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ABSTRACT 38 

To construct our perceptual world, the brain categorizes variable sensory cues into behaviorally-39 

relevant groupings. Categorical representations are apparent within a distributed fronto-40 

temporo-parietal brain network but how this neural circuitry is shaped by experience remains 41 

undefined. Here, we asked whether speech (and music) categories might be formed within 42 

different auditory-linguistic brain regions depending on listeners’ auditory expertise. We 43 

recorded EEG in highly skilled (musicians) vs. novice (nonmusicians) perceivers as they rapidly 44 

categorized speech and musical sounds. Musicians showed perceptual enhancements across 45 

domains, yet source EEG data revealed a double dissociation in the neurobiological 46 

mechanisms supporting categorization between groups. Whereas musicians coded categories 47 

in primary auditory cortex (PAC), nonmusicians recruited non-auditory regions (e.g., inferior 48 

frontal gyrus, IFG) to generate category-level information. Functional connectivity confirmed 49 

nonmusicians’ increased left IFG involvement reflects stronger routing of signal from PAC 50 

directed to IFG, presumably because sensory coding is insufficient to construct categories in 51 

less experienced listeners. Our findings establish auditory experience modulates specific 52 

engagement and inter-regional communication in the auditory-linguistic network supporting CP. 53 

Whereas early canonical PAC representations are sufficient to generate categories in highly 54 

trained ears, less experienced perceivers broadcast information downstream to higher-order 55 

linguistic brain areas (IFG) to construct abstract sound labels. 56 

 57 
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INTRODUCTION 64 

Mapping sensory cues in the environment onto common perceptual identities is a prerequisite 65 

for complex auditory processing. In speech perception, acoustically distinct sounds along a 66 

continuum of similar features are identified categorically in that they are heard as belonging to 67 

one of only a few discrete phonetic classes (Pisoni and Luce, 1987). Because categories 68 

represent knowledge of stimulus groupings, patterns, and the linkage of sensory cues with 69 

internal memory representations (Seger and Miller, 2010), it is argued that categorization 70 

reflects the nexus between perception and cognition (Freedman et al., 2001). Understanding 71 

how the brain imposes these “top-down” transformation(s) onto the “bottom-up” sensory input to 72 

construct meaningful categories is among the many broad and widespread interests to 73 

understand how sensory features are realized as invariant perceptual objects (Phillips, 2001; 74 

Pisoni and Luce, 1987).  75 

The process of categorization requires a higher-order abstraction of the sensory input 76 

and consequently, offers an ideal window into how experiential factors might alter this 77 

fundamental mode of auditory perception-cognition. Both behavioral and neuroimaging studies 78 

demonstrate category-level sensitivity is malleable to listening experience, learning, and 79 

stimulus familiarity (Myers, 2014). While categorical perception (CP) emerges early in life 80 

(Eimas et al., 1971), it can be further modified by native language experience (Bidelman and 81 

Lee, 2015; Kuhl et al., 1992; Xu et al., 2006). Similarly, trained musicians show sharper 82 

categorical boundaries than their nonmusician peers for pitch intervals of the musical scale 83 

(Burns and Campbell, 1994; Burns and Ward, 1978; Zatorre, 1983). Conceivably, long-term 84 

experience (and increased familiarity) with the sounds of a certain domain, whether speech or 85 

music, strengthens learned identities in its acoustic space and enhances categorical processing 86 

(Bidelman and Lee, 2015; Iverson et al., 2003; Kuhl, 2004; Moon et al., 2013).  87 

Human neurophysiological recordings (M/EEG, fMRI) have revealed a distributed fronto-88 

temporo-parietal neural network supporting auditory categorization including bilateral superior 89 

temporal gyrus (STG), inferior parietal, motor cortex, and prefrontal regions (e.g., Alho et al., 90 

2016; Bidelman and Lee, 2015; Binder et al., 2004; Chang et al., 2010; Feng et al., 2018; 91 

Golestani et al., 2002; Golestani and Zatorre, 2004; Lee et al., 2012; Liebenthal et al., 2010; 92 

Luthra et al., 2019; Myers and Blumstein, 2008; Myers et al., 2009). Yet, specific recruitment of 93 

these areas is modulated by task demands (Feng et al., 2018), item feedback (Yi and 94 

Chandrasekaran, 2016) and attention (Bidelman and Walker, 2017), whether categorization is 95 

rule-based or implicit (Yi et al., 2016), stimulus familiarity (e.g., native vs. nonnative speech: 96 

Bidelman and Lee, 2015), and presumably, the acoustic domain in which behavior is operating 97 
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(e.g., speech vs. music). Particularly important to CP is a strong neural interface between 98 

temporal and frontal cortices (Bizley and Cohen, 2013; Blumstein et al., 1977; Chevillet et al., 99 

2013; DeWitt and Rauschecker, 2012; Jiang et al., 2018; Luthra et al., 2019). Still, neuroimaging 100 

work is equivocal on the locus of categorical (perceptually invariant) brain representations with 101 

regard to auditory-linguistic hubs of the CP network. Intracranial recordings suggest abstract 102 

speech categories arise within primary auditory cortex (PAC) (Bouton et al., 2018; Chang et al., 103 

2010) whereas fMRI implicates left inferior frontal gyrus (IFG) in categorical formation (Lee et 104 

al., 2012; Myers et al., 2009). A possible reconciliation of divergent findings may be that PAC 105 

and IFG are differentially engaged during CP depending on intrinsic and extrinsic influences 106 

(e.g., stimulus factors; lexical competition; listeners’ experience) (e.g., Bidelman and Lee, 2015; 107 

Luthra et al., 2019). Under investigation here is whether PAC-IFG pathways underlying auditory 108 

categorical decisions might be shaped and even differentially engaged in an experience-109 

dependent manner. That is, we asked whether categories are formed within different auditory-110 

linguistic brain regions in highly skilled vs. novice perceivers. 111 

To this end, we took a neuroethological approach (Suga, 1989) to investigate the neural 112 

mechanisms underlying auditory categorization by examining individuals with highly 113 

exaggerated and specialized listening abilities: musicians. Musicians represent an ideal human 114 

model to understand experience-dependent plasticity in auditory perceptual-cognitive functions 115 

(Herholz and Zatorre, 2012; Kraus and Chandrasekaran, 2010; Moreno and Bidelman, 2014; 116 

Munte et al., 2002; Zatorre and McGill, 2005). Germane to the current study, we recently 117 

demonstrated trained musicians have enhanced (faster and more discrete) categorization of 118 

speech sounds compared to their nonmusician peers (Bidelman, 2017; Bidelman and Alain, 119 

2015; Bidelman et al., 2014). These behavioral benefits were accompanied by 120 

electrophysiological enhancements in auditory encoding 150-200 ms after sound onset. While 121 

the underlying locus of these neuroplastic effects (observed in scalp EEG) has yet to be 122 

defined, their early latency (< 200 ms) strongly implies categorical representations might exist 123 

as early as PAC (e.g., Bidelman and Lee, 2015; Chang et al., 2010), at least in highly trained 124 

listeners (i.e., musicians). 125 

To probe these questions, we recorded high-density neuroelectric brain activity (EEG) in 126 

musicians and nonmusicians while they rapidly categorized speech and musical sounds. Source 127 

reconstruction and functional connectivity analyses parsed the underlying brain mechanisms of 128 

categorization and differential engagement of auditory-linguistic hubs of the CP network 129 

depending on experience. Following notions that musicianship expands speech selective brain 130 

regions (Dick et al., 2011) and automatizes categorical processing (Bidelman and Alain, 2015; 131 
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Bidelman et al., 2014; Elmer et al., 2012), we hypothesized early auditory cortical 132 

representations (i.e., PAC) would suffice categorization in highly trained listeners. Moreover, if 133 

PAC representations are weaker (less categorically organized) in unskilled listeners, we further 134 

predicted nonmusicians would require additional recruitment of IFG to enable successful 135 

categorization. Domain-specificity was tested by comparing neurobehavioral responses to 136 

speech vs. music. Our findings reveal a double dissociation in functional recruitment of the 137 

auditory-linguistic network (PAC-IFG) subserving CP that depends on musicianship and 138 

stimulus domain. Whereas highly experienced listeners (musicians) show categorical neural 139 

organization in early PAC, inexperienced listeners (nonmusicians) must broadcast information 140 

to higher-order linguistic brain areas (IFG) in order to generate category representations.  141 

MATERIALS & METHODS 142 

Participants 143 

Twenty young adults participated in the experiment: 10 musicians (6 female) and 10 144 

nonmusicians (9 female). All reported normal hearing sensitivity (i.e., ≤ 25 dB HL; 500-4000 Hz) 145 

and no history of neuro-psychiatric illness. Musicians (M) were defined as amateur 146 

instrumentalists with ≥ 8 years of continuous private instruction on their principal instrument 147 

(mean ± SD; 15.0 ± 6.2 yrs), beginning prior to age 12 (6.9 ± 3.2 yrs). Nonmusicians (NM) had 148 

<2 years of lifetime music training (0.61 ± 0.85 yrs). These inclusion criteria are consistent with 149 

previous reports on musicianship and neuroplasticity (Mankel and Bidelman, 2018; Parbery-150 

Clark et al., 2009; Wong et al., 2007; Yoo and Bidelman, 2019; Zendel and Alain, 2009). All but 151 

one participant was right-handed (Oldfield, 1971) and all were native speakers of American 152 

English. The two groups were otherwise matched in age (M: 22.4 ± 4.5 yrs, NM: 22.5 ± 2.8 yrs; 153 

t18 = -0.06, p = 0.95), years of formal education (M: 16.6 ± 3.3 yrs, NM: 17.1 ± 2.2 yrs; t18 = -154 

0.04, p = 0.97), and gender balance (Fisher exact test, p=0.30). Participants were paid for their 155 

time and gave written informed consent in compliance with a protocol approved by the 156 

University of Memphis IRB. 157 

Stimuli 158 

We used speech and music continua from our previous reports on the neural mechanisms of 159 

CP (e.g., Bidelman and Alain, 2015; Bidelman et al., 2013; Bidelman and Walker, 2017; 160 

Bidelman et al., 2014). 161 

Speech continuum. Speech tokens comprised a five-step synthetic vowel continuum 162 

(Bidelman et al., 2013) (Fig. 1a). Tokens were 100 ms (10 ms ramps). Each contained an 163 

identical voice fundamental (F0), second (F2), and third formant (F3) frequencies (F0: 150, F2: 164 
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1090, and F3: 2350 Hz). F1 was parameterized over five equidistant steps (430 to 730 Hz) 165 

resulting in perceptual phonetic continuum from /u/ to /a/. 166 

 Music continuum. We used a comparable five-step continuum of pitch intervals to 167 

assess CP for music (Bidelman and Walker, 2017) (Fig. 1b). Individual notes were synthesized 168 

using complex-tones (10 iso-amplitude harmonics; 100 ms duration). For each token, the lower 169 

tone of the dyad was fixed with a F0 of 150 Hz (matching the F0 of the speech continuum) while 170 

the upper tone’s F0 varied over five equal steps to produce a perceptual continuum of musical 171 

intervals between the minor (m3; flower = 150, fhigher = 180 Hz) and major (M3; flower = 150, fhigher = 172 

188 Hz) third on the chromatic scale (e.g., Burns and Ward, 1978). The m3 and M3 intervals 173 

connote the valence of “sadness” (m3) and “happiness” (M3) even to non-musicians (Brattico et 174 

al., 2009) and are easily described to listeners unfamiliar with music-theoretic labels (Bidelman 175 

and Walker, 2017).  176 

[Insert Fig. 1 near here] 177 

 178 

 179 

 180 

 181 

 182 

 183 

Figure 1: Spectrograms of speech and music continua used to probe experience-dependent plasticity in CP. 184 
(a) For speech, vowel first formant frequency was varied across five equal steps (430-730 Hz; ►) creating a 185 
continuum from /u/ to /a/. (b) For music, tone complexes formed two-tone pitch intervals (white dotted lines) spanning 186 
a continuum from a minor (m3) to major (M3) third. Stimuli were otherwise matched in duration (100 ms), intensity (83 187 
dB SPL), and starting pitch height (F0=150 Hz).  188 

 189 

Task procedure 190 

During EEG recording, listeners heard 200 randomly ordered exemplars of each speech/music 191 

token (presented in separate blocks). They were asked to label each sound with a binary 192 

response as quickly and accurately as possible (speech: “u” or “a”; music: “minor 3rd or “major 193 

third”). Stimuli were delivered binaurally at 83 dB SPL through insert earphones (ER-2; Etymotic 194 

Research). The interstimulus interval (ISI) was jittered randomly between 400 and 600 ms (20 195 

ms steps, rectangular distribution) following listeners’ behavioral response to avoid anticipating 196 

the next trial and rhythmic entrainment of the EEG.  197 
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EEG recording and preprocessing 198 

Continuous EEGs were recorded from 64 sintered Ag/AgCl electrodes at standard 10-10 199 

locations around the scalp (Oostenveld and Praamstra, 2001). Recordings were sampled at 500 200 

Hz (SynAmps RT amplifiers; Compumedics Neuroscan) and passband filtered online (DC-200 201 

Hz). Electrodes placed on the outer canthi of the eyes and the superior and inferior orbit were 202 

used to monitor ocular movements. During acquisition, electrodes were referenced to an 203 

additional sensor placed ~ 1 cm posterior to the Cz channel. Data were re-referenced off-line to 204 

the common average for analysis (Bertrand et al., 1985). Contact impedances were maintained 205 

< 10 kΩ during data collection. 206 

Subsequent preprocessing was performed in Curry 7 (Compumedics Neuroscan) and 207 

BESA® Research (v7) (BESA, GmbH). Ocular artifacts (i.e., blinks and saccades) were first 208 

corrected in the continuous EEG using a principal component analysis (PCA) (Picton et al., 209 

2000). Cleaned EEGs were then digitally filtered (1-30Hz; zero-phase filters), epoched (-200-210 

800 ms), baseline corrected to the prestimulus interval, and ensemble averaged to derive 211 

responses for each stimulus condition per participant. This resulted in 10 ERP waveforms per 212 

participant (5 tokens x 2 stimulus domains). 213 

Behavioral data analysis 214 

For each continuum, identification scores were fit with a two-parameter sigmoid function: P = 215 

1/[1+e-β1(x - β0)], where P is the proportion of trials identified as a given vowel, x is the step 216 

number along the stimulus continuum, and β0 and β1 the location and slope of the logistic fit 217 

estimated using nonlinear least-squares regression (Bidelman and Walker, 2017; Bidelman et 218 

al., 2014). These parameters were used to assess differences in the location and “steepness” 219 

(i.e., rate of change) of the categorical boundary as a function of stimulus domain (i.e., speech 220 

vs. music) and group (M vs. NM). Larger β1 values reflect steeper psychometric functions and 221 

hence, indicate stronger CP. Behavioral speech labeling speeds (i.e., reaction times; RTs) were 222 

computed as listeners’ median response latency across trials for a given condition. RTs outside 223 

250-2500 ms were deemed outliers and excluded from further analysis (Bidelman et al., 2013; 224 

Bidelman and Walker, 2017).  225 

Electrophysiological data analysis 226 

Source reconstruction. Sensor (electrode)-level recordings were transformed to source space 227 

using discrete inverse models to directly assess the neural generators underlying experience-228 

dependent plasticity in CP. We used Classical Low Resolution Electromagnetic Tomography 229 

Analysis Recursively Applied (CLARA) [BESA (v7)] (Iordanov et al., 2014) to estimate the 230 
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neuronal current density underlying the scalp potentials for speech (e.g., Alain et al., 2017; 231 

Bidelman et al., 2018). CLARA models the inverse solution as a large collection of elementary 232 

dipoles distributed over nodes on a mesh of the cortical volume. The algorithm estimates the 233 

total variance of the scalp-recorded data and applies a smoothness constraint to ensure current 234 

changes minimally between adjacent brain regions (Michel et al., 2004; Picton et al., 1999). 235 

CLARA renders more focal source images by iteratively reducing the source space during 236 

repeated estimations. On each iteration (x3), a spatially smoothed LORETA solution (Pascual-237 

Marqui et al., 2002) was recomputed and voxels below a 1% max amplitude threshold were 238 

removed. This provided a spatial weighting term for each voxel on the subsequent step. Three 239 

iterations were used with a voxel size of 7 mm in Talairach space and regularization (parameter 240 

accounting for noise) set at 0.01% singular value decomposition. Group-level statistical (t-stat) 241 

maps were computed using the ‘ft_sourcestatistics’ function in the MATLAB FieldTrip toolbox 242 

(Oostenveld et al., 2011) and threshold at α=0.05. Source activations were then visualized by 243 

projecting them onto the semi-inflated MNI adult brain template (Fonov et al., 2009). 244 

From each CLARA volume (i.e., activation timecourse per voxel), we extracted the 245 

amplitude of source activity in predefined regions of interest (ROIs) including bilateral primary 246 

auditory cortex (PAC) and inferior frontal gyrus (IFG) near Broca’s area (see Fig. 4). These 247 

ROIs were selected given their known role in complex speech perception including auditory 248 

categorization (e.g., Alain et al., 2018; Bidelman et al., 2018; Bidelman and Howell, 2016; Bizley 249 

and Cohen, 2013; Du et al., 2014; Mazziotta et al., 1995; Scott and Johnsrude, 2003). The 250 

spatial resolution of CLARA is 5-10 mm (Iordanov et al., 2016; Iordanov et al., 2014), which is 251 

considerably smaller than the distance to resolve PAC and IFG (~40 mm; Mazziotta et al., 252 

1995).  253 

To quantify the degree to which neural responses showed categorical coding, we 254 

averaged source amplitudes to prototypical tokens at the ends of the continua and compared 255 

this combination to the ambiguous token at its midpoint (e.g., Bidelman, 2015; Bidelman and 256 

Walker, 2017; Liebenthal et al., 2010). This contrast (i.e., mean[Tk1, Tk5] vs. Tk 3) allowed us 257 

to assess the degree to which each groups’ neural activity differentiated stimuli with well-formed 258 

categories from those heard with a bistable (ambiguous) identity within the speech and music 259 

domains.  260 

To quantify brain-behavior relationships, we extracted the overall response amplitude 261 

within the PAC and IFG ROI centroids, computed at the latency of maximum global field power 262 

(GFP) on the scalp (Lehmann and Skrandies, 1980) (see Fig. 4a). Peak GFP occurred at 288 263 

ms for speech and 226 ms for music. We used Spearman correlations to assess if PAC vs. IFG 264 
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amplitudes predicted the slopes of listeners’ psychometric functions when categorizing stimuli 265 

per domain (speech, music). This analysis was repeated for both left and right hemispheres to 266 

test whether lateralized activity was more predictive of behavior in a certain domain (e.g., right 267 

PAC driving music CP; left PAC driving speech CP). 268 

Functional connectivity. We measured causal (directed) flow of information within the auditory-269 

linguistic brain network using Granger Causality (GC) (Geweke, 1982; Granger, 1969). 270 

Functional connectivity was computed in BESA Connectivity (v1), which computes GC in the 271 

frequency domain (Geweke, 1982) using non-parametric spectral factorization on single-trial 272 

time-frequency maps (Dhamala et al., 2008). The frequency decomposition was based on 273 

complex demodulation (Papp and Ktonas, 1977), akin to a short-term (running) Fourier 274 

transform, that provides uniform frequency resolution across the bandwidth of analysis. Signal X 275 

is said to “Granger-cause" signal Y if past values of X contain information that predict Y above 276 

and beyond information contained in past values Y alone. Importantly, GC can be computed 277 

directionally (e.g., X→Y) to infer causal flow between interacting brain signals. We computed 278 

GC between PAC→IFG activity using full-band (1-30 Hz) responses at the latency 279 

corresponding to the max GFP (see Fig. 4a), where neural responses showed group differences 280 

in the CLARA maps. Connectivity was only computed for the Tk1/5 tokens to avoid neural 281 

signaling that might be related to resolving ambiguous (bistable) sounds (e.g., Tk 3) and 282 

because these tokens elicited stronger responses than the midpoint tokens (i.e., Tk1/5 > Tk3; 283 

Fig. 4b).  284 

RESULTS 285 

Behavioral categorization (% and RTs) 286 

Figure 2 shows behavioral psychometric identification functions for Ms and NMs when 287 

classifying speech (Fig. 2a) and music (Fig. 2b). Listeners’ identification was generally 288 

dichotomous as indicated by an abrupt shift in perception midway through the continua. For 289 

NMs, music stimuli elicited more continuous perception as indicated by the lack of any abrupt 290 

perceptional shift and linear/flat psychometric function. Both Ms and NMs showed stronger CP 291 

for speech than music [M: t18 = 2.38, p = 0.028; NM: t18 = 6.36, p<0.0001]. However, Ms 292 

demonstrated considerably sharper perceptual boundaries than NMs for both speech [β1 293 

parameter; t18 = 2.23, p = 0.034] and music [t18 = 2.85, p = 0.011] continua. These findings 294 

suggest that while CP is stronger for speech than musical sounds, musicians show enhanced 295 

perceptual categorization in both auditory domains.  296 

[Insert Fig. 2 near here] 297 
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 298 

Figure 2: Perceptual categorization for speech and music is enhanced in musicians. (a) Psychometric 299 
identification functions for speech show an abrupt shift in behavior indicative of discrete CP. (b) Music identification is 300 
discrete (categorical) in Ms but continuous in NMs. Ms show stronger CP than NMs (steeper identification curves) in 301 
both domains (insets). (c-d) Reaction times for classifying stimuli. Listeners are slower to label speech near the 302 
categorical boundary (Tk 3), indicative of CP (Bidelman et al., 2013; Pisoni and Tash, 1974) but Ms are faster at 303 
making categorical judgments across the board. Ms show a similar categorical speed effect (bowing in RTs) for music 304 
that is not observed in NMs.  errorbars = ± 1 s.e.m.; M, musicians; NM, nonmusicians.  305 

 306 

Behavioral RTs for speech and music categorization are shown for each group in Figure 307 

2c-d. An ANOVA conducted on speech labeling speeds revealed RTs were modulated across 308 

vowel token [F4, 72 = 32.60, p<0.0001]. There was no effect of group [F1, 18 = 1.17, p=0.29] which 309 

might be expected given the overlearned nature of vowels in our native English speakers. Still, 310 

both Ms [t72= 9.12, p<0.0001] and NMs [t72= 6.11, p<0.0001] showed the characteristic slowing 311 

near the CP boundary (token 3) relative to other tokens along the continuum [i.e., 312 

mean(Tk1,2,4,5) < Tk3], consistent with previous reports examining speeded speech 313 

classification (Bidelman et al., 2013; Bidelman and Walker, 2017; Pisoni and Tash, 1974). For 314 

music, we found a group x token interaction [F4, 72 = 2.59, p=0.043]. Interestingly, Ms showed a 315 

categorical slowing in RTs near the ambiguous midpoint [t72= 2.05, p=0.044] but this bowing 316 

effect was not observed in NMs [t72= -1.33, p=0.19]. This again suggests music was perceived 317 

less categorically in NMs compared to trained Ms. 318 

Electrophysiological data 319 

Butterfly ERP plots (sensor-level potentials) are shown per group and stimulus domain in 320 

Figure 3. Visual inspection revealed more robust cortical responses in Ms compared to NMs for 321 

both speech and musical sounds, particularly at fronto-central electrodes where CP effects 322 

appear most prominent on the scalp surface (e.g., Bidelman and Walker, 2017; Liebenthal et al., 323 

2010). The latency of these effects (~250 ms) corresponds roughly to the P2 wave, a deflection 324 
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previously suggested as an electrophysiological marker of CP (Bidelman and Alain, 2015; 325 

Bidelman et al., 2013; Liebenthal et al., 2010).  326 

[Insert Fig. 3 near here] 327 

 328 

 329 

 330 

 331 

 332 

 333 

 334 

 335 

Figure 3: Scalp-recorded event-related brain potentials (ERPs) show stronger neural responses to speech 336 
and music in musicians. Grand averaged butterfly plot of neuroelectric time waveforms per group and stimulus 337 
domain. Cortical ERPs appear as biphasic deflections (e.g., P1-N1-P2 “waves”) within ~200 ms after the time-locking 338 
stimulus. Cz electrode = bold trace. Neural activity is modulated by group and stimulus domain. Scalp topographies 339 
are plotted at the latency of the P2 wave (*Cz electrode). Vertical bars=stimulus onset (t=0). Dotted lines, visual aid 340 
for group comparisons.  341 

 342 

CLARA imaging parsed the underlying neural mechanisms responsible for M’s 343 

enhanced CP and these electrode-level effects (Fig. 4). Across all tokens and groups, neural 344 

activity peaked ~50 ms earlier than speech (GFPspeech latency: 288 ms; GFPmusic latency: 226 345 

ms; Fig. 4a). To quantify the degree of categorical neural coding, we averaged source 346 

amplitudes to prototypical tokens at the end of the continua and compared this combination to 347 

the ambiguous midpoint token (e.g., Bidelman, 2015; Bidelman and Walker, 2017; Liebenthal et 348 

al., 2010). This contrast (i.e., mean[Tk1, Tk5] vs. Tk 3) allowed us to assess when and where 349 

neural responses (CLARA maps) differentiated stimuli with well-formed categories from those 350 

heard with a bistable (ambiguous) identity. Contrasts of this categorical coding effect revealed a 351 

double-dissociation within auditory-linguistic brain regions depending on group and stimulus 352 

domain (Figs. 4 b,c). For speech, musicians showed stronger categorical responses in PAC 353 

bilaterally, whereas in nonmusicians, categorical speech responses were observed primarily in 354 

left IFG. For music, Ms showed stronger categorical responses than NMs in right PAC. In 355 

contrast, categorical coding for music was stronger in NMs in left precentral gyrus (motor 356 

cortex), a region previously identified to predict CP for speech (Chevillet et al., 2013). These 357 
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results suggest a differential engagement of the auditory-linguistic-motor loop during auditory 358 

categorization depending on musicianship.  359 

[Insert Fig. 4 near here] 360 

 361 

 362 

 363 

 364 

 365 

Figure 4: Source responses reveal differential activation of auditory and linguistic cortex during 366 
categorization depending on musical training. (a) Grand average global field power (Lehmann and Skrandies, 367 
1980) (collapsed across tokens and groups) shows the time-course of aggregate neural activity across the scalp for 368 
each domain. (b-c) Statistical contrast maps of CLARA activations between musicians and nonmusicians. Maps are 369 
shown at the maximum GFP latency (▼, Fig. 4a), projected onto the semi-inflated MNI adult brain template (Fonov et 370 
al., 2009) and contrast group differences (t-stat, p < 0.05 masked, uncorrected) in the degree of categorical coding 371 
(i.e., Tk1/5 – Tk3 effect; Bidelman and Walker, 2017) across the entire brain volume. (b) For speech, categorical 372 
coding is observed in bilateral PAC for Ms but left IFG for NMs. (c) For music, Ms show stronger categorical 373 
responses than NMs in right PAC; NMs show stronger categorization in left preCG (motor cortex). PAC, primary 374 
auditory cortex; IFG; inferior frontal gyrus; preCG, precentral gyrus (primary motor cortex); L/R, left/right hemisphere. 375 

Brain-behavior correlations again revealed a double-dissociation in the predictive power 376 

of PAC vs. IFG in predicting behavior. Across cohorts, larger categorical speech activity (Tk1/5 377 

> Tk3) in left PAC (as in Ms) was associated with more dichotomous CP (steeper psychometric 378 

slopes) [r=0.46, p=0.042] (Fig. 5b). We found the reverse in left IFG which negatively correlated 379 

with behavior [r=-0.68, p=0.0009] (Fig. 5a), where stronger neural activity predicted poorer 380 

perception. Neither right hemisphere ROI nor any of the music responses correlated with 381 

behavior (all ps > 0.27; data not shown).  382 

Figure 5: Brain-behavior correlations reveal a double-383 
dissociation in how PAC and IFG predict behavioral CP in 384 
expert and non-expert listeners. Neural responses reflect 385 
activations to speech within PAC and IFG at the centroid of 386 
each ROI shown (see Fig. 4). MNI coordinates (x,y,z): PACLH

 387 
= [-38.5, -37.5, 5.5], PACRH=

 [41.5, -26.5, 0.5], IFGLH
 =[-22.5, 388 

24.5, -2.5], and IFGRH
 =[23.5, 26.5, -2.5] mm. Larger 389 

differentiation of speech (i.e. Δ amplitude: Tk1/5 > Tk3) in left 390 
PAC is associated with stronger categorical percepts (steeper 391 
psychometric slopes). The reverse is observed in left IFG, 392 
where stronger activity predicts poorer behavior. Neither right 393 
hemisphere PAC/IFG nor music responses correlated with 394 
behavior (data not shown). *p<0.05, ***p<0.001.  395 

 396 
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Increased involvement of IFG in nonmusicians could reflect the need to recruit additional 397 

higher-order (linguistic) brain areas downstream if neural representations in auditory cortex are 398 

insufficient for categorization. We tested this possibility by measuring directed functional 399 

connectivity between PAC and IFG using Granger causality (GC), an information-theoretic 400 

measure of causal signal interactions (Geweke, 1982; Granger, 1969). GC values were cube-401 

root transformed to improve homogeneity of variance assumptions for parametric statistics and 402 

to account for the lower bound of GC values (=0). A three-way, mixed-model ANOVA (group x 403 

stimulus domain x hemisphere; subject=random) revealed a significant group x stimulus 404 

interaction [F1, 36 = 6.89, p=0.0126], meaning the strength of PAC-IFG connectivity was 405 

modulated dependent on listeners’ musical training and whether they were categorizing speech 406 

or music. By hemisphere, we found a stimulus x group effect in LH [F1, 36 = 4.76, p=0.0358] (Fig. 407 

6a). Tukey-Kramer comparisons revealed the LH interaction was attributable to stronger 408 

connectivity for speech than music in NMs, whereas musicians’ LH PAC-IFG connectivity was 409 

equally strong between stimulus domains (i.e., NMs: speech > music; Ms: speech=music). By 410 

domain, contrasts showed marginally stronger PAC-IFG connectivity in NMs vs. Ms for speech 411 

(p=0.08) but not music (p=0.26). In contrast, no effects in RH were significant (all ps > 0.122) 412 

(Fig. 6b). These findings confirm a differential engagement of the left-lateralized auditory-413 

linguistic network (PAC-IFG) between musicians and nonmusicians during auditory 414 

categorization that also depends on stimulus domain. 415 

[Insert Fig. 6 near here] 416 

Figure 6: Functional connectivity reveals experience-dependent changes in 417 
causal neural signaling within the auditory-linguistic pathway. (a) Granger 418 
causality between PAC directed toward IFG shows stronger communication during 419 
speech compared to music categorization in NMs. Contrastively, left PAC-IFG 420 
connectivity is invariant across stimulus domains in Ms. (b) PAC-IFG connectivity 421 
does not vary in RH. These results suggest a differential engagement of the left-422 
lateralized auditory-linguistic network (PAC-IFG) depending on music expertise. 423 
Whereas neural representations in PAC are sufficient for categorization in Ms (see 424 
Fig. 4), NMs recruit additional linguistic areas downstream to aid perception. 425 
*p<0.05.  426 

 427 

DISCUSSION 428 

By measuring electrical brain activity in highly specialized (musicians) vs. novice 429 

(nonmusicians) listeners we demonstrate that categorical processing for speech and musical 430 

sounds varies in an experience-dependent manner. Our EEG data reveal the neural 431 

mechanisms underlying these behavioral enhancements are accompanied by different 432 

engagement and neural signaling within the auditory-linguistic pathway (PAC-IFG) that critically 433 
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depend on listening experience. Whereas highly skilled musicians code auditory categories in 434 

primary auditory cortex (PAC), nonmusicians show additional recruitment of non-auditory 435 

regions (e.g., inferior frontal gyrus, IFG) to successfully generate category-level information. Our 436 

findings provide new evidence that the brain arrives at categorical labels through different 437 

operational “modes” within an identical PAC-IFG pathway. Whereas early canonical PAC 438 

representations are sufficient to generate categories in highly trained ears, less experienced 439 

listeners must broadcast information downstream to non-canonical, higher-order linguistic brain 440 

areas (IFG) to construct abstract sound labels. 441 

 Previous work has shown musicianship enhances the ability to categorize musically-442 

relevant sounds, e.g., pitch intervals and chords (Burns and Ward, 1978; Howard et al., 1992; 443 

Klein and Zatorre, 2011; Locke and Kellar, 1973; Siegel and Siegel, 1977; Zatorre and Halpern, 444 

1979). Our data confirm enhanced music categorization in musicians but further extend prior 445 

studies by demonstrating that training also enhances the perceptual categorization of speech 446 

(cf. Bidelman and Alain, 2015; Bidelman et al., 2014; Elmer et al., 2012). Musicians were faster 447 

at categorizing speech and music and achieved more pronounced (i.e., steeper) identification, 448 

indicating musicianship enhances sound-to-meaning relations in a domain general manner. 449 

These findings support notions that music expertise warps or restricts the perceptual space near 450 

category boundaries, sharpening the internal representations of auditory categories and 451 

supplying more behaviorally-relent decisions when classifying sound objects (Bidelman and 452 

Alain, 2015; Bidelman et al., 2014). Moreover, comparisons across stimulus domains indicated 453 

less categorical (more continuous) music perception in NM listeners. Nonmusicians’ weaker CP 454 

for music can be parsimoniously explained as an unfamiliarity in associating verbal labels to the 455 

pitch intervals of music. Just as language experience sharpens categories for a speaker’s native 456 

speech sounds (Bidelman and Lee, 2015; Bradlow et al., 1997; Kuhl et al., 1992; Xu et al., 457 

2006), we find musicians (but not NMs) perceive music categorically. Our findings bolster 458 

notions that less familiar sounds not encountered in one’s regular experience fail to perceptually 459 

organize in a categorical manner (e.g., Bidelman and Lee, 2015; Bidelman and Walker, 2017; 460 

Burns and Campbell, 1994; Burns and Ward, 1978; Xu et al., 2006; Zatorre, 1983). More 461 

broadly, these plasticity data counter universalist views of CP (Harnad, 1987) that suggest 462 

categorical boundaries are somehow innate (e.g., innate-sensitivity hypothesis; Rosen and 463 

Howell, 1987) or occur naturally due to acoustic and/or neural discontinuities imposed by 464 

auditory system constraints (Berlin and Kay, 1969; Harnad, 1987; Miller et al., 1976) by instead 465 

revealing a strong role of experience in shaping categorical organization.  466 
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 Our EEG data corroborate behavioral findings by unmasking the underlying brain 467 

mechanisms driving experience-dependent changes in auditory categorization. We found 468 

musicians had stronger neural encoding of speech and music stimuli across the board (Fig. 3), 469 

consistent with previous neuroimaging studies (Bidelman and Alain, 2015; Bidelman et al., 470 

2014; Musacchia et al., 2008; Schneider et al., 2002; Shahin et al., 2003; Wong et al., 2007). 471 

These results support growing evidence that musicians’ brain responses carry more information 472 

relevant to perception than their non-musician counterparts (Bidelman et al., 2014; Elmer et al., 473 

2012; Weiss and Bidelman, 2015). However, we found stark differences in the underlying brain 474 

regions mediating each group’s CP. Whereas skilled listeners (musicians) were able to code 475 

auditory categories in PAC, naïve ears (nonmusicians) showed categorical responses in non-476 

canonical areas including IFG. This double-dissociation in source contribution between groups 477 

suggests that listening experience differentially shapes the functional coupling within the 478 

auditory-linguistic network.  479 

 There is evidence that sound representations in PAC might self-organize due to non-480 

uniformities in cell firing between exemplar vs. non-exemplar sounds (cf. within vs. between 481 

category tokens) (Guenther and Gjaja, 1996). Receptive fields of auditory cortical neurons also 482 

show marked changes in their temporal discharge patterns across categorically perceived 483 

speech continua (Steinschneider et al., 2003; Steinschneider et al., 1999). Therefore, one 484 

interpretation of our data is that musical training enhances CP by automatizing the 485 

categorization process (i.e., binning sounds into perceptually-relevant groupings) and relegating 486 

category-level representations to the earliest stages of auditory cortical processing. The fact that 487 

we find strong categorical organization in PAC only among musicians supports this notion. On 488 

the contrary, PAC representations are insufficient for categorical organization in nonmusicians, 489 

and these less skilled listeners must compute categories in higher-order frontal regions (IFG) 490 

downstream. Higher fidelity auditory neural representations local to PAC would tend to speed 491 

behavioral decisions and result in steeper, more discrete identification (Bidelman et al., 2019; 492 

Bidelman et al., under review; Rozsypal et al., 1985) as we find in our musician cohort. 493 

Alternatively, focal readout of sensory encoding (PAC) by prefrontal regions (IFG) (Binder et al., 494 

2004; Bouton et al., 2018) may underlie the increased decision variability we find in 495 

nonmusicians. 496 

 Our data align with general notions that non-canonical auditory regions including IFG 497 

(Broca’s area) and adjacent prefrontal areas play a major role in the categorical processing 498 

(Bouton et al., 2018; Lee et al., 2012; Luthra et al., 2019; Meyers et al., 2008; Myers et al., 499 

2009). Consistent with our findings, phoneme category selectivity is observed early (<150 ms) in 500 
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both PAC and left inferior frontal gyrus (pars opercularis) (Alho et al., 2016; Bidelman et al., 501 

2013; Chang et al., 2010; Toscano et al., 2018). Still, cue- and category-based representations 502 

are probably not mutually exclusive and may overlap in both time and space within the brain; 503 

IFG, for instance, may code acoustic details of speech nearly simultaneously (within ~50 ms) of 504 

coding phonological categories (Toscano et al., 2018). In nonhuman primates, inferior frontal 505 

regions show categorical coding even during visual classification, suggesting a broad role of this 506 

area in creating perceptual invariance (Freedman et al., 2001). Still, our findings suggest that 507 

IFG may not play a domain-general role in computing category representations (Myers et al., 508 

2009). Indeed, we found IFG activity anti-correlated with behavior for speech (Fig. 5); increased 509 

IFG activity, as in nonmusicians, was indicative of poor behavioral categorization performance. 510 

In contrast, stronger PAC responses predicted better behavior. Similar phoneme-category 511 

selectivity has also been observed in left PreCG and connectivity between posterior aspects of 512 

auditory cortex and PreCG have been shown to mediate complex speech identification 513 

decisions (Chevillet et al., 2013). In the present study, we found that nonmusicians did show 514 

categorical responsivity in PreCG, but only for music. PreCG activation in nonmusicians could 515 

reflect the increased difficulty of classifying unfamiliar music tokens, which would be expected to 516 

evoke non-auditory regions to aid perception (Du et al., 2014). However, our data do not readily 517 

support interpretations that sensorimotor interplay within the dorsal auditory-motor stream is 518 

sufficient to account for performance in categorization tasks (cf. Chevillet et al., 2013). Instead, 519 

we find engagement of non-canonical areas (e.g., PreCG, IFG) outside of auditory system 520 

depends critically on both what an observer is classifying (e.g., speech vs. music) and their 521 

relative experience with the sounds of that domain. 522 

 While IFG has been implicated in speech identification and categorization (Du et al., 523 

2014; Lee et al., 2012; Luthra et al., 2019), nonmusicians’ increased frontal activation could 524 

instead be related to increased attentional load (Bouton et al., 2018; Giraud et al., 2004), lexical 525 

uncertainty (Luthra et al., 2019), and/or unconscious sensory repair that applies prior knowledge 526 

to a noisy input (Shahin et al., 2009). Indeed, decision loads IFG during effortful speech 527 

listening (Binder et al., 2004; Bouton et al., 2018; Du et al., 2014) and left IFG is more active 528 

when items are perceptually confusable (Feng et al., 2018). Therefore, insomuch as 529 

nonmusicians are less skilled listeners and were more challenged by even our simple auditory 530 

CP tasks (as suggested by their increased RTs), IFG might necessarily be recruited in a top-531 

down manner to aid categorical predictions on the sensory input. Supporting this interpretation, 532 

studies on categorical speech learning have shown frontal speech regions are relatively less 533 

active in “good learners” (Golestani and Zatorre, 2004), mirroring our findings in musicians. 534 
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Alternatively, IFG regions may reflect subvocal rehearsal strategies or articulatory codes that aid 535 

speech perception (Du et al., 2014; Golestani and Zatorre, 2004; Hickok and Poeppel, 2004; 536 

Papoutsi et al., 2009). Functional coupling between auditory and frontal brain regions is 537 

modulated by musical training (current study; Du and Zatorre, 2017). Thus, it stands to reason 538 

that nonmusicians’ increased involvement of IFG may reflect augmented generation or retrieval 539 

of articulatory codes to improve speech categorization. Similarly, the lack of IFG involvement for 540 

music may reflect total absence of verbal labels of articulatory code for non-speech stimuli 541 

and/or NM’s substantial difficulty in the music task (Fig. 2).  542 

 Our data further align with predictive coding models of speech processing (Bouton et al., 543 

2018; Di Liberto et al., 2018). Under this premise, more ambiguous acoustic information might 544 

invoke the need to pass information to higher-order frontal areas (IFG) to help interpret weaker 545 

sensory representations in PAC in a predictive framework. Our functional connectivity analysis 546 

supports this notion (at least for speech) as evidenced by nonmusicians’ stronger PAC→IFG 547 

neural signaling in left hemisphere. These results indicate that auditory expertise shapes not 548 

only regional engagement but also functional interplay (directed communication) between PAC 549 

and IFG when making sound-to-label associations (Bizley and Cohen, 2013; Luthra et al., 550 

2019). They also corroborate previous studies suggesting music training enhances 551 

synchronization between auditory cortices (Kuhnis et al., 2014) and increases global network 552 

efficiency between auditory and frontal regions (Du and Zatorre, 2017; Paraskevopoulos et al., 553 

2017). 554 

 It is worth noting that some developmental learning disorders including dyslexia have 555 

been linked to poorer categorization skills (Calcus et al., 2016; Hakvoort et al., 2016; Messaoud-556 

Galusi et al., 2011; Noordenbos and Serniclaes, 2015; Zoubrinetzky et al., 2016). Yet, recent 557 

longitudinal (6 mo) training studies have shown improvements in categorical processing in 558 

dyslexic children in the form of stronger pre-attentive differentiation of speech at post-test (Frey 559 

et al., 2019). Such longitudinal interventions are consistent with our cross-sectional 560 

observations (present study; Bidelman and Alain, 2015; Bidelman et al., 2014), which imply 561 

active music training might fortify complex auditory processing and in turn, enhance the 562 

encoding and decoding of sound-to-meaning relations. Our study provides direct neurobiological 563 

evidence that musicianship impacts the neural architecture supporting critical and fundamental 564 

skills that support the auditory perceptual organization and categorization of sound. 565 

Consequently, it is conceivable that music rehabilitation programs might offer a means to 566 

preserve and/or offset processing difficulties in children with dyslexia (Frey et al., 2019) or those 567 

stemming from aberrant cognitive aging (Bidelman and Alain, 2015).  568 
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