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Abstract 

Delays in case reporting are common to disease surveillance systems, making it difficult to track 

diseases in real-time. “Nowcast” approaches attempt to estimate the complete case counts for a 

given reporting date, using a time series of case reports that is known to be incomplete due to 

reporting delays. Modeling the reporting delay distribution is a common feature of nowcast 

approaches. However, many nowcast approaches ignore a crucial feature of infectious disease 

transmission—that future cases are intrinsically linked to past reported cases—and are 

optimized to a single application, which may limit generalizability. Here, we present a Bayesian 

approach, NobBS (Nowcasting by Bayesian Smoothing) capable of producing smooth and 

accurate nowcasts in multiple disease settings. We test NobBS on dengue in Puerto Rico and 

influenza-like illness (ILI) in the United States to examine performance and robustness across 

settings exhibiting a range of common reporting delay characteristics (from stable to time-

varying), and compare this approach with a published nowcasting package. We show that 

introducing a temporal relationship between cases considerably improves performance when 

the reporting delay distribution is time-varying, and we identify trade-offs in the role of moving 

windows to accurately capture changes in the delay. We present software implementing this 

new approach (R package “NobBS”) for widespread application.  

 

Significance 

Achieving accurate, real-time estimates of disease activity is challenged by delays in case 

reporting. However, approaches that seek to estimate cases in spite of reporting delays often do 

not consider the temporal relationship between cases during an outbreak, nor do they identify 

characteristics of robust approaches that generalize to a wide range of surveillance contexts 

with very different reporting delays. Here, we present a smooth Bayesian nowcasting approach 

that produces accurate estimates that capture the time evolution of the epidemic curve and 

outperform a previous approach in the literature. We assess the performance for two diseases 

to identify important features of the reporting delay distribution that contribute to the model’s 

performance and robustness across surveillance settings. 
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Introduction 

Effective public health action relies on surveillance that is timely and accurate, especially in 

disease outbreaks(1, 2). Specifically, surveillance provides the information required to assess 

risks, prioritize and allocate resources to public health threats, deploy and discontinue 

interventions to interrupt transmission, and monitor the impact of those interventions. Ideally, 

disease surveillance systems should closely track the often fast-changing circumstances of 

outbreaks, distinguishing true changes in the dynamics from artifacts of reporting. 

  

Despite the importance of timely surveillance data, substantial challenges exist to collect and 

report case information in real time. Multiple features of the disease and surveillance system 

contribute to reporting delays, including: delays in symptoms onset after infection; delays in 

medical care-seeking after onset; delays in providers obtaining and reporting diagnostic 

information; level of awareness of disease activity influencing care-seeking and reporting; and 

system-level processing delays, a result of complex and multi-tiered disease reporting and 

communication systems interacting at multiple administrative levels(3). Reporting delays can be 

further exacerbated in resource-constrained settings. As a consequence, surveillance data are 

typically not complete until weeks or months after infections have actually occurred, providing 

an incomplete picture of current disease activity. 

  

Nowcasting, or “predicting the present,” is an approach to mitigate the impact of reporting 

delays. With origins in the insurance claims and actuarial literature(4, 5), nowcast models aim to 

estimate the number of occurred-but-not-yet-reported events (e.g. insurance claims, disease 

cases) at any given time based on an incomplete set of reports. In public health settings, 

nowcasting approaches have been explored for AIDS in the 1980s and 1990s(6–8) as a 

consequence of the long incubation period from HIV infection until development of AIDS. More 

recently, nowcasting has been applied to infectious disease outbreaks such as foodborne illness 

outbreaks(9, 10). These studies draw principally on survival analysis and actuarial techniques to 

model the reporting delay and draw inferences based on historical patterns. A majority of 

studies have strictly focused on modeling the reporting delay distribution—a legacy of the 

actuarial techniques giving rise to many of these approaches—and generally neglect a key 

feature of outbreaks: that future cases are intrinsically linked to past reported cases, a fact that 

creates potentially strong autocorrelation in the true number of cases over short time intervals. 

In other words, the infectious disease transmission process provides an additional signal of the 

number of cases to be expected in the near future that has not been included in common 

methods such as the reverse-time hazard model (11, 12) and the chain ladder method (13). 

However, proposals to extend the latter approach to state-space models that account for 

temporal relationships in reporting have existed in the literature since the development of these 

techniques(13–15) and have been applied in at least one infectious disease context(16). These 

developments are promising for disease surveillance, but it is critical to demonstrate 

performance in a diversity of settings as infectious disease nowcast models to date have largely 

focused on specific applications, not the common challenges that exist across many different 

diseases. In this investigation, we find that nowcasting is especially challenging when the 

proportion of cases reported the week they occur (delay 0) is low and reporting delays are 

highly variable; we know of no investigations that specifically identify models that perform well in 
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these commonly occurring circumstances. As a result, the characteristics of robust and broadly-

applicable models are difficult to identify. Additionally, several previous models have largely 

focused on providing point estimates of the number of cases. Point estimates may be helpful, 

but quantifying the uncertainty in those estimates is even more important in the context of 

infectious disease outbreaks because uncertainty is intrinsic, and accounting for plausible 

outcomes apart from the point prediction is critical. 

 

Here, we introduce Nowcasting by Bayesian Smoothing (NobBS), a simple and flexible 

generalized Bayesian model for nowcasting infectious diseases in different settings. We 

demonstrate the robustness of this approach in two very different disease surveillance contexts 

and identify the conditions that favor its application, especially when the reporting delay 

distribution is time-varying. Specifically, NobBS allows for both uncertainty in the delay 

distribution and the time evolution of the epidemic curve, producing smooth, time-correlated 

estimates of cases. We demonstrate that NobBS performs well for weekly nowcasts of (1) 

dengue cases in Puerto Rico and (2) influenza-like illness (ILI) cases in the United States, 

requiring no disease-specific parameterization despite the two pathogens being very different 

(vector-borne vs. directly transmitted) and exhibiting substantially different reporting delays. 

Lastly, we test NobBS against a previous Bayesian nowcast method(9) and find that NobBS 

outperforms this benchmark for both diseases and multiple time periods. In particular, we show 

that while point estimates of the models are similar when time-to-report distributions are 

relatively fixed over time, NobBS improves the estimation of uncertainty and accommodates 

temporal variation in delay probabilities. We present an R package, “NobBS,” as a tool to 

complement both routine public health surveillance as well as forecasting efforts. 

  

Results 

We developed a Bayesian approach to nowcast total case numbers using incomplete, time-

stamped reported case data based on an estimated delay distribution, intrinsic autocorrelation 

from the transmission process, and historical case data. Generally, the approach learns from 

historical information on cases reported at multiple delays (e.g. no delay, 1-week delay, 2-week 

delay, etc.) from the week of case onset to estimate the reporting delay probability at each delay 

and the relationship between case counts from week-to-week, and uses this relationship to 

predict the number of not-yet-reported cases in the present. We tested this approach, NobBS, 

using two different infectious disease surveillance data sources: dengue surveillance in Puerto 

Rico, and national notifications of influenza-like illness (ILI) in the United States. Using all of the 

available data on case reporting delays up to the point of prediction, weekly dengue nowcasts 

were estimated for the time period December 23, 1991 through November 29, 2010 (989 

weeks), and weekly ILI nowcasts were produced over the period June 30, 2014 through 

September 25, 2017 (170 weeks). For comparison, we generated weekly nowcasts over the 

same periods using an existing Bayesian approach, here referred to as the benchmark 

approach (9). To leverage a large amount of historical data to fit the nowcast model while also 

having a large window over which to assess nowcasts, we used a 104-week (approximately 2-y) 

moving window dengue and a 27-week (approximately 6-mo) moving window for ILI. Our 

primary outcome metric to assess nowcast performance was the logarithmic score, a proper 

score that evaluates the probability assigned to the observed outcome rather than error 
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associated with a point prediction. For purposes of discussion, we reported the exponentiated 

form of the mean logarithmic score (the geometric mean of the assigned probabilities) to provide 

a metric on the scale of 0 (no certainty of the outcome) to 1 (complete certainty of the outcome). 

In addition, we estimated other metrics describing the performance of point estimates (mean 

absolute error (MAE), root mean square error (RMSE), and relative root mean square error 

(rRMSE)) and the 95% prediction interval (PI) coverage, and of these, focus on comparing the 

rRMSE and 95% PI coverage across approaches. 

  

Performance in forecasting weekly dengue and influenza incidence 

Figs. 1-2 show weekly dengue and ILI nowcasts for NobBS and the benchmark approach over 

multiple seasons for both diseases. Table 1 summarizes the point and probability-based 

accuracy metrics for each, where higher accuracy is indicated by higher average scores, lower 

MAE, RMSE, and rRMSE, and lower distance from 0.95 for the 95% PI coverage. Because the 

NobBS model accounts for both under-reporting and the autocorrelated progression of 

transmission across successive weeks, it makes predictions even in weeks when there are no 

cases reported for the week. Conversely, the benchmark model does not make nowcasts for 

weeks in which there are no initial case reports (common in the dengue Puerto Rico data), 

hence the nowcasts in Figs. 1C and 2C appear as discontinuous lines. To compare models 

despite these differences, we report accuracy metrics between NobBS and the benchmark 

approach for both (1) the full time series of the data and (2) weeks when at least one case was 

reported in the first week, i.e. the subset of weeks for which both models could make predictions 

(Table 1). We also computed error metrics for the benchmark model for the full time series by 

assigning point estimates of 0 cases for nowcasts in weeks without predictions. 
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Fig. 1. Weekly dengue fever nowcasts for December 23, 1991 through December 25, 2000 

using a 2-year moving window. (A) NobBS nowcasts along with (B) point estimate and 

uncertainty accuracy, as measured by the log score and the prediction error, are compared to 

(C) nowcasts by the benchmark approach with (D) corresponding log scores and prediction 

errors. For nowcasting, the number of newly-reported cases each week (blue line) are the only 

data available in real-time for that week, and help inform the estimate of the total number of 

cases that will be eventually reported (red line), shown with 95% prediction intervals (pink 

bands). The true number of cases eventually reported (black line) is known only in hindsight and 

is the nowcast target. Historical information on reporting is available within a 104-week moving 

window (grey shade) and used to make nowcasts. The log score (brown line) and the difference 

between the true and mean estimated number of cases (grey line) are shown as a function of 

time.  
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Fig. 2. Weekly ILI nowcasts for June 30, 2014 through September 25, 2017 using a 6-

month moving window. (A) NobBS nowcasts along with (B) point estimate and uncertainty 

accuracy, as measured by the log score and the prediction error, are compared to (C) nowcasts 

by the benchmark approach with (D) corresponding log scores and prediction errors. For 

nowcasting, the number of newly-reported cases each week (blue line) are the only data 

available in real-time for that week, and help inform the estimate of the total number of cases 

that will be eventually reported (red line), shown with 95% prediction intervals (pink bands). For 

the benchmark approach, the 95% prediction intervals are very narrow and are thus difficult to 

see. The true number of cases eventually reported (black line) is known only in hindsight and is 

the nowcast target. Historical information on reporting is available within a 27-week moving 

window (grey shade) and used to make nowcasts. The log score (brown line) and the difference 

between the true and mean estimated number of cases (grey line) are shown as a function of 

time.  
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Table 1. Performance measures for each nowcast approach and disease.  

 
 

 The benchmark approach made predictions in only 55% of weeks in the dengue time series 

(Table 1). In this subset of weeks, the NobBS approach achieved relatively smooth and 

accurate tracking of the dengue time series (rRMSE = 0.464, average score = 0.274) despite 

low proportions of cases reported on the week of onset (Fig. 1A-B). The 95% PI coverage was 

0.85, indicating that the 95% PI included the true number of cases for 85% of the nowcasts. In 

comparison, the benchmark approach produced substantially less accurate point estimates and 

slightly broader uncertainty intervals (rRMSE = 1.24, average score = 0.161, 95% PI coverage = 

0.90) with greater fluctuation in nowcasts from week-to-week (Fig. 1C-D). Because many weeks 

in the dengue data were low incidence, assigning a prediction of 0 to the benchmark approach’s 

missing nowcasts improved its rRMSE to 1.14 in the full time series compared to 1.24 for the 

subset over which nowcasts were generated from the model, though NobBS still surpassed the 

benchmark model’s accuracy on this and all other metrics (Table 1). 

 

Nowcast point estimates tracked the ILI time series well for both approaches, though point 

estimates had greater error by all measures for the NobBS approach (NobBS rRMSE = 0.074 

vs. benchmark rRMSE = 0.062; Table 1). However, the NobBS approach produced 

considerably wider prediction intervals (Figs. 1C, 2C) resulting in both higher log scores (NobBS 

average score = 0.218 vs. benchmark average score = 0.017) and 100% coverage by the 95% 

prediction intervals compared to 0% coverage for the benchmark (Table 1). 

  

To assess the degree of autocorrelation and related smoothness in the NobBS predictions, we 

calculated the 1-week lagged autocorrelation of predictions (ρa) and compared this to the 1-

week lagged autocorrelation of cases (ρc). In addition, we computed metrics reflecting the 

accuracy of the approaches in capturing the change in cases from week-to-week: the mean 

absolute error of the change (MAEΔ) and the RMSE of the change (RMSEΔ) (Table 2). The 

magnitude of change was much larger for the ILI data than dengue data, with average absolute 

value change of 1,312.6 cases/week versus 9.8 cases/week, yet both showed high 

autocorrelation (ρc = 0.958 for dengue and ρc = 0.972 for ILI). Comparing the full time series, the 

nowcasts produced by NobBS exhibited high autocorrelation for both diseases (ρa = 0.876 for 

dengue, 0.973 for ILI) while the benchmark approach yielded lower autocorrelation for dengue 

nowcasts, comparatively (ρa = 0.631 for dengue, 0.970 for ILI). For dengue, over the weeks in 
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which at least 1 case was initially reported, the NobBS approach achieved both lower mean 

absolute difference between predicted and observed changes in cases (NobBS MAEΔ = 23 vs. 

benchmark MAEΔ = 50) and lower RMSE of the change (NobBS RMSEΔ = 35.8 vs. benchmark 

RMSEΔ = 64.6). In addition, NobBS outperformed the benchmark approach over the full time 

series of dengue cases (Table 2). For ILI, however, the metrics for the weekly change were 

similar for the two approaches (Table 2).  

 

 
  

Reporting delays impact nowcast performance 

The delay distributions between the reporting systems are strikingly different (Figs. 1, 2, S1). In 

the case of the dengue surveillance system, which includes specimen collection and laboratory 

testing, only approximately 4% of cases were processed during the week of onset, on average. 

In contrast, the U.S. Outpatient Influenza-like Illness (ILI) Surveillance Network (ILINet) captures 

only syndromic data reported electronically, with over 80% of ILI cases reported, on average, 

the same week they present (i.e. with no delay). Overall, we observed that the accuracy of 

nowcast point estimates (rRMSE) was higher for the ILI data compared to dengue, which may 

be related to the high proportion of cases reported with 0-weeks delay in these data. Large 

weekly absolute changes in the number of initial case reports also appeared to be related to 

increased error, particularly for dengue, which had high fluctuations in the number of initial 

reports over time (Table S1, Fig. S2). Note that because of the difference in predictive 

distribution bin widths based on the number of cases that accrue for influenza vs. dengue 

(Materials & Methods), average scores are not comparable across diseases. 

 

NobBS improves nowcasting with varying reporting delays 

Dengue and ILI also exhibit differences in the trends of reporting delay probabilities over time. 

For dengue, we observe a noisier, more time-varying probability of reporting for cases, with 

more extreme fluctuations in the proportion of initial reports compared to ILI cases, which show 

more constant (tighter ranges of) reporting probabilities from week-to-week (Fig. S3). 

Independent of the initial proportion of cases reported (high vs. low), we hypothesized that these 

trends (relatively constant vs. time-varying) are particularly impactful on the performance of the 

nowcast, and that relatively constant reporting probabilities, as seen in the ILI data, may be 

linked to the higher accuracy of these predictions. 

  

To test the robustness of the model, we simulated ILI data using the final counts from the true 

dataset, but imposing a time-varying delay distribution; specifically, with faster initial reporting 
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during weeks of high incidence (described in Materials and Methods). Using these simulated 

data, we found that NobBS was relatively robust to changes in reporting delays (Fig. S4, Table 

S2). In the context of stable reporting delays (original ILI data), NobBS performed comparably to 

the benchmark model (Fig. 2, Table 1). However, in the presence of simulated time-varying 

reporting delays, NobBS outperformed the benchmark in terms of confidence (NobBS average 

score = 0.06 vs. benchmark average score ≈ 0), point estimates (NobBS rRMSE = 0.302 vs. 

benchmark rRMSE = 0.621), and accuracy of the predicted change (Table S3). Such variations 

are a reality in many epidemics(17). 

  

Performance by year 

The performance of ILI nowcasts across accuracy measures was relatively consistent by year, 

but there were fluctuations in the year-to-year performance of both approaches applied to 

dengue data (Table 3). Average scores tended to be high in years that experienced a very low 

number of dengue cases (e.g. 2000, 2002, 2004, 2006). The model was particularly effective at 

identifying periods of low incidence, with high probabilities assigned to the lowest outcome bin 

(0-25 cases, details in Materials and Methods) when the number of cases eventually reported 

was low (Fig. S5). On the other hand, during periods of high dengue activity, lower probabilities 

were assigned to the correct bin, reflecting greater uncertainty. Overall, NobBS outperformed 

the benchmark approach on all performance measures for each year (Table 3). 

  

Table 3. Annual performance measures for each nowcast model, by disease. All 

predicted weeks for each model are compared.  

 
 

Both approaches had their lowest accuracy on three high incidence dengue seasons: 1994, 

2007, and 2010 (Table 3; Fig. 1). The average scores for these years range between 0.041 and 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 7, 2019. ; https://doi.org/10.1101/663823doi: bioRxiv preprint 

https://paperpile.com/c/JmH8qL/8t589
https://doi.org/10.1101/663823


0.17 across the NobBS and benchmark approaches, falling clearly below the rest of the years in 

performance. These scores not only reflect unusually poor point estimate predictions as judged 

by rRMSE, but also the finding that the predictive distribution for weeks in these years for both 

approaches rarely included the true value of interest (a consequence of dramatic over- or 

underestimates). 

 

Moving window sizes 

We initially used moving windows of 104 weeks for dengue (a longer time series) and 27 weeks 

for ILI (a shorter time series) to leverage a large number of historical training weeks to train 

nowcast estimates. Moving windows allow for stable estimation of the recent delay distribution 

as information from very old and potentially less relevant weeks are forgotten. The size of the 

moving window reflects how quickly and smoothly changes in the data should be realized by the 

model: longer moving windows tend to produce smoother estimates, but the model may be less 

sensitive to abrupt changes in the data (e.g. changes in how quickly cases are reported during 

an outbreak) or shorter-interval secular trends, e.g. seasonality. 

 

While we chose long moving windows to capitalize on data availability, these considerations 

may affect the choice of moving window size and nowcast performance, depending on the data. 

In light of this, we experimented with moving windows of different lengths to assess the impact 

on nowcast performance with dengue data. We tested moving windows of 5, 12, and 27 weeks 

(approx. 6 months). A 5-week moving window produced substantially lower accuracy nowcasts 

(rRMSE = 7.381) with several steep case overestimates in 2007-08 and 2010 (Fig. S6A). 

However, accuracy metrics for moving windows of 12 weeks or longer were similar to those 

using the full 104 week window (range in rRMSE: 0.6-0.655; average score: 0.35-0.37) (Table 

S4; Fig. S6). While shorter moving windows often produced more accurate estimates of the 

reporting delay probability (Fig. S7A), the estimated variance of the random walk process varied 

dramatically from week-to-week (Fig. S7B) resulting in more dramatic overestimates at certain 

periods of extreme time-varying delays, suggesting a trade-off between delay estimation 

accuracy and more stable estimates of weekly cases. 

  

Discussion 

We introduce a new approach for Bayesian nowcasting and demonstrate its application in two 

disease contexts with different reporting systems, outperforming an existing method in terms of 

point estimate (reduced RMSE) and probabilistic (higher logarithmic score) predictive 

performance. In particular, NobBS performs well even when the delays in case reporting change 

over time. We further demonstrate an important trade-off related to moving window sizes for 

delay distribution estimates; short windows improve the real-time characterization of the delay 

distribution but are susceptible to over-estimating that variability, potentially decreasing nowcast 

accuracy. Lacking any disease-specific parameterization, and relying only on historical trends of 

case reporting as input, this approach can be immediately adapted in a variety of disease 

settings. 

  

Across diseases, NobBS outperformed the benchmark approach on accuracy of uncertainty 

estimates, and produced comparable or better point estimates. For the subset of weeks in which 
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both models could produce forecasts (weeks with at least one case initially reported), point 

estimates for NobBS were substantially more accurate than the benchmark model for dengue 

cases (rRMSE improved by 300%) and slightly less accurate for ILI cases (rRMSE decreased 

by 19%). However, analysis of the probability distributions of the nowcasts revealed a much 

more substantial difference; the average score for NobBS was approximately twice as high for 

dengue and more than 10 times as high for ILI cases (Table 1). This indicates that the NobBS 

approach assigned much higher probability to the actual outcome, even though point accuracy 

was somewhat lower for the ILI cases.  

  

While utilizing a similar modeling structure for case reporting delays as the benchmark model 

(9), NobBS introduces a simple dependency between case counts over time; that is, changes in 

case counts between weeks are assumed to be related via a first-order random walk process on 

the logarithmic scale. This feature is critical in the context of infectious disease transmission, 

where the number of true infections in a given week mechanistically depends in part on the 

number of true infections in previous weeks due to the infectious process, whether the pathogen 

is transmitted directly or by vectors (18). Hence, variations of autoregressive models are 

common in disease forecasting(19, 20). When reporting delays are time-varying, as is often the 

case in epidemics(17), we show that the NobBS approach is less accurate compared to its 

performance in a stable delay distribution, but still shows improvement over the benchmark 

approach likely because the NobBS approach is informed by the number of cases experienced 

in previous weeks, not just the delay distribution, making it more robust to larger fluctuations.  

  

The accuracy of predictions is related at least in part to the number of cases reported to the 

surveillance system in week 0. When a larger proportion of cases were reported with no delay, 

as was the case for ILI compared to dengue, the point estimate accuracy was higher. This is not 

surprising, as a large fraction of true cases reported initially leaves fewer cases left to predict. 

  

We observed greater volatility in the nowcasts when the initial number of cases reported 

increases suddenly from low values. Two weeks in the dengue time series highlight this: August 

3, 1998 and August 16, 2010. In those weeks, the number of cases initially increased by 16 and 

17, respectively, from the previous week after 10 week with an average absolute change of 2.6 

and 1.8 cases, respectively. Because this increase is an outlier in the distribution of reporting 

delays, in particular for delay d=0, the model substantially overestimated the true number of 

cases before correcting the following week. We observed that shorter moving windows either 

exacerbated this issue (e.g. in 2010) or produced a similar overestimate (e.g. in 1998) (Fig. S6), 

which appears to be a consequence of the volatility in estimating the variance of the random 

walk process, despite more accurate estimation of the reporting delay probability (Fig. S7). 

While the smooth, autocorrelated relationship fit in the NobBS model helps reduce the effect of 

week-to-week variability in early reporting, it remains a challenge. Users should keep in mind 

these trade-offs when seeking to apply NobBS to their data. 

  

While NobBS mitigates the effects of a time-varying delay distribution on case estimation, i.e. 

that the history of cases is leveraged to anchor case estimates to recent values, it does not 

explicitly model temporal changes in that delay; in other words, the estimated probability of a 
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case occurring with delay = d is assumed to apply to all reporting weeks in the moving window. 

Shorter moving windows can improve estimation of the delay in the presence of changes, but 

explicitly estimating changes in that distribution may be explored for additional robustness in the 

presence of systemic changes in reporting. For example, authors in (21) propose a smooth 

estimate of the time-varying reporting delay distribution using p-spline smoothing. Specifying a 

time-specific change has also been proposed (9), but empirical identification of a change point 

in real-time may be challenging or impossible in the context of nowcasting. The challenge that 

remains in all described approaches is the ability of the model to pick up on changes in the 

delay distribution that occur quickly, in other words that may otherwise be smoothed out by 

splines and long moving windows.  

 

Beyond supporting real-time disease tracking by public health officials, NobBS can complement 

existing disease forecast efforts by providing more accurate nowcasts to forecasting teams in 

the place of real-time reporting underestimates. For example, teams participating in the Centers 

for Disease Control and Prevention Epidemic Prediction Initiative (https://predict.cdc.gov) 

challenges (e.g. FluSight) use initial surveillance data for forecasting because it is the most up-

to-date data available (22). NobBS can help account for later revisions to these data and 

therefore improve prospective estimates as well. 

  

We present an R package, “NobBS,” intended to provide easy and flexible implementation of 

this approach to a wide audience of public health officials and researchers. This package is 

currently being finalized and is installable from https://github.com/sarahhbellum/NobBS, and will 

be moved to CRAN in final form. 

 

Materials and Methods 

  

Surveillance Data 

We collected data on approximately 53,000 cases of dengue in Puerto Rico and 2.77 million 

cases of ILI in the United States over a 21-year (1092 weeks) and 3.75-year (196 weeks) 

period, respectively. Time-stamped weekly dengue data for laboratory-confirmed cases of 

dengue in Puerto Rico were collected by the Puerto Rico Department of Health and Centers for 

Disease Control and Prevention. The times used for the analysis were the time of onset as 

reported by the reporting clinician and the time of laboratory report completion. ILI data 

originated from the U.S. Outpatient Influenza-like Illness Surveillance Network (ILINet), which 

consolidates information from over 2000 outpatient healthcare providers in the United States 

who report to the CDC on the number of patients with ILI. The times used for the analysis were 

the week of ILI-related care seeking and the week when those cases were posted online in 

FluView (https://gis.cdc.gov/grasp/fluview/fluportaldashboard.html) as collected in the DELPHI 

epidemiological data API (https://github.com/cmu-delphi/delphi-epidata). ILI data with delays of 

more than 6 months occasionally had irregularities, so we restricted the analyses to delays of up 

to 6 months.   

 

Reporting Triangle 
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Delays in reporting are often structurally decomposed into a (T x D) dimensional “reporting 

triangle,” where T is the most recent week (“now”) and D is the maximum reporting delay, in 

weeks, observed in the data. The data are right-truncated, since at any given week t, delays 

longer than T – t cannot be observed. For example, at week t=T, only the cases reported with 

delay d=0 are observable; cases reported with longer delays (i.e. 1- or 2-week delays, d=1 or 

d=2) will be known in future weeks. In Table S5, we present an example of the reporting triangle 

using ILI data. 

  

For each week t, the goal of nowcasting is to produce estimates for the total number of cases 

eventually reported, Nt, based on an incomplete set of observed cases with delay d, nt,d. Since 

not every nt,d is observed for a delay d, but will be observed at some unknown time point in the 

future, Nt = sum(nt,d). 

  

Our approach is motivated by modeling the marginal cell counts of the reporting triangle, nt,d in 

an adaptation of the loglinear chain ladder method developed in actuarial literature (13, 14).  

 

Bayesian Nowcast Model 

Let nt,d be the number of cases reported for week t with delay d. We assume that the underlying 

cases occur in a Poisson process such that 

 

𝑛𝑡,𝑑 ~ 𝑃𝑜𝑖𝑠(𝜆𝑡,𝑑). 

 

We also allow for extra-Poisson variation, that is, when the variance is larger than the mean and 

a negative binomial process (of which the Poisson is a special case) is more appropriate. We 

apply this in the case of the influenza data: 

 

𝑛𝑡,𝑑 ~ 𝑁𝐵(𝑟, 𝑝𝑡,𝑑) where 

𝑝𝑡,𝑑 =  𝑟/(𝑟 + 𝜆𝑡,𝑑). 

 

We then model the mean, 𝜆𝑡,𝑑, as a simple log-linear equation  

 

𝑙𝑜𝑔 (𝜆𝑡,𝑑)  =  𝛼𝑡 + 𝑙𝑜𝑔 (𝛽𝑑), 

 

where 𝛼𝑡 represents the true epidemiologic signal for week t and 𝛽𝑑 as the probability of 

reporting with delay=d. In other words, NobBS contains random effects for week t and the 

reporting delay d. Exponentiating both sides of the equation, 𝜆𝑡,𝑑= 𝑒𝛼𝑡 ∗ 𝛽𝑑.  

 

We place prior distributions on 𝛼𝑡 and 𝛽𝑑 reflecting properties of each parameter. Since 𝛽𝑑 

represents a probability vector containing delays = 0, …, D, we place on it a Dirichlet prior of 

length D:  

 

𝛽𝑑 ~ 𝐷𝑖𝑟(𝜃) 

𝜃 = (𝜃0, … , 𝜃𝐷) 
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The maximum delay D can be identified as the maximum observable delay in the data, which 

may change as the time series extends, or can be fixed at some value D thought to represent a 

very long delay. In the latter case, 𝜃𝐷 can be modeled as the probability of delay ≥ D. For 

dengue, we choose to fix D at 10 weeks, since over 99% of the cases observed in the first two 

years (prior to producing out-of-sample nowcasts) were reported within 10 weeks. For influenza, 

we chose D to be the longest possible delay within the 27-week moving window, or D=26. The 

implications of choosing a maximum delay D within a moving window of W weeks means that 

the nowcast will include all cases arising with delays greater than or equal to D but less than or 

equal to W, thus excluding all cases with delays greater than W (see the reporting triangle in 

Table S5). 

 

We place weakly informative priors on 𝜃 representing a small number of hypothetical total cases 

(n=10) distributed across delay bins, loosely representing the probability of reporting delays for 

each delay d observed in the first two years of data for dengue and the first 6 months of data for 

ILI (training periods). As a sensitivity, we also placed weak priors on 𝜃 treating all delays with 

equal probability, but there was no material difference in the results (Table S6). 

 

We allow a dependency between successive 𝛼𝑡’s to capture the time evolution and 

autocorrelation of cases from week-to-week, commonly exhibited by epidemic curves. We 

therefore model 𝛼𝑡 as a first-order random walk: 

 

𝛼𝑡=1 = 𝑁(0, 0.001) 

𝛼𝑡>1~𝑁(𝛼𝑡−1, 𝜏𝛼
2) 

 

Because 𝛼𝑡 is in natural log form, this constitutes a geometric random walk.  

 

We place weakly informative priors on the precisions of the Normal distribution, 

𝜏𝛼
2~𝐺𝑎(0.01, 0.01). For the negative binomial stopping-time parameter, r, we place an 

informative Ga(60,20) prior to reflect belief that the process deviates moderately from the 

Poisson. 

 

Models were compiled in JAGS on R (v 3.3.2) producing 10,000 posterior samples. Trace plots 

were visually reviewed for convergence.  

 

Nowcast Estimates 

We produced weekly nowcasts beginning with the 27th week (influenza) and 104th week 

(dengue) and through the final week of the series. This resulted in 989 weekly out-of-sample 

estimates of dengue cases and 170 weekly out-of-sample estimates of ILI. The time series of 

key posterior estimates for both diseases are shown in Fig. S11. 

 

We used a two-year moving window to estimate a stable delay distribution within the window. 

As a sensitivity, and to gauge the minimum amount of historical information required to produce 
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accurate nowcasts, we also applied moving windows of 5, 12, and 27 weeks (approximately 6 

months).  

 

We used as a benchmark for comparison the “nowcast” function of the R package “surveillance” 

by Höhle and colleagues (described in ref. (9)) designed to produce Bayesian nowcasts for 

epidemics using a hierarchical model for nt, d ≤ T-t | nt,d , or the observed cases conditional on the 

expected total number of cases. We applied the function assuming a time-homogenous delay 

distribution and recommended parameterization described by the authors in 

http://staff.math.su.se/hoehle/blog/2016/07/19/nowCast.html, and for comparability, used the 

same moving window sizes (27 and 104 weeks) to produce nowcasts over the same time 

periods. 

 

Model Performance Metrics 

The mean absolute error (MAE), root mean square error (RMSE) and relative root mean square 

error (rRMSE) are defined, respectively, as: 

 

𝑀𝐴𝐸 =  
1

𝑛
∑ 𝑎𝑏𝑠(𝑦𝑖 − 𝑥𝑖)

𝑛

𝑖=1

 

 

𝑅𝑀𝑆𝐸 =  √
1

𝑛
∑(𝑦𝑖 − 𝑥𝑖)2

𝑛

𝑖=1

 

 

𝑟𝑅𝑀𝑆𝐸 =  √
1

𝑛
∑(

𝑦𝑖 − 𝑥𝑖

𝑦𝑖
)2

𝑛

𝑖=1

 

 

and were used to quantify the accuracy of point estimates, xi, compared to true case numbers, 

yi, across the different models at each week i. 

 

To quantify the accuracy of the point estimates in capturing the change in cases from week i-1 

to week i, we computed the mean absolute error of the change (MAEΔ) and the RMSE of the 

change (RMSEΔ): 

 

𝑀𝐴𝐸∆ =  
1

𝑛 − 1
∑ 𝑎𝑏𝑠((𝑥𝑖 − 𝑥𝑖−1) − (𝑦𝑖 − 𝑦𝑖−1))

𝑛

𝑖=2
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𝑅𝑀𝑆𝐸∆=  √
1

𝑛 − 1
∑((𝑦𝑖 − 𝑦𝑖−1) − (𝑥𝑖 − 𝑥𝑖−1))2

𝑛

𝑖=2

 

 

To capture smoothness in predictions from week-to-week, we also calculated the lag-1 

autocorrelation of predictions (ρa) and cases (ρc) between week i and week i-1. 

 

𝜌 =  
∑ (𝑛

𝑖=2 𝑥𝑖 − 𝑥̅)(𝑥𝑖−1 − 𝑥̅)

∑ (𝑛
𝑖=2 𝑥𝑖 − 𝑥̅)2  

 

where x = the predicted or true cases at each week i. 

 

The logarithmic scoring rule was used to quantify the accuracy of the posterior predictive 

distribution of the nowcast. Predictive distributions were assigned to a series of bins categorized 

across possible values of true case counts. We used bin widths of 25 cases for dengue and 

1000 cases for influenza, allowing for a larger number of bins for ILI cases based on case 

ranges of approx. 0-400 for dengue and 4,000-40,000 for ILI. For a predictive distribution with 

binned probability pi for a given nowcast target, the logarithmic score was calculated as ln(pi). 

For example, there were 115 cases eventually observed for the week of January 20, 1992. The 

NobBS nowcast for this week, which assigned a probability of 0.4 to the bin [100,125), thus 

received a log score of ln(0.4) = -0.92. As in (22, 23), a very low log score of -10 was assigned 

for weeks in which the predictive distribution did not include the true case value, for weeks in 

which the bin probability ≤ e-10. This rule provides a lower limit (-10) to the score of highly 

inaccurate predictions.   

 

The average log score across all prediction weeks was computed for all models to assess 

nowcast performance. The exponentiated average log score yields a nowcast score that can be 

interpreted as the average probability assigned to the bin corresponding to the true number of 

cases, and is a metric for model comparison purposes used in several other forecast contexts 

(22, 23). In this paper, we present the exponentiated average log score and refer to this as the 

average score.  

 

Simulated ILI Data 

To simulate ILI data with a time-varying probability of reporting delay d=0, we drew, for each 

week, Pr(d=0) from Unif(0.2, 0.9) for all weeks in which the total number of eventually-observed 

cases exceeded the mean of the ILI series (14,000 cases), and from Unif(0, 0.65) for all weeks 

in which the total observed case count was less than or equal to 14,000. This probability was 

used to calculate the simulated number of cases that would be observed with d=0, out of the 

total number of cases that would be eventually observed for that week. The remaining cases 

were distributed to other delays ranging from 1-52 weeks using NB(0.9,0.4). This produced a 

rough approximation for a hypothetical scenario in which cases are reported faster (higher 

probability of d=0) during weeks with higher disease activity (more cases). 

 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 7, 2019. ; https://doi.org/10.1101/663823doi: bioRxiv preprint 

https://paperpile.com/c/JmH8qL/ZKjNZ+zA1IO
https://paperpile.com/c/JmH8qL/zA1IO+ZKjNZ
https://doi.org/10.1101/663823


Acknowledgments 

The project described was supported by Grant Number U54GM088558 from the National 

Institute Of General Medical Sciences and Grant Number 5T32AI007535 “Epidemiology of 

Infectious Diseases” from the National Research Service Award. The content is solely the 

responsibility of the authors and does not necessarily represent the official views of the National 

Institute Of General Medical Sciences, the National Institutes of Health, or the Centers for 

Disease Control and Prevention. 

 

References 

1.  Lipsitch M, et al. (2011) Improving the evidence base for decision making during a 
pandemic: the example of 2009 influenza A/H1N1. Biosecur Bioterror 9(2):89–115. 

2.  Thacker SB, Berkelman RL, Stroup DF (1989) The Science of Public Health Surveillance. J 
Public Health Policy 10(2):187. 

3.  Gikas A, et al. (2004) Prevalence, and associated risk factors, of self-reported diabetes 
mellitus in a sample of adult urban population in Greece: MEDICAL Exit Poll Research in 
Salamis (MEDICAL EXPRESS 2002). BMC Public Health 4:2. 

4.  Kaminsky KS (1987) Prediction of IBNR claim counts by modelling the distribution of report 
lags. Insur Math Econ 6(2):151–159. 

5.  Lawless JF (1994) Adjustments for reporting delays and the prediction of occurred but not 
reported events. Can J Stat 22(1):15–31. 

6.  Pagano M, Tu XM, De Gruttola V, MaWhinney S (1994) Regression Analysis of Censored 
and Truncated Data: Estimating Reporting- Delay Distributions and AIDS Incidence from 
Surveillance Data. Biometrics 50(4):1203. 

7.  Comiskey CM, Ruskin HJ (1992) AIDS in Ireland: the reporting delay distribution and the 
implementation of integral equation models. Comput Appl Biosci 8(6):579–581. 

8.  Cui J, Kaldor J (1998) Changing pattern of delays in reporting AIDS diagnoses in Australia. 
Aust N Z J Public Health 22(4):432–435. 

9.  Höhle M, an der Heiden M (2014) Bayesian nowcasting during the STEC O104:H4 
outbreak in Germany, 2011. Biometrics 70(4):993–1002. 

10.  Salmon M, Schumacher D, Stark K, Höhle M (2015) Bayesian outbreak detection in the 
presence of reporting delays. Biom J 57(6):1051–1067. 

11.  Lawless JF (1994) Adjustments for reporting delays and the prediction of occurred but not 
reported events. Canadian Journal of Statistics 22(1):15–31. 

12.  Kalbfleisch JD, Lawless JF (1991) Regression Models for Right Truncated Data with 
Applications to AIDS incubation Times and Reporting Lags. Stat Sin 1(1):19–32. 

13.  Kremer E (1982) IBNR-claims and the two-way model of ANOVA. Scandinavian Actuarial 
Journal 1982(1):47–55. 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 7, 2019. ; https://doi.org/10.1101/663823doi: bioRxiv preprint 

http://paperpile.com/b/JmH8qL/I31Qe
http://paperpile.com/b/JmH8qL/I31Qe
http://paperpile.com/b/JmH8qL/I31Qe
http://paperpile.com/b/JmH8qL/I31Qe
http://paperpile.com/b/JmH8qL/2FKEp
http://paperpile.com/b/JmH8qL/2FKEp
http://paperpile.com/b/JmH8qL/2FKEp
http://paperpile.com/b/JmH8qL/2FKEp
http://paperpile.com/b/JmH8qL/eE3Yd
http://paperpile.com/b/JmH8qL/eE3Yd
http://paperpile.com/b/JmH8qL/eE3Yd
http://paperpile.com/b/JmH8qL/eE3Yd
http://paperpile.com/b/JmH8qL/eE3Yd
http://paperpile.com/b/JmH8qL/7BkR5
http://paperpile.com/b/JmH8qL/7BkR5
http://paperpile.com/b/JmH8qL/7BkR5
http://paperpile.com/b/JmH8qL/7BkR5
http://paperpile.com/b/JmH8qL/Wj0kh
http://paperpile.com/b/JmH8qL/Wj0kh
http://paperpile.com/b/JmH8qL/Wj0kh
http://paperpile.com/b/JmH8qL/Wj0kh
http://paperpile.com/b/JmH8qL/DkN27
http://paperpile.com/b/JmH8qL/DkN27
http://paperpile.com/b/JmH8qL/DkN27
http://paperpile.com/b/JmH8qL/DkN27
http://paperpile.com/b/JmH8qL/DkN27
http://paperpile.com/b/JmH8qL/JapfC
http://paperpile.com/b/JmH8qL/JapfC
http://paperpile.com/b/JmH8qL/JapfC
http://paperpile.com/b/JmH8qL/JapfC
http://paperpile.com/b/JmH8qL/JemXB
http://paperpile.com/b/JmH8qL/JemXB
http://paperpile.com/b/JmH8qL/JemXB
http://paperpile.com/b/JmH8qL/JemXB
http://paperpile.com/b/JmH8qL/z6jjE
http://paperpile.com/b/JmH8qL/z6jjE
http://paperpile.com/b/JmH8qL/z6jjE
http://paperpile.com/b/JmH8qL/z6jjE
http://paperpile.com/b/JmH8qL/niMNq
http://paperpile.com/b/JmH8qL/niMNq
http://paperpile.com/b/JmH8qL/niMNq
http://paperpile.com/b/JmH8qL/niMNq
http://paperpile.com/b/JmH8qL/Lno0v
http://paperpile.com/b/JmH8qL/Lno0v
http://paperpile.com/b/JmH8qL/Lno0v
http://paperpile.com/b/JmH8qL/Lno0v
http://paperpile.com/b/JmH8qL/Vdc3n
http://paperpile.com/b/JmH8qL/Vdc3n
http://paperpile.com/b/JmH8qL/Vdc3n
http://paperpile.com/b/JmH8qL/Vdc3n
http://paperpile.com/b/JmH8qL/cy2LH
http://paperpile.com/b/JmH8qL/cy2LH
http://paperpile.com/b/JmH8qL/cy2LH
http://paperpile.com/b/JmH8qL/cy2LH
https://doi.org/10.1101/663823


14.  Verrall RJ (1989) A state space representation of the chain ladder linear model. Journal of 
the Institute of Actuaries 116(03):589–609. 

15.  Verrrall R (1994) Statistical methods for the chain ladder technique. Insurance: 
Mathematics and Economics 15(1):82. 

16.  Bastos L, et al. (2017) Modelling reporting delays for disease surveillance data. 
arXiv:170909150. Available at: https://arxiv.org/abs/1709.09150. 

17.  Noufaily A, et al. (2015) Modelling reporting delays for outbreak detection in infectious 
disease data. J R Stat Soc A 178(1):205–222. 

18.  Wallinga J, Teunis P (2004) Different epidemic curves for severe acute respiratory 
syndrome reveal similar impacts of control measures. Am J Epidemiol 160(6):509–516. 

19.  Johansson MA, Reich NG, Hota A, Brownstein JS, Santillana M (2016) Evaluating the 
performance of infectious disease forecasts: A comparison of climate-driven and seasonal 
dengue forecasts for Mexico. Sci Rep 6:33707. 

20.  Yang S, Santillana M, Kou SC (2015) Accurate estimation of influenza epidemics using 
Google search data via ARGO. Proc Natl Acad Sci U S A 112(47):14473–14478. 

21.  van de Kassteele J, Eilers P, Wallinga J (2019) Nowcasting the number of new 
symptomatic cases during infectious disease outbreaks using constrained P‐spline 

smoothing. Epidemiology. In press. 

22.  Reich NG, et al. (2019) A collaborative multiyear, multimodel assessment of seasonal 
influenza forecasting in the United States. Proc Natl Acad Sci U S A 116(8):3146–3154. 

23.  McGowan CJ, et al. (2019) Collaborative efforts to forecast seasonal influenza in the United 
States, 2015-2016. Sci Rep 9(1):683. 

 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 7, 2019. ; https://doi.org/10.1101/663823doi: bioRxiv preprint 

http://paperpile.com/b/JmH8qL/doKew
http://paperpile.com/b/JmH8qL/doKew
http://paperpile.com/b/JmH8qL/doKew
http://paperpile.com/b/JmH8qL/doKew
http://paperpile.com/b/JmH8qL/Z1oEW
http://paperpile.com/b/JmH8qL/Z1oEW
http://paperpile.com/b/JmH8qL/Z1oEW
http://paperpile.com/b/JmH8qL/Z1oEW
http://paperpile.com/b/JmH8qL/DkuWq
http://paperpile.com/b/JmH8qL/DkuWq
http://paperpile.com/b/JmH8qL/DkuWq
http://paperpile.com/b/JmH8qL/DkuWq
https://arxiv.org/abs/1709.09150
http://paperpile.com/b/JmH8qL/DkuWq
http://paperpile.com/b/JmH8qL/8t589
http://paperpile.com/b/JmH8qL/8t589
http://paperpile.com/b/JmH8qL/8t589
http://paperpile.com/b/JmH8qL/8t589
http://paperpile.com/b/JmH8qL/GYWVL
http://paperpile.com/b/JmH8qL/GYWVL
http://paperpile.com/b/JmH8qL/GYWVL
http://paperpile.com/b/JmH8qL/GYWVL
http://paperpile.com/b/JmH8qL/bUaTO
http://paperpile.com/b/JmH8qL/bUaTO
http://paperpile.com/b/JmH8qL/bUaTO
http://paperpile.com/b/JmH8qL/bUaTO
http://paperpile.com/b/JmH8qL/bUaTO
http://paperpile.com/b/JmH8qL/udPq8
http://paperpile.com/b/JmH8qL/udPq8
http://paperpile.com/b/JmH8qL/udPq8
http://paperpile.com/b/JmH8qL/udPq8
http://paperpile.com/b/JmH8qL/m16U
http://paperpile.com/b/JmH8qL/m16U
http://paperpile.com/b/JmH8qL/m16U
http://paperpile.com/b/JmH8qL/m16U
http://paperpile.com/b/JmH8qL/m16U
http://paperpile.com/b/JmH8qL/zA1IO
http://paperpile.com/b/JmH8qL/zA1IO
http://paperpile.com/b/JmH8qL/zA1IO
http://paperpile.com/b/JmH8qL/zA1IO
http://paperpile.com/b/JmH8qL/ZKjNZ
http://paperpile.com/b/JmH8qL/ZKjNZ
http://paperpile.com/b/JmH8qL/ZKjNZ
http://paperpile.com/b/JmH8qL/ZKjNZ
https://doi.org/10.1101/663823

