Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

Dynamic Size-Weight Changes After Object Lifting Reduce the Size-Weight Illusion

View ORCID ProfileVonne van Polanen, View ORCID ProfileMarco Davare
doi: https://doi.org/10.1101/662999
Vonne van Polanen
Movement Control and Neuroplasticity Research Group, Department of Movement Sciences and Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Vonne van Polanen
  • For correspondence: vonne.vanpolanen@kuleuven.be
Marco Davare
Movement Control and Neuroplasticity Research Group, Department of Movement Sciences and Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Marco Davare
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Preview PDF
Loading

ABSTRACT

In the size-weight illusion, the smaller object from two equally weighted objects is typically perceived as being heavier. One explanation is that the mismatch between the weight expectation based on object size and actual sensory feedback influences heaviness perception. In most studies, the size of an object is perceived before its weight. We investigated whether size changes would influence weight perception if both would be perceived simultaneously. We used virtual reality to change the size and weight of an object after lifting and asked participants to judge whether objects became lighter or heavier. We found that simultaneous size-weight changes greatly reduced the size-weight illusion to perceptual biases below discrimination thresholds. In a control experiment in which we used a standard size-weight illusion protocol with sequential lifts of small and large objects in the same virtual reality setup, we found a larger, typical perceptual bias. These results show that the size-weight illusion is smaller when size and weight information is perceived simultaneously. This provides support for the prediction mismatch theory explaining the size-weight illusion. Furthermore, these findings suggest that the lifting phase is a critical time window during which brain mechanisms comparing perceived and expected weight mediate the size-weight illusion.

Copyright 
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license.
Back to top
PreviousNext
Posted June 08, 2019.
Download PDF
Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Dynamic Size-Weight Changes After Object Lifting Reduce the Size-Weight Illusion
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Dynamic Size-Weight Changes After Object Lifting Reduce the Size-Weight Illusion
Vonne van Polanen, Marco Davare
bioRxiv 662999; doi: https://doi.org/10.1101/662999
Reddit logo Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
Dynamic Size-Weight Changes After Object Lifting Reduce the Size-Weight Illusion
Vonne van Polanen, Marco Davare
bioRxiv 662999; doi: https://doi.org/10.1101/662999

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Neuroscience
Subject Areas
All Articles
  • Animal Behavior and Cognition (4378)
  • Biochemistry (9571)
  • Bioengineering (7082)
  • Bioinformatics (24821)
  • Biophysics (12595)
  • Cancer Biology (9944)
  • Cell Biology (14333)
  • Clinical Trials (138)
  • Developmental Biology (7942)
  • Ecology (12092)
  • Epidemiology (2067)
  • Evolutionary Biology (15979)
  • Genetics (10914)
  • Genomics (14726)
  • Immunology (9859)
  • Microbiology (23633)
  • Molecular Biology (9472)
  • Neuroscience (50815)
  • Paleontology (369)
  • Pathology (1538)
  • Pharmacology and Toxicology (2677)
  • Physiology (4005)
  • Plant Biology (8651)
  • Scientific Communication and Education (1508)
  • Synthetic Biology (2389)
  • Systems Biology (6420)
  • Zoology (1345)