
 1

Constructing a high-density linkage map 
to infer the genomic landscape of 
recombination rate variation in European 
Aspen (Populus tremula)  

Rami-Petteri Apuli1, Carolina Bernhardsson1,2, Bastian Schiffthaler3, Kathryn M. Robinson3, 
Stefan Jansson3, Nathaniel R. Street3, Pär K. Ingvarsson1 
 
1 Linnean Centre for Plant Biology, Department of Plant Biology, Uppsala BioCenter, 
Swedish University of Agricultural Science, Uppsala, Sweden 
 
2 Umeå Plant Science Centre, Department of Ecology and Environmental Science, Umeå 
University, Umeå, Sweden 
 
3 Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, 
Sweden  
 
*Author for Correspondence: Pär K. Ingvarsson, Linnean Centre for Plant Biology, 
Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural 
Science, Uppsala, Sweden, +46-18673230, par.ingvarsson@slu.se  
 
 

 

Data deposition: The sequencing data used for the construction of the genetic map is 

available from GenBank under accession number (pending). Bisulfate sequencing data is 

available from GenBank under accession number (pending). BatchMap input files for the 

female and male genetic maps, the two component maps and the consensus map files are 

available from zenodo.org (https://doi.org/10.5281/zenodo.3240982). Additional scripts and 

file used for the analyses are available at 

https://github.com/parkingvarsson/recombination_rate_variation. All SNP data used for 

population genomic analyses is already publicly available. Raw sequencing reads have been 

deposited in the sequence read archive (SRA) at GenBank under accession number 

PRJNA297202 (https:// www.ncbi.nlm.nih.gov/bioproject/PRJNA297202/). VCF files with 

SNP data are available to download from 

ftp://plantgenie.org/Data/PopGenIE/Populus_tremula/v1.1/VCF/. The aspen v1.2 genome 

assembly is available from ftp://plantgenie.org/Data/PopGenIE/Populus_tremula/v1.2/ .  
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Abstract  

The rate of meiotic recombination is one of the central factors determining levels of linkage 

disequilibrium and the efficiency of natural selection, and many organisms show a positive 

correlation between local rates of recombination and levels of nucleotide diversity indicating 

that linked selection is an important factor determining genome-wide levels of nucleotide 

diversity. Several methods for estimating recombination rates from segregating 

polymorphisms in natural populations have recently been developed. These methods have 

been extensively used in part because they are relatively simple to implement even in many 

non-model organisms, but also because they potentially offer higher resolution than 

traditional map-based methods. However, thorough comparisons of LD and map-based 

estimates of recombination are not readily available in plants. Here we present a new, high-

resolution linkage map for Populus tremula and use this to estimate variation in 

recombination rates across the P. tremula genome. We compare these results to 

recombination rates estimated based on linkage disequilibrium in a large number of unrelated 

individuals. We also assess how variation in recombination rates is associated with genomic 

features, such as gene density, repeat density and methylation levels. We find that 

recombination rates obtained from the two methods largely agree, although the LD-based 

method identify a number of genomic regions with very high recombination rates that the 

map-based method fail to detect. Linkage map and LD-based estimates of recombination rates 

are positively correlated and show similar correlations with other genomic features, showing 

that both methods can accurately infer recombination rate variation across the genome.  

 

Keywords: linkage disequilibrium, linked selection, methylation, population genomics 
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Introduction 

Meiotic recombination (hereafter recombination) is an important evolutionary force that 

directly alters levels of linkage disequilibrium (e.g. Wright 1931). Recombination therefore 

has important consequences for how effective natural selection is at removing deleterious 

mutations or increasing the frequency of beneficial mutations (Felsenstein 1974). 

Recombination rates are known to vary between species, among individuals within species 

and among different regions in a genome (Nachman 2002). 

Local recombination rates have been shown to be positively correlated with neutral 

genetic diversity across a wide range of organisms (reviewed in Nachman 2002). One 

possible explanation for such an association is that cross-over events and/or associated 

processes, such as gene conversion and double-strand break repair, have direct mutagenic 

effects and thus act to increase nucleotide polymorphism (e.g. Kulathinal et al. 2008). An 

alternate explanation is that natural selection has indirect effects on sites linked to a site under 

selection and therefore also acts to reduce diversity on these sites (Begun and Aquadro 1992). 

Since recombination breaks down linkage disequilibrium, areas of high recombination are 

characterized by a rapid decay of linkage disequilibrium and linked selection will hence 

impact fewer sites in the vicinity of a selected site in these regions (Begun and Aquadro 

1992). Conversely, in areas of low recombination rates, linkage disequilibrium will be 

extensive and indirect selection will impact a larger genomic region. Variation in 

recombination rates across the genome will generate an association between recombination 

and sequence diversity. Local variation in recombination rates is therefore an important factor 

for understanding how natural or artificial selection shapes sequence diversity across the 

genome of an organism. 

 Traditionally, recombination rates have been estimated from the relationship of 

marker positions in linkage maps (Stapley et al. 2017) and more recently recombination rates 
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have also been linked to physical regions of a genome through whole genome sequencing 

(Nachman 2002). However, producing linkage maps is time consuming and may even be 

infeasible in some species as it requires controlled crossing of known parents and the 

establishment of a large segregating progeny population (Stapley et al. 2017). Therefore, 

methods have been developed that infer recombination rates from linkage disequilibrium 

(LD) between segregating polymorphisms in individuals sampled from natural populations 

(e.g. McVean et al. 2004, Chan et al. 2012). Due to the relative ease of obtaining sequence 

information with modern sequencing methods even from wild populations, these LD-based 

methods for estimating recombination rates have been widely employed (e.g. McVean et al. 

2004, Kulathinal et al. 2008 Silva-Junior and Grattapaglia 2015, Wang et al. 2016, Booker et 

al. 2017). Detailed knowledge of local variation in recombination rates can be used to infer 

the action of linked selection by establishing a correlation between the levels of nucleotide 

diversity and recombination rates across the genome of an organism (McVean et al. 2004, 

Chan et al. 2012). Using polymorphism data to infer recombination rates and then using these 

inferred recombination rates to explain variation in genetic diversity could be problematic, but 

simulations and studies performed using well-established animal model species such as Mus 

musculus (Booker et al. 2017) and in a number of Drosophila species (Kulathinal et al. 2008, 

Chan et al. 2012) suggest that indirect methods for estimating recombination rates are not 

strongly affected by natural selection. However, comparisons of LD-based and genetic 

linkage map-based methods for estimating recombination rates are not readily available plant 

species. Genome structure, and in particular local rates of recombination, show large scale 

differences between plants and animals (Haenel et al. 2018), and it would therefore also be 

valuable to assess how well indirect methods for inferring recombination rates perform in 

plants. 
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Local variation in recombination rates is known to be associated with a number of 

different genomic features, such as gene density, repeat density, and cytosine methylation, 

although the magnitude and direction of these associations are still under debate. 

Recombination rates have been shown to be both positively and negatively correlated with 

gene density (positively: e.g. Wang et al. 2016, negatively: e.g. Giraut et al. 2011), GC-

content (positively: Kim et al. 2007, negatively: Giraut et al. 2011), repeat density and 

methylation levels (positively: e.g. Rodgers-Melnick et al. 2015, negatively: Giraut et al. 

2011). Characterizing associations between recombination rates and various genomic features 

at the genus or species level is thus important to avoid making incorrect assumptions about 

the strength and/or direction of these associations. 

The genus Populus has emerged as an important model system for forest trees due to 

its rapid growth rate, ability to generate natural clones and a manageable genome size of ca. 

480 Mbp distributed across a haploid set of 19 (2n=38) chromosomes (Taylor 2002, Lin et al. 

2018). Furthermore, both large and small scale synteny is highly conserved across species in 

the genus, enabling the transfer of genetic resources between species within the genus 

(Jansson and Douglas 2007). Further interest in Populus has been spurred by their economical 

(e.g. Taylor 2002) and ecological importance (e.g. Kouki et al. 2004) and over the past two 

decades a growing number of the ca. 40 species in the genus have been fully sequenced, 

including Populus trichocarpa (Black cottonwood) (Tuskan et al. 2006), P. euphratica (Ma et 

al. 2013) and P. tremula (European aspen) (Lin et al. 2018). Similarly, linkage maps have 

been produced for many of the species in the genus (e.g. Paolucci et al. 2010, Tong et al. 

2016), including Populus tremula (Zhigunov et al. 2017). However, these maps have been 

relatively coarse, utilizing a few hundred up to a few thousand markers and typically 

employing mapping populations consisting of fewer than 300 progenies. Consequently, many 

of these maps have failed to resolve the expected 19 linkage groups typical for the genus and 
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there is thus a need for developing a high-resolution, fine-scale linkage maps for the whole 

genus.  

P. tremula is of special interest within the genus as it has the largest distribution of 

any tree species in Eurasia, spanning from Spain and Scotland in the west to pacific China 

and Russia in the east, Iceland and northern Scandinavia in the north to northern Africa and 

southern China in the south (Luquez et al. 2008). Such extensive geographic distribution 

means P. tremula has adapted to a great variety of different environments, making it a 

promising species for studying the effects of spatially varying selection and adaptation (e.g. 

Farmer 1996, Luquez et al. 2008, Wang et al. 2018). To study these effects, it is important to 

fully understand the genomic landscape of recombination rate variation. Although genome-

wide variations in recombination rates have previously been studied in P. tremula (e.g. Wang 

et al. 2016), thus far these analyses have exclusively relied on LD-based methods for 

estimating recombination rates. 

Here we present a newly developed, fine-scale genetic map for Populus tremula and 

use this map to anchor scaffolds from the current draft genome assembly (Potra v1.1, Lin et 

al. 2018) to chromosomes. We then use this new resource to estimate local variation in 

recombination rates and use these to assess the correlation with recombination rates inferred 

from nucleotide polymorphism data from a larger sample of individuals. Finally, we assess 

how different genomic features, such as gene density, repeat content and methylation levels 

are associated with the different estimates of local recombination rate. 

 

Material and methods 

Plant material  

In 2013, a controlled F1 cross was performed between two unrelated P. tremula individuals 

(UmAsp349.2 x UmAsp229.1) from the Umeå Aspen (UmAsp) collection that consists of c. 
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300 individuals collected in the vicinity of Umeå in northern Sweden (Fracheboud et al. 

2009). This cross yielded 764 full sib progenies that were planted and monitored in a common 

garden at the Forestry Research Institute of Sweden’s research station in Sävar, 20 km north-

east of Umeå (63.9N 20.5E). In addition, we utilized SNP data for 94 individuals of P. 

tremula belonging to the SwAsp collection that consists of 116 individuals sampled from 12 

local populations across Sweden (6-10 individuals per population, Luquez et al. 2008). The 

SNP data has previously been described in Wang et al. (2018) and consists of 4,425,109 SNPs 

with a minor allele frequency exceeding 5%. 

DNA extraction, sequence capture and genetic map creation 

In 2015 leaf samples were collected from all progenies of the F1 cross. DNA was extracted 

using the Qiagen Plant Mini kit according to manufactures guidelines and sent to Rapid 

Genomics (http://www.rapid-genomics.com) for genotyping using sequence capture probes. 

The probe set contain 45,923 probes of 120 bases each that were designed to target unique 

genic regions in the v1.1 P. tremula genome assembly (Lin et al. 2018), as well as an 

additional 70 probes that were designed to specifically target the putative sex determination 

region on chromosome 19 of the P. trichocarpa genome assembly v3.0 

(https://phytozome.jgi.doe.gov/pz/portal.html). Parents and all offspring were subjected to 

sequence capture and subsequently sequenced on an Illumina HighSeq 2000 using paired-end 

(2x100bp) sequencing to an average depth of 15x per sample. All sequence capture data was 

delivered from Rapid Genomics in the spring of 2016. In addition, two parents of the F1 cross 

were whole-genome re-sequenced to an average depth of 15x on an Illumina HiSeq 2500 

platform with paired-end sequencing (2x150 bp) at the National Genomics Infrastructure at 

the Science for Life Laboratory in Stockholm, Sweden.  

All raw sequencing reads were mapped against the complete P. tremula v.1.1 

reference genome using BWA-MEM v.0.7.12 (Li and Durbin 2009) using default parameters. 
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Following read mapping, PCR duplicates were marked using Picard 

(http://broadinstitute.github.io/picard/) and local realignment around indels was performed 

using GATK RealignerTargetCreator and IndelRealigner (McKenna et al. 

2010; DePristo et al. 2011). Genotyping was performed using GATK HaplotypeCaller 

(version 3.4-46, (DePristo et al. 2011; Van der Auwera et al. 2013) with a diploid ploidy 

setting and gVCF output format. CombineGVCFs was then run on batches of ~200 gVCFs 

to hierarchically merge samples into a single gVCF and a final SNP call was performed using 

GenotypeGVCFs jointly on the combined gVCF file, using default read mapping filters. 

To obtain informative markers that could be used in the creation of a linkage map, 

markers were filtered in several steps. First, the vcf file was filtered with bcftools 

(Narasimhan et al. 2016) to only include bi-allelic SNPs, without low quality tags and with a 

minor allele frequency (MAF) > 0.25 in the parents. All SNPs outside the extended probe 

regions (120 bp ± 100 bp) and SNPs having a genotype depth (DP) falling outside the range 

of 10-100 were removed. Progeny genotypes were then filtered using a custom awk script, 

retaining only genotype calls matching the possible variants available in the Punnet square 

based on parental genotypes. Genotypes that did not match this criterion were recoded as 

missing data. Genotyping information was then extracted from the vcf file and all remaining 

filtering steps were performed in R (R Core Team 2018).  

For the map construction we only used markers where both genotyping methods in the 

parents (capture probes and WGS) showed concordance, where at least one of the parents was 

heterozygous and where no more than 20% of the progeny had missing data. A chi-square test 

for segregation distortion was performed on all remaining markers and all markers with a 

significance level > 0.005 were kept. Finally, only the best marker, in terms of lowest level of 

missing data and most balanced segregation pattern was kept for each probe. Genotypes and 

marker segregation pattern were then recoded to BatchMap input format (Schiffthaler et al. 
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2017). The resulting file contained 764 F1 progeny and 19,520 probe markers, segregating 

either in the mother (cross type D1.10), the father (cross type D2.15) or both parents (cross 

type B3.7).  

Framework linkage maps were created using BatchMap (Schiffthaler et al. 2017), a 

parallelized implementation of OneMap (Margarido et al. 2007), using the pseudo test cross 

strategy. Pairwise estimates of recombination frequency were calculated between all markers 

using a LOD score of 8 and a maximum recombination fraction (max.rf) of 0.35. To reduce 

the number of redundant markers in the map, identical markers (showing no recombination 

events between them) were collected into bins where one representative marker (the marker 

with lowest amount of missing data) per bin was used in subsequent analyses. Following 

binning, markers were grouped into linkage groups (LGs) using a LOD threshold of 12 and 

further split into a maternal (D1.10 and B3.7 markers) and paternal (D2.15 and B3.7 markers) 

mapping population with B3.7 markers acting as a bridge between the two parental maps. 

Marker ordering along the LGs was estimated using 16 rounds of the RECORD 

(Recombination count and ordering) algorithm (Van Os et al. 2005) parallelized over 16 

cores. Genetic distance estimates were calculated using three rounds of the ‘map batches’ 

approach (Schiffthaler et al. 2017) using the Kosambi mapping function. In successive 

rounds, markers were rippled in sliding windows of eleven, nine and seven markers, 

respectively, using 32 ripple cores and 2 phasing cores (Margarido et al. 2007, Schiffthaler et 

al. 2017). 

A consensus map of the two parental framework maps was created with the R-package 

LPmerge (Endelmann et al. 2014) using a maximal interval setting ranging from one to ten 

and equal weight to the two parental maps. The consensus map with the lowest mean root 

mean square error (RMSE) was set as the best consensus map for each LG.  

In order to estimate the correspondence between different LGs from the linkage map 
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and chromosomes in P. trichocarpa, probe sequences were mapped against the masked P. 

trichocarpa genome assembly v3.0 using BLASTn (Altschul et al. 1990). For each probe with 

a corresponding marker in the consensus map, the BLAST hit with the highest bitscore value 

was considered to be the homologous region of the P. trichocarpa genome. The number of 

homologous regions observed between the P. tremula LGs and the P. trichocarpa 

chromosomes were used to assign P. tremula LGs to corresponding P. trichocarpa 

chromosomes (Figure S1). 

Physical assembly 

We used the Python software AllMaps (Tang et al. 2015) to create physical chromosomes 

from the P. tremula genome assembly v.1.1 based on the framework genetic maps. Briefly, 

AllMaps uses information from linkage maps to physically anchor scaffolds from a genome 

assembly into chromosomes. All markers that had been placed into bins at the beginning of 

the linkage map creation were reintroduced to the final parental framework maps by placing 

them at the same chromosome and genetic distance as the bin representative marker. All 

scaffolds in the framework maps that had markers mapped to more than one chromosome 

(340 scaffolds), or where markers were mapped to different positions on a single LG but more 

than 20 centiMorgans (cM) apart (19 scaffolds), were split and placed using the 

corresponding positions of the markers (Figures S2, S3 and S4). To achieve as accurate 

scaffold splits as possible, assembly gaps and gene annotations were considered. For each 

scaffold region anchored in the framework maps, the largest assembly gap outside gene 

models were chosen to split scaffolds. If no assembly gaps were present within the split 

region, the scaffolds were split in the middle of an intergenic region by artificially creating a 

gap of size 1 bp. However, if the split region was positioned within a single gene model, the 

gene models were split either at the largest assembly gap or by artificially creating a gap of 

size 1 bp in the middle of the region (Figure S5). The python software jcvi (Tang et al. 
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2015) was used to physically split and rename multi-mapped scaffolds. One scaffold, 

Potra001073, contained two markers that could not be split using the rules above since they 

were positioned in two overlapping gene models appearing on the same strand. These markers 

were therefore removed from the map. After splitting scaffolds, the linkage map marker 

positions were translated to the new split scaffold assembly positions using UCSC 

liftOver (Hinrichs et al. 2006) and used as input to AllMaps.  

AllMaps was run according to instructions 

(https://github.com/tanghaibao/jcvi/wiki/ALLMAPS) using the parental framework maps, 

here after referred to as the ‘female’ and ‘male’ map, respectively. The maps were merged 

into the input bed file and weighed equally (1) for scaffold ordering. After ordering, the built-

in gap length estimation in AllMaps was run to produce more precise lengths for the 

chromosomes. The chromosome-scale assembly produced will be referred to as P. tremula 

v1.2. 

Linkage map -based recombination map 

The parental framework maps as well as the consensus map were edited with custom awk 

scripts to match the input format specified in the manual of the R-package MareyMap 

(Rezvoy et al. 2007). All genetic maps were converted to bed format using a custom awk 

script for easy lift over to the new physical assembly with the UCSC liftOver tool 

(Hinrichs et al. 2006). The lift-over was performed with the ‘—bedPlus’ option enabled to 

carry over extra columns and then recoded back to MareyMap input format. Some of the 

male chromosomes were reversed relative to the female and consensus maps (see negative ρ-

values in Figure S6). This was done by taking the absolute values of the genetic distance 

column after subtracting the maximum value of genetic distance from all the values in the 

column using a custom-made Python script. The edited maps were read into MareyMap and 

two obvious outliers caused by a splitting oversight on chr5 (Figures S2 and S6) and an 
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artificial gap caused by LPmerge when creating the consensus map from the parental 

framework maps in chr16 (Figures S2 and S6) were removed. Finally, we used the ‘sliding 

window’ method in MareyMap to estimate recombination rate in windows of 1Mbp, with a 

step size of 250 kbp and a minimum number of SNP’s per window of 8, in order to avoid 

regions with large gaps being assigned recombination values. 

LD -based recombination map 

To estimate LD-based recombination rates, the vcf-file with data for the 94 SwAsp 

individuals from Wang et al. (2018) was lifted over to v1.2 genome coordinates by first 

recoding the file to bed format using vcf2bed from the BEDOPS toolkit (Neph et al. 2012), 

lifted over with UCSC liftOver (Hinrichs et al. 2006) and finally recoded back to vcf 

format. The resulting vcf file was filtered using vcftools (Danecek et al. 2011), retaining 

only bi-allelic SNPs with a minor allele frequency greater than 0.05 (maf > 0.05) and that 

showed no evidence for deviations from Hardy-Weinberg equilibrium (p > 0.002). 

We used LDhelmet v.1.10 (Chan et al. 2012) to produce a LD-based recombination 

map. LDhelmet handles a maximum of 25 diploid individuals (ie. 50 haplotypes), and we 

therefore sampled a random subset of 25 individuals from the 94 re-sequenced SwAsp 

individuals utilizing the vcftools ‘--max-indv’ -option. The subset vcf was split into 

separate files according to chromosomes to avoid memory issues when running LDhelmet. 

Full FASTA-files were produced for the 25 individuals by reassigning SNP-positions at the 

corresponding sites within the reference FASTA for P. tremula v1.2 using the ‘vcf-

consensus’ script from vcftools. This was done twice per individual to produce both 

copies of the chromosome. Individual files were then concatenated together to generate a 

single FASTA file per chromosome with data for all 25 individuals. 

The LDhelmet preparatory files were produced as suggested in the LDhelmet 

v1.10 manual (Chan et al. 2012). We produced Padé coefficients and lookup tables separately 
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for each of the 19 chromosomes. The configuration files were created using a window size of 

50 and the lookup table was produced using the recommended values found in the 

LDhelmet manual (-t 0.01 -r 0.0 0.1 10.0 1.0 100.0). Similarly, the Padé coefficients tables 

were produced using the recommended values from the manual (-t 0.01 -x 11). To further 

lighten the computational load during the recombination estimation step, we opted to use the 

SNPs and pos files for our chromosomes. These files were produced for each chromosome 

separately using the ‘—ldhelmet’ -option for vcftools v0.1.15. We used the 

recommended values from the LDhelmet manual as Populus tremula has similar levels of 

nucleotide polymorphism and extent of linkage disequilibrium as Drosophila melanogaster, 

on which the recommended settings in LDhelmet are based upon (Wang et al. 2016) 

LDhelmet outputs estimates of recombination in units of ρ/bp whereas the genetic 

map is in units of cM. We therefore converted the LDhelmet results to cM distances 

following the method outlined in Booker et al. (2017) to be able to make comparisons 

between the recombination rates estimated using the two methods. The conversion assumes 

that since the physical size of a chromosome is constant for the two methods, the cumulative 

genetic distance in either cM or ρ should be the same but on different scales. The cumulative 

ρ was calculated by multiplying the ρ/bp estimates with the distance in bp between the 

adjacent SNP’s and then summed across chromosomes. Knowing the cumulative ρ and 

corresponding cM-values, it is possible to derive a ‘scaling factor’ to calculate cM values 

from the corresponding ρ values. The resulting cM values were read into MareyMap and 

recombination rates were estimated as described earlier for the genetic map-based 

recombination map.  
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Correlation of recombination rate estimates, genetic correlates of recombination rate 

and model of recombination rate 

We compared recombination rates inferred from the consensus genetic map or from the 

sequence data by calculating correlations across 1 Mb windows. We also assessed 

correlations between the two recombination rates and a number of genomic features, 

including gene density, repeat density, GC-content, substitution density, neutral diversity and 

methylation.  

Gene and repeat density were estimated using bedtools (Quinlan 2014) 

‘makewindows’ option to split the chromosomes into 50 kbp chunks and then using the 

‘annotate’ option to calculate density of the repeat and gene elements respectively using 

gff files containing locations of these elements (available at 

ftp://plantgenie.org/Data/PopGenIE/Populus_tremula/v1.1/gff3/). GC-content was calculated 

from the FASTA file produced from AllMaps using an awk script (modified from: 

https://www.biostars.org/p/70167/#70172). The original script was modified to have window 

functionality across a FASTA sequence and to take into consideration sequence gaps. 

Windows with more than 80% gaps (N) were discarded to avoid biased results.  

Substitutions relative to P. trichocarpa were estimated from a vcf-file with SNP-calls 

for a single Populus trichocarpa individual mapped against the Populus tremula reference 

genome v1.1. Comparisons of putative substitutions were then made against a list of SNP 

positions from the 94 SwAsp P. tremula data set using the vcftools option ‘--exclude-

positions’. Substitutions relative to P. tremuloides were inferred in a similar way using a 

vcf-file containing SNP calls from five P. tremuloides individuals mapped against the P. 

tremula reference genome v1.2 (Lin et al. 2018). Both the options ‘--exclude-

positions’ and ‘—positions’ were used to obtain the substitutions fixed in both aspen 

species relative to P. trichocarpa (hereafter referred to as ‘old’ substitutions) and substitutions 
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fixed in P. tremula only (‘new’ substitutions) respectively. Files containing old, new and the 

total number of substitutions were used to calculate substitution densities in windows of 50 

kbp using the ‘--SNPdensity’ option in vcftools. Finally, neutral genetic diversity 

was estimated using vcftools with the ‘--windowed-pi’ option in 50 kbp windows 

using only 4-fold degenerate sites or intergenic sites located at least 2 kbp from an annotated 

gene. For all these calculations data for all 94 SwAsp samples were used.  

Methylation levels were estimated using bisulfite sequencing data from six SwAsp 

individuals. The six individuals were bisulfite sequenced using two biological replicates per 

individual using paired-end (2x150) sequencing on an Illumina HiSeq X at the National 

Genomics Infrastructure facility at Science for Life Laboratory in Uppsala, Sweden. Based on 

recommendation from the NGI facility, samples were sequenced to an average depth of 60x 

as approximately 50% of the bisulfite sequencing data cannot be mapped uniquely due to 

excessive damage induced by the bisulfate treatment. The raw bisulfite-sequencing reads were 

trimmed using trimGalore v. 0.4.4 (https://github.com/FelixKrueger/TrimGalore), a 

wrapper around Cutadapt (Martin 2011) and FastQC (Andrews 2010), with a paired-end 

trimming mode and otherwise default settings. In order to obtain as accurate methylation calls 

as possible, polymorphic substituted versions of the P. tremula v1.1 assembly (Lin et al. 

2018) were created for each sample separately using bcftools consensus (Narasimhan et 

al. 2016) and bisulfite converted and indexed with bismark_genome_preparation 

(Krueger and Andrews 2011). Trimmed reads for all individuals were mapped against the 

corresponding converted reference genomes using Bismark (Krueger and Andrews 2011) 

and Bowtie2 (Langmead and Salzberg 2012). In order to remove optical duplicates from the 

BAM files, we ran deduplicate_bismark with default settings before methylation 

levels were extracted using bismark_methylation_extractor with the following 

settings: --bedGraph --gzip --comprehensive --CX --scaffolds --
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buffer size 20G, which produced both context files and coverage files. For one of the 

sequenced individuals (SwAsp046), subsequent analyses suggested that the two biological 

replicates were actually derived from two genetically distinct individuals, likely due to a 

sampling mix-up in the common garden. For all individuals, the biological replicate with 

largest amount of data available was used in downstream analyses. The Bismark results 

were lifted over to v1.2 coordinates using UCSC liftOver with the ’--bedPlus‘ option. 

Coverage-files were filtered for low (< 5) and high (> 44) coverage observations to remove 

spurious results due to low coverage or collapsed duplicate genomic regions, respectively. 

Following filtering, coverage files for all six samples were merged and the different contexts 

of methylation (GpG, CHG and CHH) were extracted from the Bismark context files.  

To produce data sets for all genomic features that were comparable to the two 

recombination maps, average values were calculated across 1 Mbp window using a step size 

of 250 kbp using a custom-made Python script. Correlations between the two recombination 

maps and between the recombination maps and genomic features were calculated using R. We 

also assessed the independent effects of different variables on the two recombination rate 

estimates using multiple regression. 

Results 

P. tremula linkage maps  

14,598 unique markers in the female map and 13,997 unique markers in the male map were 

distributed across 3,861 and 3,710 scaffolds, respectively. Markers in both parental 

framework maps grouped into 19 linkage groups (LGs), corresponding to the haploid number 

of chromosomes in Populus (Table 1). Among the mapped scaffolds, 19 scaffolds contained 

markers that mapped to different positions within the same LG, but that were more than 20 

cM apart (Figure S3) and 340 scaffolds contained markers that mapped to two or more LGs 
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(Figures S2 and S4). These scaffolds were split according to criteria described in materials 

and methods. Additionally, there were 49 scaffolds split within gene models (Figure S5). Two 

ambiguous markers in scaffold Potra001073 were removed. After splitting 14,596 (12,900 

binned) and 13,996 (12,382 binned) markers from 4,184 and 4,011 scaffolds remained. These 

markers spanned 4072.72 cM and 4053.68 cM for the female and male framework maps, 

respectively. The parental maps were used to produce a consensus genetic map consisting of 

19,519 markers derived from 4,761 scaffolds spanning 4059.00 cM (Table 1). Linkage groups 

(LG) were assigned to the corresponding P. trichocarpa homologs through synteny 

assessment (Table 1, Figure S1). 

Table 1. Summary of female male and consensus linkage maps for each 

chromosome. 

 
Chr LG Female Male Consensus 

Probe 
markers 

Bin 
markers 

Size 
(cM) 

Probe 
markers 

Bin 
markers 

Size 
(cM) 

Probe 
markers 

Size 
(cM) 

1 6 1,784 1,573 498.0 1,737 1,542 499.3 2,417 498.8 
2 3 1,054 924 266.3 1,028 904 268.3 1,407 266.3 
3 8 826 736 229.9 790 695 235.3 1,117 235.2 
4 1 813 728 217.2 835 736 263.0 1,128 220.5 
5 7 965 842 284.5 947 836 270.6 1,293 271.9 
6 14 1,241 1,108 311.1 1,116 993 294.3 1,602 296.4 
7 18 572 497 161.9 501 450 155.1 765 155.5 
8 12 895 781 227.4 824 726 211.0 117 215.5 
9 2 697 617 171.5 640 578 171.6 879 172.2 

10 4 1,026 901 279.0 1,015 879 270.8 1,388 273.7 
11 16 515 460 181.4 541 480 180.7 724 182.0 
12 17 515 452 142.4 486 429 140.7 678 143.3 
13 11 586 530 173.7 608 531 176.4 822 178.7 
14 5 733 655 194.3 702 609 182.0 983 194.3 
15 10 553 505 145.8 593 532 157.9 777 159.2 
16 19 383 334 145.8 220 195 125.8 430 145.4 
17 15 488 433 155.5 447 394 148.9 647 149.4 
18 13 591 502 156.3 592 531 166.2 792 165.5 
19 9 361 322 130.6 375 342 135.8 500 135.8 

Total  14,598 12,900 4072.7 13,997 12,382 4053.7 19,519 4059.0 
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Figure 1. Genetic maps and resulting physical map created by Allmaps for 

Chr1 and Chr5. The left panel shows the marker distribution (in cM) for the 

genetic maps and the anchored genomic region (in Mb) for the physical 

map, while the right panel is showing the Marey maps, i.e. the 

correspondence between the physical (x-axis) and recombination-based (y-

axis) position of markers. The female map is depicted in green and the male 

map is depicted in orange. 
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Physical assembly Potra v1.2 

The parental framework maps were used to produce a physical map, Potra v1.2, of the P. 

tremula chromosomes that we used to estimate recombination maps (Figure 1, Figure S6). 

The scaffolds anchored from the parental framework maps spanned 210.7 Mbp and 205.1 

Mbp for the female and male respectively. This corresponds to 54.6% and 53.1% of the 385.8 

Mbp covered by the v1.1 assembly (Table S1). Of the 4,761 scaffolds with markers, 96.6% 

could be anchored in the assembly providing a total physical assembly consisting of 223.4 

Mbp. This corresponds to 57.9% of the v1.1 P. tremula assembly (Lin et al. 2018) (Table 2). 

75.7% of the physical map was both anchored and oriented, while the remaining 24.3% was 

only anchored. 199,967 of the v1.1 assembly scaffolds were not covered by the framework 

maps and thus could not be anchored to the physical map. There was a clear distinction 

between the scaffolds we could and could not anchor to the Potra v1.2 assembly. The median 

length for the 4214 scaffolds anchored in the map was 37 kb and these scaffolds contain 

26,808 predicted gene models. Conversely, the median length on unanchored scaffolds was 

only 0.3 kb and they collectively contain only 8,501 predicted gene models (Table 2). After 

the initial assembly, gap estimation added 43 Mbp of gap sequences across the genome, 

increasing the estimated total size of the v1.2 assembly to 265 Mbp. This is approximately 

55% of the 479 Mbp genome size estimated for P. tremula (Lin et al. 2018). 

Table 2. Summary of physical assembly Potra v1.2. 

 
 Anchored Oriented Unplaced 

Markers (unique) 19,302 15,597 215 
Markers per Mb 86.4 92.2 1.3 
Gene elements 26,808 (75.9%) NA 8501 (24.1%) 
N50 Scaffolds (bp) 2,071 1,589 238 
Scaffolds 4,599 2,759 200,129 
 Scaffolds with 1 marker 1,151 0 133 
 Scaffolds with 2 markers 999 787 17 
 Scaffolds with 3 markers 620 384 7 
 Scaffolds with >=4 markers 1,829 1,588 5 
Total bases 223,381,844 (57,9%) 169,187,619 (43,9%) 162,436,408 (42,1%) 
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Recombination estimates 

Recombination estimates were produced based on the consensus linkage map (LMB) and 

from LD data (LDB) derived from 25 randomly selected individuals from the SwAsp 

collection. The LMB recombination rate estimates varied between 1.605 cM/Mbp on 

chromosome 4 to 26.911 cM/Mbp on chromosome 11, while the LDB estimates varied 

between 1.969 cM/Mbp on chromosome 5 to 231.801 cM/Mbp on chromosome 1. The 

median estimated recombination rate in the LMB map was 16.0 cM/Mbp with a mean of 15.6 

cM/Mbp, whereas the median recombination rate for the LDB map was 14.0 cM/Mbp with a 

mean of 16.1 cM/Mbp (Table S2, Figure S7). The majority of all recombination rate estimates 

(97%) for both maps fell in the range of 2 - 27 cM/Mb (Figure 2, Figure S8). There were 20 

windows where the LDB estimates are 1.5-15-fold higher compared to the corresponding 

rates from the LMB estimates and 2-14-fold higher than the mean recombination rate estimate 

from the LDB map. 13 of these windows had recombination rates exceeding 27 cM/Mbp, 

while seven were within 2-27 cM/Mbp. Conversely, there were also 23 windows where the 

LDB estimates were 2-4 times lower than the corresponding LMB estimates (Figure 2, 

Figures S8 and S9). 
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Figure 2. Recombination rates and genomic features calculated in 1Mb 

windows across chromosome 1 and 5 with a step size of 250kb. A) 

Recombination rate estimated from the linkage map (cM/Mb) B) 

Recombination rate estimated from sequence LD data (cM/Mb) C) 

Nucleotide diversity (1/bp) D) Divergence (sites/Mb) E) Gene density 

(percentage coding/Mb) F) Repeat density (percentage repeats/Mb) G) CpG 

methylation (percentage/Mb)  
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Figure 3. Correlations between recombination rates and genomic features. 

 

Correlation of recombination rate estimates, genetic correlates of recombination rate 

and model of recombination rate 

The correlation between recombination rate estimates for the LMB and LDB maps was 0.478 

(Spearman’s rank correlation) (Figure 3). This was the strongest positive correlation of all of 

the correlations calculated for both maps and strongest correlation overall for the LDB map. 

Correlations between the LMB and LDB recombination maps and neutral diversity were the 

second strongest positive correlations for both maps, 0.447 and 0.442 respectively. This 
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correlation was the second strongest overall for LDB map. Correlation with neutral diversity 

was also the only variable where there was no notable decrease in the correlation coefficient 

from the LMB to the LDB recombination maps (Figure 3).  

 For the LMB map we observed strong negative correlations with CHG 

methylation (-0.515), CHH methylation (-0.511) and CpG methylation (-0.505). For the LDB 

map the corresponding correlations were -0.379 (CHH), -0.371 (CHG) and -0.353 (CpG). 

Methylation levels were also strongly correlated with each other (0.918-0.984) and with 

repeat density (0.800-0.840). Repeat density was also moderately negatively correlated with 

recombination rate estimates from both the LMB (-0.408) and LDB maps (-0.291). Both 

recombination maps showed only weak correlations (-0.1<ρ<0.1) with either old or new 

neutral substitution densities (-0.06 - -0.1). Neutral substitution densities and neutral diversity 

showed only weak negative correlations (Figure 3). Overall, the LMB estimates displayed 

consistently stronger correlations with the different genomic features compared to the LDB 

estimates. This is in line with 5 % of the total variation being explained by a multiple 

regression model for the LDB recombination estimates compared to 35 % variation explained 

for the LMB estimates (Table 3).  

 

Table 3. Multiple regression of recombination rate and various genomic 

features. 

Linkage map-based 
recombination rates 

Factor Estimate Std. 
Error 

t p 

 Gene density 0.225 0.037 6.12 1.3e-9 
 Repeat density -0.111 0.069 -1.60 0.111 
 GC content -0.182 0.042 -4.37 1.36e-5 
 GpG methylation -0.360 0.050 -7.18 1.25e-12 
 Nucleotide diversity 0.140 0.034 4.07 5.0e-5 
 Substitution density -0.038 0.056 -0.685 0.493 
      
     R2 = 0.345 
      
LD-based 
recombination rates 
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 Gene density -0.009 0.031 -0.11 0.836 
 Repeat density 0.218 0.083 2.63 8.6e-3 
 GC content 0.111 0.050 2.22 0.027 
 GpG methylation -0.021 0.060 -0.36 0.717 
 Nucleotide diversity 0.176 0.041 4.26 2.2e-5 
 Substitution density -0.163 0.067 -2.47 0.015 
      
     R2 = 0.054 

Discussion 

P. tremula fine-scale genetic maps and physical assembly Potra v1.2 
 

The genetic maps presented here are the most marker-dense maps produced for P. tremula to 

date. Our female map is only 20 cM larger than the male map, despite having 518 more 

informative markers (Table 1) and most chromosomes have size differences of less than 10 

cM between sexes (Table 1, Figure S6). However, in cases where we observed differences 

between the maps for the two sexes exceeding 10 cM, the male map is shorter in all but one 

case. These results, together with the overall shorter linkage map for the male, could suggest 

overall lower recombination rates in males, in line with what has been observed in many other 

highly outcrossing plant species (Lenormand and Dutheil 2005). The high marker density in 

our framework genetic maps allow us to anchor 57.9 % of the P. tremula v1.1 genome 

assembly on to the expected 19 chromosomes, providing us with the first chromosome-scale 

assembly for P. tremula (Table 2).  

The map length in the section Populus, to which P. tremula belongs (Wang et al. 

2014), has previously been estimated to be 1,600-3,500 cM (e.g. Zhang et al. 2004, Paolucci 

et al. 2010, Zhigunov et al. 2017). The most relevant comparison for our purposes is the 

recently produced linkage maps in P. tremula by Zhigunov et al. (2017). Their map contains 

2000 informative markers with an average marker distance of 1.5 cM that were observed in 

122 progenies, resulting in a total map length of 3000-3100 cM. Our framework maps are 

much denser with ca. 12000-13000 informative markers (Table 1) and with an average 
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distance of ~0.3 cM between markers. In addition, our map is based on a mapping population 

consisting of 764 progenies and we are hence able to achieve a far greater resolution in our 

maps. However, larger data sets, both with respect to the number of markers and the number 

of progenies used, increase the risk of genotyping errors. Genotyping errors will ultimately 

lead to an inflation of map sizes as errors can be interpreted as recombination events during 

map creation and this could help explain why our maps are roughly 1000 cM longer than 

those reported by Zhigunov et al. (2017), given that we use 5-7 -fold more markers and a 

mapping population that is six times larger.  

 On the other hand, our framework genetic maps are similar in size to the ca. 4200 cM 

and 3800 cM maps presented by Tong et al. (2016) for the more distantly related species 

Populus deltoides and Populus simonii, respectively. The large size of these maps led Tong et 

al. (2016) to suggest that their maps were suffering from inflation due to the difficulty of 

properly ordering a large number of markers within a linkage group. While we likely also 

suffer from such size inflation, these issues appear to be less severe in our P. tremula parental 

maps, which contain between 8-14 times the number of markers used in the P. deltoides 

(1601) and P. simonii (940) maps and yet yield linkage maps of similar size. One explanation 

for this is our considerably larger mapping population compared to the P. deltoides and P. 

simonii maps (299 progenies). A greater number of segregating progenies helps mitigate the 

problems of ordering a larger number of markers by increasing resolution of recombination 

detection. 

Recombination rate estimates 

Recombination rates estimated from both the consensus linkage map and from polymorphism 

data showed substantial variation across all chromosomes on Mbp scales (Figure 2). For the 

consensus genetic map-based estimates and LD-based estimates, the majority of our 

observations fell in the range 0-27 cM/Mb (Figure 2, Figure S8) which is similar to what has 
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been observed in other plants such as Arabidopsis thaliana (Giraut et al. 2011), Populus 

trichocarpa (Slavov et al. 2012) and Eucalyptus grandis (Silva-Junior and Grattapaglia 2015), 

where recombination rates across chromosomes mostly fall within 0-25 cM/Mb.  

 We observed a small number of genomic windows where the LDB recombination 

rates were either 1.5-15-fold higher or lower than the corresponding estimates based on the 

consensus genetic map (Figure 2, Figure S8). While we do not know for certain what causes 

these large differences in recombination rates, a possible explanation could be that such 

windows harbor recombination hotspots or coldspots that the comparatively coarse linkage 

map fails to detect. Recombination hotspots, with local recombination rates 10 to 100-fold 

higher than the genome-wide average, have been observed in a number of species, including 

Drosophila melanogaster (Chan et al. 2012), Arabidopsis thaliana (Kim et al. 2007), Zea 

mays (He and Dooner 2009), Oryza sativa (Si et al. 2015) and Eucalyptus grandis (Silva-

Junior and Grattapaglia 2015). Similarly, coldspots have been identified in Zea mays (He and 

Dooner 2009) and Oryza sativa (Si et al. 2015) among others. Hotspots or coldspots for 

recombination are, however, often quite restricted in size (Choi and Henderson 2015), 

spanning only a few kb, and the relatively coarse recombination maps produced here are 

consequently not suitable for accurate detection of such regions.  

The average recombination rate in P. tremula is 2-27 times higher than those found in 

a number of, mostly domesticated, plant and animal species (reviewed in Henderson (2012) 

and Tiley and Burleigh (2015)), suggesting that P. tremula exhibits recombination rates that 

are among the highest recorded in the animal and plant kingdoms. Of the species covered in 

these reviews, P. trichocarpa (Slavov et al. 2012) makes for the most interesting comparison 

since it is one of the few undomesticated species listed, is closely related to P. tremula and 

has previously been compared with P. tremula (Wang et al. 2016). Despite the close 

relationship, the average recombination rate in P. trichocarpa (Slavov et al. 2012) is less than 
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a third of what we estimated for P. tremula. Similar observations were previously made by 

Wang et al. (2016) who found that population-based recombination rates in P. trichocarpa 

were on average only a quarter of the corresponding values in P. tremula. Wang et al. (2016) 

argued that the differences they observed in recombination rates between P. tremula and P. 

trichocarpa could at least partly stem from differences in the effective population size (Ne) of 

two species (Wang et al. 2016). In light of this, it would be interesting to perform further 

comparisons of recombination rates in P. tremula with other Populus species that have wide 

distribution ranges and large Ne, such as P. deltoides (Tong et al. 2016) or P. tremuloides 

(Wang et al. 2016).  

 

Correlations between recombination rate and genomic features 
 

Recombination rate estimates from the consensus linkage map and from polymorphism data 

showed a moderately strong positive correlation (>0.4) (Figure 3). A similar correlation 

between linkage map and LD-based estimates of recombination was also been observed in 

house mouse by Booker et al. (2017), suggesting that LDB recombination rate estimates are 

reliable substitutes for genetic map-based recombination rate estimates.  

We observed a strong positive correlation between recombination rate and gene 

density (0.45 and 0.41 respectively) (Figure 3). This is in line with earlier observations in 

plants (Tiley and Burleigh 2015, Stapley et al. 2017) and implies that recombination may be 

linked to gene-dense regions through a higher recruitment of the recombination machinery to 

euchromatic genome regions. Preferential recruitment of recombination to euchromatic 

genome regions has also been put forward as an explanation for why recombination rates 

across plants generally show stronger correlations with gene density compared to genome size 

(Henderson 2012, Tiley and Burleigh 2015). Studies in plants like Arabidopsis thaliana and 

Oryza sativa have shown that while crossover events are enriched in genic regions, they 
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mostly occur in promoters a few hundred bps upstream of the transcription start site or 

downstream of the transcription termination site (Choi et al. 2013, Marand et al. 2019).  

We observed negative correlations between local recombination rates and both repeat 

density and methylation (Figure 3), in line with earlier results that highlighted the role of 

chromatin features in establishing crossover locations in plants (Choi et al. 2013, Marand et 

al. 2019). For instance, Choi et al. (2013) showed that methylation is lower at observed sites 

of crossovers and Rodgers-Melnick et al. (2015) showed that cross-over density in Zea mays 

is negatively correlated with repeats and CpG methylation. All methylation contexts were 

highly correlated in our data and also strongly correlated with repeat density (≥0.8, Figure 3), 

in line with the observation that most repetitive elements in plant genomes are strongly 

methylated (Saze and Kakutani 2011). 

 Compared to earlier results from P. tremula, we observed a weaker correlation 

between recombination rates and gene density (Wang et al. 2016). One possible reason for 

this is likely to be the reference genome used. Wang et al. (2016) based their analyses on the 

P. trichocarpa reference genome whereas our analyses were based on a de novo assembly for 

P. tremula. The P. trichocarpa assembly, while more contiguous than our current P. tremula 

assembly, is less ideal for these types of analyses since divergence between the two species 

leads to substantially reduced rates of read mapping primarily in intergenic regions (Lin et al. 

2018). Our current assembly, while only representing 55 % of the expected genome size of P. 

tremula, likely offers a more unbiased set of genomic regions where we are able to call 

genetic variants. In contrast, the data derived from using the P. trichocarpa reference genome 

likely suffers from under-representations of repeat-rich regions and other intergenic regions 

(Wang et al. 2016).  

GC-content was positively correlated with both our recombination rate estimates, 

similar to what has been observed in humans (Homo sapiens) (e.g. Fullerton et al. 2001) and 
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Arabidopsis thaliana (Kim et al. 2007) among others. However, when GC-content was 

included in a multiple regression model with other genomic features, the direct effect of GC 

content was actually negative for the LMB recombination rate (Table 3). GC-content is 

strongly correlated with gene density (0.50) in P. tremula, and gene density is in turn also 

strongly positively correlated with recombination (Figure 3). The strand separation needed in 

the strand invasion of meiotic recombination is harder to achieve in areas with high GC-

content due to higher annealing energy and can explain why GC-content has a direct negative 

effect on recombination rates when effects of gene density are accounted for (Table 3, e.g. 

Mandel and Marmur 1968). 

Effects of linked selection on patterns of nucleotide diversity in P. tremula  

Both of our recombination rate estimates were strongly correlated with nucleotide diversity at 

putatively neutral sites (Figure 3). A positive correlation between local recombination rate 

and nucleotide polymorphism is usually interpreted as a signature of ubiquitous natural 

selection acting either through positive (hitchhiking) or negative (background) selection 

(Begun and Aquadro 1992). Alternatively, such a correlation could also arise if recombination 

itself is mutagenic (Begun and Aquadro 1992). However, if recombination is mutagenic one 

also expects to see a correlation between recombination and sequence and divergence at 

neutral sites (Begun and Aquadro 1992). Our data show little evidence supporting the idea 

that recombination has a direct mutagenic effect as we observed only a weak and negative 

correlation between local recombination rates and substitutions at putatively neutral sites 

(Figure 3). In light of this, and in line with earlier results, we observed that linked selection 

has pervasive effects on neutral diversity across the P. tremula genome (Ingvarsson 2010, 

Wang et al. 2016).  
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Conclusions 
Our high-density Populus tremula genetic maps and the new chromosome-scale genome 

assembly we present here provide a valuable resource not only for P. tremula, but also for 

comparative genomics studies within the entire Populus genus. We have also presented 

multiple lines of evidence to support the utility of using LD-based estimates of recombination 

rates as a proxy for genetic map-based estimates. Estimates of recombination rates derived 

from the two different approaches were in broad agreement and correlations between the two 

recombination rate estimates and various genomic features were in broad agreement between 

the two methods. Booker et al. (2017) and Chan et al. (2012) reported similar results in Mus 

musculus and Drosophila melanogaster, and our results suggest that LD-based estimates of 

recombination are also largely applicable to plants. Our results also suggest that LD-based 

estimates might be especially useful for identifying fine scale recombination variation and 

features such as recombination hot- or cold-spots by relying on the relatively high density of 

SNPs within genomes. Finally, we have further verified and extended the observation that 

linked selection is an important force shaping genome-wide variation in P. tremula by 

showing that the positive correlation between local recombination rates and nucleotide 

diversity and neutral sites is robust even when factoring in the effects of other genomic 

features. Although a positive correlation between recombination and diversity is a hallmark 

signature of linked selection, the pattern can be established by either positive or negative 

selection. We have earlier documented evidence for both a reduction in levels of standing 

variation due to recurrent hitchhiking (Ingvarsson 2010) and a reduction in the efficacy of 

purifying selection at eliminating weakly deleterious in regions of low recombination (Wang 

et al. 2016). More work is thus needed to assess the relative importance of positive and 

negative selection in shaping genome-wide variation in P. tremula. 
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