRCA1 and BRCA2 carriers was “Signature 3”; however, other signatures (especially 1A) were also205

common (Figure S7). Figure S8 shows the overlap between these two types of molecular profile.206

Although it is useful to evaluate breast-cancer patients based on the primary subtype or signature associated207

with each tumor, tumors are aggregates of multiple subtypes and signatures. To account for this diversity, we208

characterized tumors based on 1) gene-expression levels for all available PAM50 genes and 2) all 27209

somatic-mutation signatures. To enable visualization of these profiles, we used the t-SNE technique to reduce210

the dimensionality of these profiles. Generally, tumors with the same primary subtype or signature clustered211

together in these visualizations (Figures 2-3); however, in some cases, this did not happen. For example, the212

dimensionally reduced gene-expression profiles for Basal tumors formed a tight, distinct cluster (Figure ??).213

But some Basal tumors were distant from this cluster, and one “Normal-like” tumor was located in this214
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cluster. Similarly, tumors assigned to somatic-mutation “Signature 3” formed a cohesive cluster (Figure 3),215

but some “Signature 3” tumors were separate. These observations highlight the importance of evaluating216

molecular profiles as a whole, not just using a single, primary category.217

Under the assumption that BRCA1/BRCA2 germline variants exhibit recognizable effects on tumor218

transcription, we used a statistical-resampling approach (see Methods) to evaluate whether tumors from219

BRCA1 carriers have homogeneous gene-expression profiles. As expected based on the tumors’ primary220

PAM50 classifications, 18 of 22 BRCA1 carriers overlapped closely with the Basal subtype (Figure 4A). But221

as a whole, the expression profiles for this group were not more homogeneous than expected by random222

chance (p = 0.065; Figure S9A), perhaps because the 4 non-Basal samples exhibited gene-expression profiles223

that were vastly different from the Basal tumors. Similarly, BRCA2 carriers were not significantly224

homogeneous (p = 0.16; Figure S9B); tumors from these individuals were dispersed across the225

gene-expression topography (Figure 4B). In contrast, somatic-mutation signatures of BRCA1 germline226

carriers were more homogeneous than expected by chance (p = 0.0004; Figures 5A and S10A), as were those227

from BRCA2 carriers (p = 0.0034; Figures 5B and S10B). None of the three BRCA1 carriers who lacked228

LOH events clustered closely with the remaining BRCA1 tumors (Figure 5A). Of the 7 BRCA2 tumors229

without detected LOH events, 4 were among those that failed to cluster closely with the remaining BRCA2230

tumors (Figure 5B). These observations confirm that germline BRCA1/BRCA2 mutations leave a231

recognizable imprint on a tumor’s mutational landscape but that this imprint is more likely in combination232

with a second “hit” in the same gene19,32,86.233

Next we evaluated similarities between BRCA1 and BRCA2 germline carriers. Although some BRCA2234

carriers fell into the Basal gene-expression subtype, overall profiles for these patients were dissimilar to those235

from BRCA1 carriers (p = 0.99; Figures 4A-B and S11A). However, the opposite held true for236

somatic-mutation signatures: tumors from BRCA1 and BRCA2 carriers were highly similar to each other (p =237

0.0001; Figures 5A-B and S12A).238

A somatic mutation, homozygous deletion, or DNA hypermethylation occurred in BRCA1 and BRCA2 for 64239

patients (Figure 1B-D). Most of these events were mutually exclusive with each other and with germline240

variants (Figure S13). Whether for PAM50 subtypes or somatic-mutation signatures, tumors with BRCA1241

hypermethylation were relatively homogeneous and highly similar to tumors from BRCA1 germline carriers242

(Figures 4G, 5G, S9G, S10G; Table 1). For PAM50 gene expression, no other aberration type showed243

significant similarity to BRCA1 germline mutations. Somatic-mutation signatures from tumors with BRCA1244

somatic mutations or homozygous deletions were significantly similar to those from BRCA1 germline245
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mutations (Table 1). Only 2 tumors had BRCA2 hypermethylation, but the mutational signatures for these246

samples were significantly similar to tumors from BRCA2 germline carriers (p = 0.0014; Figure 5H).247

Likewise, BRCA2 somatic mutations and homozygous deletions produced mutational signatures that were248

similar to germline BRCA2 carriers (Table 1; Figures 5D and 5F). Based on these findings, we conclude that249

disruptions of BRCA1 and BRCA2 exert similar effects on somatic-mutation signatures—but not PAM50250

gene expression—whether those disruptions originate in the germline or via somatic processes. To provide251

further evidence, we aggregated all patients who had any type of BRCA1 or BRCA2 aberration into a252

BRCAness reference group. As a whole, mutational signatures for this group were much more homogeneous253

than expected by chance (p = 0.0001; Figure S14). We used this reference group to evaluate other criteria254

that might classify patients into the BRCAness category. For our remaining evaluations, we used255

somatic-mutation signatures—rather than PAM50 gene expression—for these assessments because they256

coincided so consistently with BRCA aberration status, in line with the definition of BRCAness as an HR257

defect30.258

We examined data for 24 additional breast-cancer predisposition genes and evaluated whether molecular259

aberrations in these genes result in mutational signatures that are similar to our BRCAness reference group.260

We found pathogenic and likely pathogenic germline mutations in 15 genes. The most frequently mutated261

were CHEK2, ATM, and NBN (Figures S15 and S16). We found potentially pathogenic somatic mutations in262

all 24 genes, most frequently in TP53, CDH1, and PTEN (Figures S17 and S18). Homozygous deletions263

occurred most frequently in PTEN, CDH1, and CHEK1 (Figures S19 and S20). Finally, 5 genes were264

hypermethylated (Figures S21 and S22). Typically, these events were rare for a given gene. Using our265

resampling approach, we compared each aberration type in each gene against the BRCAness reference group.266

In cases where an aberration overlapped between the reference and comparison groups, we removed267

individuals who harbored that aberration. For 8 genes, at least one type of aberration attained statistical268

significance (Table 2). A total of 8 aberrations occurred in BARD1 across 3 categories of aberration; all 3269

categories were statistically significant (Table 2). RAD51C homozygous deletions (n = 2) and270

hypermethylation (n = 32) attained significance, but germline mutations (n = 1) and somatic mutations (n =271

3) did not. TP53 homozygous deletions (n = 15) were significant, but somatic mutations (n = 302) and272

germline mutations (n = 2) were not.273

Lastly, we evaluated the following types of data for candidacy as BRCAness markers: 1) unusually low274

mRNA expression, 2) demographic, histopathological, and surgical observations, and 3) patient drug275

responses. First, we calculated the median Euclidean distance—based on somatic-mutation276
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signatures—between each patient and the BRCAness reference group. Then we used a two-sided Pearson277

correlation test to assess the relationship between these median distances and each candidate variable. In278

determining whether a tumor exhibited unusually low mRNA expression for a given gene, we used an279

outlier-detection technique (see Methods). Unusually low expression of RAD51C (rho = 0.29, p = 4.9e-6)280

and BRCA1 (rho = 0.26, p = 4.2e-5) showed the strongest positive correlation with the reference group,281

whereas BARD1 (rho = -0.28, p = 8.5e-5) and CDH1 (rho = -0.28, p = 8.5e-4) showed the strongest negative282

correlation (Figures S23 and 6). Triple-negative status, infiltrating ductal carcinoma histology, and close283

surgical margins were the most positively associated clinical variables (Figure S24). No chemotherapy284

treatment was significantly associated with BRCAness, though sample size (n = 211) was relatively small for285

the drug data (Figure S25).286

Discussion287

By definition, BRCAness tumors have HR defects29. As with germline mutations in BRCA1 and BRCA2,288

these deficiencies could be exploited therapeutically15–17,87,88. Various criteria have been proposed as289

indicators of BRCAness, including triple-negative hormone-receptor status89, somatic mutations in BRCA1,290

hypermethylation of BRCA1, germline mutations in PALB2, and hypermethylation of RAD51C32. However,291

relatively little has been understood about whether these aberrations are reliable indicators of BRCAness,292

whether these aberrations have similar downstream effects as germline BRCA1/BRCA2 mutations, or whether293

aberrations in other genes in the HR pathway could be used as reliable markers of BRCAness. We evaluated294

these questions using a publicly available, multiomic dataset and used robust, quantitative methods to295

evaluate the downstream effects of these aberrations. Our permutation approach takes multiple variables296

(e.g. the full profile of signature weights) into account simultaneously, not just the primary subtype.297

Although we observed a clear relationship between germline BRCA1 mutations and the “Basal”298

gene-expression subtype—which overlaps considerably with triple-negative status—we otherwise observed299

few consistent patterns in the gene-expression data. In contrast, we observed clear and consistent patterns for300

the somatic-mutation signatures. Thus we conclude that somatic-mutation signatures are more useful301

indicators of BRCAness than gene-expression levels.302

Germline BRCA1 mutations affected somatic-mutation signatures similarly to germline BRCA2 mutations.303

Furthermore, somatic-mutations, homozygous deletions, and hypermethylation of BRCA1 and BRCA2 had304

downstream effects similar to germline mutations in these genes. As a whole, tumors with any305
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BRCA1/BRCA2 aberration formed a cohesive group, against which we compared other tumors. For a gene to306

be considered a strong BRCAness biomarker candidate, we required that at least two types of molecular307

aberration show significant similarity to the BRCAness reference group, suggesting that aberrations in the308

gene leave a recognizable imprint on the somatic-mutation landscape. This allowed us to derive insights even309

though a single type of aberration may have occurred rarely in a given gene. Two genes met these criteria:310

BARD1 and RAD51C. These genes both form a complex with BRCA1 to help repair double-stranded breaks311

via homologous recombination90; both proteins are enriched in triple-negative breast tumors91,92. Our312

findings provide additional evidence that defects in these genes have interchangeable effects on HR and that313

the functional status of these genes are a reliable indicator of BRCAness. BRCA2 interacts with RAD51 as314

well as PALB290.315

Some genes showed significant similarity to the BRCAness reference group for one type of aberration only316

(Table 2). These included germline mutations in PALB2 and RAD51B, which have a clear mechanistic link to317

BRCA1 and BRCA2. Determining which germline mutations are pathogenic remains a challenging task, so it318

is possible that more- or less-stringent filtering of candidate aberrations would lead to more consistent results.319

In addition, it is likely that mono-allelic inactivation of these and other genes may be insufficient to impair320

HR function51. Tumors with homozygous deletions in TP53 were significantly similar to the BRCAness321

groups; somatic mutations in this gene showed considerable overlap with the BRCAness tumors, but this322

similarity did not reach statistical significane. TP53 has long been recognized as an important gene in breast323

cancer, and mutations in this gene have been shown to associate with germline mutations in BRCA1 and324

BRCA293,94. However, because TP53 mutations occur frequently in breast cancer overall, they may be325

sensitive but non-specific biomarkers of BRCAness. Perhaps TP53 aberrations act as secondary events that326

compromise genomic integrity in combination with initiating events in the HR pathway.327

Although the mutational-signature patterns we observed were highly consistent in many cases, it remains to328

be determined whether these observations are clinically relevant. Clinical trials are currently underway to329

identify biomarkers for carboplatin, a platinum-salt agent. Tutt, et al. concluded that BRCA1/BRCA2330

mutations and triple-negative hormone status were reliable biomarkers of objective treatment responses but331

that BRCA1 hypermethylation was not89. It may be that other BRCAness genes or different types of332

aberration will become useful markers of treatment response.333

Our statistical-resampling approach uses Euclidean distances to evaluate similarity (see Methods). For334

visualization, we used a two-dimensional representation of the same data. In most cases, these two methods335
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led to similar conclusions. However, we placed most confidence in the empirical p-values calculated using336

our resampling approach, even if those conclusions differed from what we observed visually.337

Conclusions338

Altogether our findings shed new light on factors that may be useful to classify patients into the BRCAness339

category and demonstrate an objective methodology for categorizing tumor subtypes, in general.340
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Figure 1: Molecular aberrations in BRCA1 and BRCA2 across all breast-cancer patients. A) Germline343

mutations, B) Somatic mutations, C) copy-number variations, D) DNA methylation levels. SNV = single nucleotide344

variation.345
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Figure 2: Two-dimensional representation of PAM50 gene-expression levels. We obtained expression levels for347

the PAM50 genes and used the t-distributed Stochastic Neighbor Embedding (t-SNE) method to reduce the data to two348

dimensions. Each point on the plot represents a single tumor, overlaid with colors that represent the tumor’s primary349

PAM50 subtype. Generally, the PAM50 subtypes clustered cohesively, but there were exceptions. For example, some350
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Basal tumors (A) exhbited expression patterns that differed considerably from the remaining Basal tumors. The351

normal-like tumors (E) showed the most variability in expression.352
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Figure 3: Two-dimensional representation of somatic-mutation signatures. We summarized each tumor based on354

their somatic-mutation signatures, which represent overall mutational patterns in a trinucleotide context. We used the355

t-distributed Stochastic Neighbor Embedding (t-SNE) method to reduce the data to two dimensions. Each point on the356

plot represents a single tumor, overlaid with colors that represent the tumor’s primary somatic-mutation signature.357

Mutational Signature 1A (A) was the most prevalent; these tumors were widely dispersed across the signature358
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landscape. Signatures 1B (B), 2 (C), and 3 (D) were relatively small and formed cohesive clusters. The remaining 23359

clusters were rare individually and were dispersed broadly.360
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Figure 4: BRCA1 and BRCA2 aberrations on the PAM50 gene-expression landscape. Using the same362

two-dimensional representation of PAM50 gene-expression levels shown in Figure 2, this plot indicates which patients363

had germline mutations (A, B), somatic mutations (C, D), homozygous deletions (E, F), or hypermethylation events (G,364

H) in BRCA1 and BRCA2, respectively. Many of these tumors overlapped with the Basal subtype, but other tumors365
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were dispersed broadly across the gene-expression landscape. Diamonds represent tumors with multiple aberrations of366

a given type.367
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Figure 5: BRCA1 and BRCA2 aberrations on the somatic-mutation signature landscape. Using the same369

two-dimensional representation of mutational signatures shown in Figure 3, this plot indicates which patients had370

germline mutations (A, B), somatic mutations (C, D), homozygous deletions (E, F), or hypermethylation events (G, H)371

in BRCA1 and BRCA2, respectively. Largely, these tumors had similar somatic-mutation signatures. Diamonds372

represent tumors with multiple aberrations of a given type.373
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Figure 6: Relationship between BRCA aberration status and relatively low gene expression. We identified375

tumors with relatively low expression for cancer-predisposition genes (see Figure S23) and evaluated whether the376

somatic-mutation signatures of these tumors were relatively similar or dissimilar to tumors with a BRCA aberration.377

Low expression of RAD51C and BRCA1 showed the strongest positive correlation between gene-expression status and378

the BRCAness reference group. Low expression of BARD1 and CDH1 showed the strongest negative correlation379

between gene-expression status and the BRCAness reference group.380
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Tables381

Table 1: Results of similarity comparisons among BRCA aberration groups. We compared PAM50382

gene-expression levels or somatic-mutation signatures between groups of patients who harbored aberrations383

in BRCA1 or BRCA2. We evaluated whether patients in one group (e.g., those who harbored a BRCA1384

germline mutation) were more similar to patients in a second group (e.g., those with BRCA2 germline385

mutation) than random patient subsets of the same sizes. The numbers in this table represent empirical386

p-values. In cases where an individual harbored an aberration in both comparison groups, we excluded that387

patient from the comparison.388

Aberration Type 1 Aberration Type 2 PAM50 Subtypes Mutational Signatures

BRCA1 germline mutation (n = 22) BRCA2 germline mutation (n = 22) 0.997 1e-04

BRCA1 germline mutation (n = 22) BRCA1 somatic mutation (n = 14) 0.1203 1e-04

BRCA1 germline mutation (n = 22) BRCA1 homozygous deletion (n = 8) 0.924 0.0246

BRCA1 germline mutation (n = 22) BRCA1 hypermethylation (n = 16) 0.0182 1e-04

BRCA2 germline mutation (n = 22) BRCA2 somatic mutation (n = 12) 0.8818 0.0013

BRCA2 germline mutation (n = 22) BRCA2 homozygous deletion (n = 19) 0.6394 1e-04

BRCA2 germline mutation (n = 22) BRCA2 hypermethylation (n = 2) 0.6855 0.0014
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Table 2: Summary of comparisons between the BRCAness reference group and groups of patients389

who harbored a specific type of aberration in a candidate BRCAness gene. We evaluated whether390

somatic-mutation signatures from patients who harbored a given type of aberration (e.g., BARD1 germline391

mutation) were more similar to the BRCAness reference group than expected by random chance. The392

numbers in this table represent empirical p-values. In cases where no patient had a given type of aberration in393

a given gene, we list “N/A”. The “Any” group represents individuals who harbored any type of aberration in394

a given gene.395

Gene Germline mutation Somatic mutation Homozygous deletion Hypermethylation Any

BARD1 1e-04 (n = 1) 1e-04 (n = 2) 4e-04 (n = 5) N/A 1e-04 (n = 8)

CTNNA1 N/A 0.991 (n = 8) 2e-04 (n = 6) N/A 0.6149 (n = 14)

FAM175A N/A 0.993 (n = 2) 2e-04 (n = 3) N/A 0.2417 (n = 5)

PALB2 0.0098 (n = 3) 0.8695 (n = 5) N/A N/A 0.3641 (n = 8)

PTEN 0.9594 (n = 1) 0.9986 (n = 51) 0.0203 (n = 56) 0.7675 (n = 2) 0.797 (n = 110)

RAD51B 0.0013 (n = 3) 0.5743 (n = 3) 0.3831 (n = 9) N/A 0.2595 (n = 15)

RAD51C 0.0469 (n = 1) 0.9848 (n = 3) 0.0151 (n = 2) 0.0012 (n = 32) 0.0027 (n = 38)

TP53 0.9246 (n = 2) 0.0747 (n = 302) 0.0015 (n = 15) N/A 0.0751 (n = 319)
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