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Abstract 1 

Seedlings must continually calibrate their growth in response to the environment. Auxin and 2 

brassinosteroids (BRs) are plant hormones that work together to control growth responses during 3 

photomorphogenesis. We used our previous analysis of promoter architecture in an auxin and BR 4 

target gene to guide our investigation into the broader molecular bases and biological relevance 5 

of transcriptional co-regulation by these hormones. We found that the auxin-regulated 6 

transcription factor AUXIN RESPONSIVE FACTOR 5 (ARF5) and the brassinosteroid-7 

regulated transcription factor BRI1-EMS-SUPPRESOR 1/BRASSINOZOLERESISTANT 2 8 

(BES1) co-regulated a subset of growth promoting genes via conserved bipartite cis-regulatory 9 

elements. Moreover, ARF5 binding to DNA could be enriched by increasing BES1 levels. The 10 

evolutionary loss of bipartite elements in promoters results in loss of hormone responsiveness. 11 

We also identified another member of the BES1/BZR1 family called BEH4 that acts partially 12 

redundantly with BES1 to regulate seedling growth. Double mutant analysis showed that BEH4 13 

and not BZR1 were required alongside BES1 for normal auxin response during early seedling 14 

development. We propose that an ARF5-BES1/BEH4 transcriptional module acts to promote 15 

growth via modulation of a diverse set of growth-associated genes.  16 

 17 

Keywords: auxin, brassinosteroids, promoter architecture, growth related genes, seedling 18 

development, Arabidopsis thaliana, transcriptional modules.  19 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 9, 2019. ; https://doi.org/10.1101/664144doi: bioRxiv preprint 

https://doi.org/10.1101/664144


Introduction 20 

Plants must adapt their form to survive a complex and changing environment. The 21 

extensive molecular interplay between external (i.e., light and temperature) and internal (i.e., 22 

circadian clock) signals allows for a high degree of developmental plasticity. Light-directed 23 

seedling growth (photomorphogenesis) is one of the best-characterized examples of a highly 24 

dense regulatory network. Small molecule hormones are critical for relaying information about 25 

the light environment, as well as a diverse set of additional metabolic, environmental and 26 

developmental cues [1,2]. Hormones like auxin and brassinosteroids (BRs) play a central role in 27 

coordinating growth during photomorphogenesis.  28 

Plants with defective responses to auxin or BRs show an array of phenotypes of light-29 

grown plants even when grown in the dark [3]. The signaling pathways downstream of auxin and 30 

BRs are distinct. Auxin binds to the TRANSPORT INHIBITOR RESPONSE 1/AUXIN 31 

SIGNALING F-BOX 1–5 (TIR1/AFB) family of F-box receptors and triggers the ubiquitination 32 

and degradation of AUXIN/INDOLE-3-ACETIC ACID (Aux/IAA) co-repressors. Loss of the 33 

Aux/IAAs activates AUXIN RESPONSE FACTORs (ARFs) to regulate gene expression [4–6]. 34 

ARFs bind to an auxin response element (AuxRE, TGTCTC) and related cis-elements in target 35 

promoters [7–11]. In contrast, BRs bind and activate the BRASSINOSTEROID-INSENSITIVE1 36 

(BRI1)-associated receptor complex at the plasma membrane. A phospho-relay cascade 37 

culminates in dephosphorylated and nuclear-localized transcription factors, including BRI1-38 

EMS-SUPPRESOR1/ BRASSINOZOLERESISTANT2 (BES1/BZR2, hereafter BES1) and 39 

BZR1 [12–14]. BES1 and BZR1 regulate gene expression by binding to both E-box (CANNTG) 40 

and BRRE (CGTG(T/C)G) cis-elements in target promoters [15,16].  41 
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Genetic, physiological, and genomic analyses demonstrate molecular and physiological 42 

responses of auxin and BRs are interdependent. BRs promote auxin transport, hence altering 43 

overall auxin distribution within the plant [17,18]. BRs also regulate expression of genes 44 

involved in the core auxin response [19–21] and a BR-regulated kinase targets members of the 45 

ARF family [22–25]. Auxin stimulates de novo BR biosynthesis by directly regulating 46 

expression of DWARF4 (DWF4), a BR biosynthetic enzyme [26,27]. BRI1 is a direct target of 47 

activator ARF5/MONOPTEROS (hereafter, ARF5) [28]. In addition ARF6 and ARF7 were 48 

shown to interact with BZR1 to regulate shared target genes [29]. Previously, we demonstrated 49 

that a bipartite element in the promoter of SAUR15 gene that includes a type of E-box called a 50 

HUD element (CACATG) and a variant of the AuxRE (TGTCT) are bound by ARF5 and BES1, 51 

and that binding by both transcription factors is required for induction of expression by either 52 

hormone [30]. In this work, we expanded this study to include other growth-associated genes 53 

with predicted bipartite elements in their promoters. We found that BES1 sensitizes hypocotyl 54 

response to auxin by enhancing ARF5 binding to shared target promoters. The evolutionary loss 55 

of the conserved promoter architecture with bipartite elements results in loss of hormone 56 

responsiveness.  BEH4, a previously uncharacterized paralog of BES1, was found to act 57 

redundantly with BES1 as a major regulator of seedling growth. We propose a model where 58 

shared promoter architecture facilitates a coordinated and highly responsive growth controlling 59 

module encompassing genes from diverse families.  60 

 61 

Materials and Methods 62 

Plant materials and growth conditions 63 
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The wild type is Arabidopsis thaliana ecotype Col-0 except beh1-2 and beh2-1 that are in Col-3 64 

background. bes1-D [12], bzr1-D [58], bin2-D [59], lng1-3 [46], xth17 [52], pif7-2 [60], 65 

ARF5PRO::ARF5:GFP [31], BES1PRO::BES1:GFP [12], XTH19PRO-1.1kb::GUS and XTH19PRO-66 

0.3kb::GUS [34] were previously described. Single T-DNA insertion lines: bes1-2 (WiscDsLox 67 

246D02), bzr1-2 (GABI-Kat 857E04), beh1-2 (SAIL_40_D04, Col-3 background), beh2-1 68 

(SAIL_76_B06, Col-3 background), beh3-1 (SALK_017577), beh4-1 (SAIL_750_F08) and 69 

double mutants: bes1-2beh4-1 and bes1-2bzr1-2 are described lines [33]. For detailed 70 

information on genotyping methods, primers and generation of double mutants see 71 

Supplementary data. 72 

 For seed production and crosses, plants were grown in a growth chamber under LD conditions. 73 

Seeds were surface sterilized (20 min in 70% ethanol, 0.01% Triton X-100, followed by a rinse 74 

in 95% ethanol) for all the physiological and molecular analyses. For hypocotyl and GUS assays, 75 

sterilized seeds were suspended in water and sown individually on plates containing 0.5x 76 

Linsmaier and Skoog (LS) (LSP03, Caisson Laboratories, Inc., http://www.caissonlabs.com/) 77 

with 0.8% phytoagar (40100072-1, Plant Media: bioWorld, http://www.plantmedia.com/), and 78 

stratified in the dark at 4°C for 3 days. Plates were placed vertically in a Percival E-30B growth 79 

chamber set at 20°C in 30 µmol m-2 s-1 of photosynthetically active radiation white light with 80 

short-day conditions (8 h light, 16 h dark). For gene expression and ChIP assays, sterilized seeds 81 

were suspended in 0.1% agar (BP1423, Fisher Scientific, http://www.fisher.co.uk/), spotted on 82 

plates containing 0.5x LS with 0.8% phytoagar, stratified in the dark at 4°C for 3 days and grown 83 

horizontally as described above. 84 

Chemical treatments 85 
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To prepare stock solutions brassinosteroid (brassinolide, 101, Chemiclones, Inc., 86 

www.chemiclones.com), IAA (705490, PlantMedia.com) and picloram (P5575, Sigma) were 87 

dissolved in dimethyl sulfoxide and  diluted directly into plate medium to 1µM/0,5µM, 50µM 88 

and 5µM concentration respectively. Stock solutions were kept at –20ºC until use. 89 

Accession numbers 90 

Sequence data from this article can be found in the Arabidopsis Genome Initiative or 91 

GenBank/EMBL databases under the following accession numbers: BES1 (At1g19350), BZR1 92 

(At1g75080), BEH1 (At3g50750), BEH2 (At4g36780), BEH3 (At4g18890), BEH4 (At1g78700), 93 

ARF5 (At1g19850), IAA6 (At1g52830), XTH14 (At4g25820), XTH17 (At1g65310), XTH18 94 

(At4g30280), XTH19 (At4g30290), XTH26 (At4g28850), XTH31 (At3g44990), XTH32 95 

(At2g36870), LNG1 (At5g15580), PIF7 (At5g61270), ACT2 (At3g18780)and housekeeping 96 

gene-HK (At1g13320). 97 

Hypocotyl measurements  98 

Seedlings were grown vertically on square plates with 0.5xLS media supplemented with 80% 99 

ethanol (mock), 5µM picloram or 0.5µM BL under abovementioned conditions. Plates were 100 

scanned using EPSON Perfection V5000 scanner every 24h 2 days after germination. Generated 101 

images were used to measure hypocotyl length. The National Institutes of Health ImageJ 102 

software (rsb.info.nih.gov) was used on digital images to measure the length of different organs 103 

of the seedlings, as indicated elsewhere [61]. At least 15 seedlings were used for each data point, 104 

experiments were repeated 3-5 times and a representative one is shown. Statistical analyses of 105 

the data (T-test and two-way ANOVA) were performed using GraphPad Prism version 4.00 for 106 

Windows (www.graphpad.com). 107 

Gene expression analysis by RT-qPCR 108 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 9, 2019. ; https://doi.org/10.1101/664144doi: bioRxiv preprint 

https://doi.org/10.1101/664144


Seedlings were grown vertically on 0.5xLS plates under abovementioned conditions. Expression 109 

analyses were performed on seedlings collected at dawn on day 7 (D8) grown in SD. Only the 110 

expression analysis of BES1-BZR1-BEH family members in single mutants was performed on 111 

dark grown 7-day-old seedlings (D8). Hormone treatments were done 3h prior to collection in 112 

liquid 0.5x LS media supplemented with equal volumes of 80% ethanol (mock), IAA (to final 113 

concentration 50µM) or BL (to final concentration 1µM). All samples were immediately frozen 114 

in liquid nitrogen and stored at -80°C until processing. Total RNA was extracted from 100 mg of 115 

whole seedling tissue using the Spectrum Plant Total RNA Kit (Sigma, STRN50), treated with 116 

DNaseI on columns (Qiagen, DNASE70) and lµg of eluted RNA was used for complementary 117 

DNA (cDNA) synthesis using iScript (Bio-Rad, 170-8891). Samples were analyzed using SYBR 118 

Green Supermix (Bio-Rad, 170-8882) reactions run in a CFX96 Optical Reaction Module (Bio-119 

Rad). Expression for each gene was calculated using the formula [62] (Etarget)–ΔCPtarget 120 

(control-sample)/(Eref)–ΔCPref (control-sample) and normalized to a reference housekeeping 121 

gene (At1g13320). Primer for RT-qPCR analysis were designed by QuantPrime program. Primer 122 

sequences are listed in Table S2.  123 

GUS staining  124 

7-day-old (D8) seedlings were treated with mock (80% ethanol), 50µM IAA and 1µM BL in 125 

liquid 0.5xLS on plate and collected after 3h, similar to sample preparation for RT-qPCR. GUS 126 

staining was performed as previously described [63] using 1mM Ferri/Ferro concentration for 127 

1.5h at 37°C in the dark. Seedlings were mounted on glass slides in 50% glycerol. Images were 128 

taken using Leica microscope and whole seedling images were reconstructed using MosaicJ 129 

feature of Fiji plugin from National Institutes of Health ImageJ software (rsb.info.nih.gov). 130 

ChIP assay 131 
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Seven-day-old (D8) seedlings (BES1PRO::BES1:GFP , ARF5PRO::ARF5:GFP and bes1-D x 132 

ARF5PRO::ARF5:GFP) were treated for 3h with 80% ethanol (mock) or 50µM IAA in liquid 133 

0.5xLS media on plate and crosslinked in 1% formaldehyde under vacuum on ice. Cross-linking 134 

was stopped by infiltrating in 0.125M room temperature glycine solution. Seedlings were 135 

subsequently frozen in liquid nitrogen and ground to a fine powder with mortar and pestle. 136 

Samples were resuspended in nuclei extraction buffer [0.25 M Suc, 100 mM MOPS, pH 7.6, 10 137 

mM MgCl2, 5% Dextran T-40, 2.5% Ficoll, 20 mM b-mercaptoethanol, and mini-Complete 138 

Proteinase Inhibitor tablet (Roche Applied Science, 04693124001)], filtered through Miracloth 139 

(Calbiochem, 475855), and centrifuged to collect nuclei. Nuclei were lysed with Nuclei lysis 140 

buffer (50 mM Tris- HCl, pH 8, 10 mM EDTA, and 1% SDS). ChIP dilution buffer was added 141 

(1.1% Triton X-100, 1.2 mM EDTA, 16.7 mM Tris, pH 8.0, 167 mM NaCl, and 0.01% SDS), 142 

and chromatin was fragmented using Biorupter sonicator (Fisher Scientific, Bioruptor® UCD-143 

200). An aliquot of fragmented chromatin served as an input control for qPCR analysis, and the 144 

remainder was subjected to immunoprecipitation. Dynabeads protein A (Invitrogen, 100-02D) 145 

coupled with anti-GFP (Ab290, Abcam) antibody were used to enrich for ARF5PRO::ARF5:GFP 146 

or BES1PRO::BES1:GFP  containing chromatin fragments. Samples were washed and eluted off 147 

of Dynabeads using nuclei lysis buffer, and cross-links were reversed by incubating with 300 148 

mM NaCl. DNA was purified using a PCR clean-up kit (Qiagen, 28104). Low Adhesive 149 

Dnase/RNase free tubes (Bioplastics, B74030) were used for all the procedures. ChIP-qPCR 150 

assay data was normalized to housekeeping gene (At1g13320) coding sequence, and results are 151 

expressed as ratios of qPCR signal to the antibody IP of wild-type samples (Figure 1) or IP 152 

without antibody in reporter lines (Figure S1). ChIP-qPCR results represent the average of at 153 
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least 2-4 independent biological replicates. Primers for ChIP-qPCR analysis are listed in 154 

Supplemental Table S2. 155 

 156 

Results 157 

BES1 sensitizes hypocotyl to exogenous application of auxin 158 

BRs enhance seedling sensitivity to auxin [22]. To test the extent to which this effect of BR on 159 

auxin response is mediated by BES1, we exposed seedlings with wild-type or constitutively 160 

active BES1 to the synthetic auxin picloram (Figure1A). As previously described, bes1-D 161 

hypocotyls were longer than those of wild-type seedlings (Figure 1A; [13]); however, the 162 

application of synthetic auxin, picloram, strongly exaggerated the difference in hypocotyl length 163 

between bes1-D mutant and wild-type plants. Based on previous results using the SAUR15 164 

promoter [30], we hypothesized that increased BES1 activity led to auxin hypersensitivity by 165 

enhancing DNA binding of ARF5 to promoters with bipartite-type cis-elements.  166 

 167 

Using the large list of BES1 targets generated by ChIP-seq and microarray analysis [16], we 168 

focused on the subset of targets with putative bipartite elements in their promoters. Ten genes 169 

were selected based on the following criteria: being targets of ARF5 or BES1 [16,31], having 170 

evidence of their expression regulated by auxin or BRs [21,32], and functional information 171 

and/or mutant phenotypes. We validated these candidate genes and the bipartite elements in their 172 

promoters with ChIP assays in the previously characterized ARF5PRO::ARF5:GFP [31] and 173 

BES1PRO::BES1:GFP [12] lines. From our initial list, XYLOGLUCAN 174 

ENDOTRANSGLUCOSYLASE/HYDROLASE 19 (XTH19), INDOLE-3-ACETIC ACID 6 (IAA6), 175 

LONGIFOLIA1 (LNG1) and PHYTOCHROME-INTERACTING FACTOR7 (PIF7) were found to 176 
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be the strongest candidates for further analysis (Figure S1). To test whether BES1 enhances 177 

DNA-binding of ARF5, we crossed ARF5PRO::ARF5:GFP line to bes1-D mutant. Increased 178 

BES1 activity did increase DNA binding by ARF5 in most cases (Figure 1B). 179 

 180 

BES1 and BEH4 are major regulators of BR responses in seedling stage 181 

BES1 belongs to a family of six genes [13], with BES1 and BZR1 the best-characterized 182 

members [15,16]. BEH1-4 undergo BR-induced phosphorylation status changes similar to BES1 183 

and BZR1 [13].  The functional redundancy of this transcription family was documented recently 184 

in trait robustness [33], however their role in BR pathways remains poorly understood. BEH4, 185 

the most recent member of the family, acts redundantly with BES1 to regulate hypocotyl length 186 

in skotomorphogenic seedlings [33]. To investigate whether other members of the 187 

BES1/BZR1/BEH gene family contribute to auxin sensitivity, we analyzed T-DNA insertion 188 

alleles for each member of the BES1/BZR1/BEH family [33]. In these T-DNA insertion lines, 189 

we measured hypocotyl elongation in the absence or presence of BL or picloram. Hypocotyl 190 

response to BL was modestly reduced only in bes1-2, bzr1-2 and beh4-1 single mutants (Figure 191 

S2), while the response to picloram was not affected significantly in any of single mutants 192 

(Figure S3). Based on these findings, we selected bes1-2 beh4-1 and bes1-2 bzr1-2 double 193 

mutants for further investigation. bes1-2 beh4-1 double mutants are dwarfs that resemble known 194 

mutants with compromised BR synthesis or signaling (Figure 2A). They also show dramatically 195 

reduced response to BL and significantly reduced response to picloram (Figures 2B and C). In 196 

addition, rosettes of bes1-2 beh4-1 resembled bin2-D mutants where activity of the entire 197 

BES1/BZR1/BEH family should be suppressed (Figure 2A). In contrast, bes1-2 bzr1-2 double 198 
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mutants had an essentially wild-type response to picloram, but significant reduction in BR 199 

sensitivity (Figure S4).  200 

 201 

BES1 status affects bipartite gene expression 202 

We used RT-qPCR to investigate the effect of BES1 on bipartite target gene expression (XTH19, 203 

IAA6, LNG1 and PIF7). Single mutants of bes1-2 and beh4-1 did not have significant effect on 204 

target gene expression (Figure S5), consistent with their weak physiological phenotypes (Figures 205 

S2 and S3). However, in bes1-2 beh4-1 double mutant the expression of XTH19 and IAA6 was 206 

attenuated, and the expression of LNG1 was modestly decreased. In contrast, the expression of 207 

PIF7 was induced in the double mutant. As expected, in bes1-D the opposite tendencies were 208 

observed for all genes (Figures 3A). Both BR and auxin dramatically induced the expression of 209 

XTH19 and IAA6; while both hormones modestly repressed the expression of PIF7 (Figure 3B). 210 

The hormone responsiveness of those genes was affected by BES1/BEH4 status (Figure 3C). 211 

 212 

We further investigated the role of bipartite target genes in BR and auxin induced elongation 213 

responses. We analyzed single knockout alleles of xth17, lng1-3 and pif7-2. Since XTH19 had no 214 

available loss-of-function mutant, we analyzed a mutant in XTH17, part of the same XTH17-20 215 

gene cluster whose members act redundantly with one another [34,35]. XTH17 promoter also 216 

carried a conserved bipartite element, and its expression followed a similar pattern as XTH19 in 217 

our RT-qPCR analysis (Figure 4B). The hypocotyls of all three mutants tended to be shorter than 218 

those in wild-type seedlings in control (mock) conditions. In the presence of picloram, these 219 

effects became more obvious (Figure 3D).  220 

 221 
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Evolutionary conservation of bipartite elements predicts hormone responsiveness of 222 

promoters  223 

XTH19, IAA6 and LNG1, as well as the previously characterized bipartite target gene SAUR15, 224 

belong to large gene families. In the case of XTH19, we observed that the expression of at least 225 

three genes in the same clade (XTH17-19) were similarly affected by BES1, as well as treatment 226 

with BR or auxin (Figures 4B and C). We reasoned that these similar transcriptional patterns 227 

across paralogs might be due to shared promoter architecture. Previously, it was documented that 228 

XTH17-20 cluster has a specific motif conservation within the promoter region [34]. We found 229 

that this conserved motif includes the bipartite element we found in XTH19 promoter (Figure 230 

4A). Similar promoter architecture is also observed for group of so-called SAUR class 2 and 3 231 

that are expressed in hypocotyls [36]. 17 out of 30 genes in this group harbor bipartite elements 232 

within 250bp upstream of the transcription start, and all of these have been shown to be regulated 233 

by BR and auxin (Table S1). We predicted that the absence of bipartite element would 234 

compromise hormone responsiveness of target genes. In fact, no hormonal responses to either 235 

BL or IAA was observed for several XTHs closely related to XTH17-19 cluster, such as XTH14, 236 

31 and 32, in which either HUD or AuxRE elements were lost. XTH31 expression was still 237 

responsive to BL, likely due to a retained HUD element at -900bp. XTH26 has conserved 238 

bipartite element and was included as a positive control. Despite its low expression levels, 239 

XTH26 was repressed by both hormones.   240 

 241 

In previous work focused on characterization of the XTH17-20 cluster, Vissenber and colleagues 242 

generated a set of transgenic lines of promoter truncations fused to GUS. We tested full-length 243 

(XTH19PRO-1.1kb::GUS) and 300bp (XTH19PRO-0.3kb::GUS) truncated promoter reporter lines in 244 
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our conditions. Seedlings of full-length XTH19PRO-1.1kb::GUS line exhibited weak staining in the 245 

hypocotyl area and root tip in control (mock) conditions, 3h of IAA and BL treatment intensified 246 

the blue staining specifically in hypocotyl and petiole tissues. Interestingly the XTH19PRO-247 

0.3kb::GUS truncation, in which a portion of the bipartite elements is deleted, completely 248 

abolished reporter gene expression and hormone responsiveness (Figure S6). These data suggest 249 

that bipartite elements in XTH19 promoter are important for its proper expression level, pattern 250 

and hormone-sensitivity.  251 

 252 

Discussion 253 

During photomorphogenesis, seedling growth is shaped by a complex interacting networks of 254 

plant hormones to insure the seedling architecture and growth are synchronized to environmental 255 

conditions. In this study, we provide molecular mechanism for how two well-characterized 256 

regulators of photomorphogenesis, auxin and BRs, converge in a tunable bipartite transcriptional 257 

module to promote growth.  258 

 259 

We have shown that BES1 and BEH4, but not BZR1, play a major role in BR and auxin 260 

responsiveness in young seedlings. These results are consistent with a recent study that found 261 

that BEH4 acts redundantly with BES1 in controlling hypocotyl length robustness in dark-grown 262 

seedlings [33]. BES1 is also temperature sensitive, a trait regulated by auxin [37,38]. It is likely 263 

that other family members, such as BZR1, play growth-promoting roles at other stages or under 264 

other conditions. Consistent with this hypothesis, ChIP-seq analyses of BES1 and BZR1, 265 

performed in two-weeks old seedlings and leaves of adult plants, respectively, found a large 266 

overlap in target promoters [15,16]. BES1 and BZR1 show differential interaction with the 267 
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chaperone HSP90 [37] which may facilitate interactions with distinct cell type- or stage-specific 268 

partners.  269 

 270 

Cooperative binding and activity of BR-regulated transcription factors appear to be a recurrent 271 

motif in plant signaling. Our group previously found that the interaction between auxin and BR 272 

relies on two cis-elements, a bipartite element that contains AuxRE and HUD-type E-box 273 

elements bound by ARF5 and BES1, respectively [30]. Here, we show that specific mutations of 274 

E-boxes/AuxRE elements during evolution or disruption of bipartite target XTH19PRO had direct 275 

effect on gene expression level and patterns (Figure 5 and S6).  A similar mechanism of 276 

cooperative binding has been proposed for BZR1 and ARF6 [29].  BES1 also interacts with the 277 

bZIP transcription factors HAT1 and HAT3 to co-repress the BR biosynthetic gene DWF4 [39]. 278 

In addition, both BES1 and BZR1 interact with the bHLH transcription factor PIF4 and bind to 279 

E-box elements to co-activate target promoters [40].  280 

 281 

Target genes with bipartite promoters identified in this study are known regulators of plant 282 

growth. IAA6, also called SHORT HYPOCOTYL1, encodes a co-repressor of auxin signaling that 283 

is also involved in negative feedback [41]. PIF7 is as major regulator of shade responses that 284 

directly induces auxin biosynthesis genes such as members of the YUCCA family [42]. Dominant 285 

iaa6/shy1-1D and loss-of-function pif7 mutants exhibit short hypocotyl phenotypes [43,44] 286 

(Figure 3D). LNG1 encodes a protein localized to cortical microtubules (cMT) [45] that was 287 

initially identified as a dominant mutant with exaggerated elongation of petioles via 288 

unidirectional cell elongation [46,47].  289 

 290 
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The switch between different cMT orientations can be triggered by various endogenous and 291 

exogenous signals that are known to modulate growth, including light and various hormones 292 

[48–50]. Actin and cMT proper orientation and localization are required for both auxin and BR-293 

mediated cell elongation [51–53]. In addition, Sasidharan and colleagues demonstrated that 294 

genetic and pharmacological disruption of cMTs affects a shade-specific subset of XTH genes 295 

(XTH17 and XTH19) expression as a result of auxin re-distribution [52]. XTHs, similar to 296 

expansins, are cell wall modifiers that induce cell expansion. Overexpression of XTH18, XTH19 297 

and XTH20 (all part of the bipartite XTH clade) stimulated hypocotyl growth in early 298 

developmental stage of Arabidopsis seedlings [35], while similarly loss-of-function of XTH17 299 

results in inhibition of hypocotyl growth (Figure 3D). In addition, the functionally redundant 300 

LNG3 and LNG4 genes regulate turgor-driven polar cell elongation through activation of XTH17 301 

and XTH24 [54]. BES1/BZR1 and PIFs were also implicated in hypocotyl elongation during 302 

thermomorphogenesis via regulation of LNG1 and LNG2 [55–57]. We found that LNG1 and 303 

XTH19 are bipartite targets of the ARF5-BES1/BEH4 module rapidly induced by both auxin and 304 

BRs (Figures 3 and 4) further connecting reorientation of cMTs and cell wall loosening. 305 

 306 

We propose that the ARF5-BES1/BEH4 transcriptional hub rapidly and coordinately modulates 307 

a suite of growth control genes (Figure 6). This module can serve as an integration point for 308 

external signals such as shade and temperature to tune internal growth program and adjust it to a 309 

changing environment. For example, exposure to shade could rewire this growth network by 310 

increasing the expression/activity of bHLH transcription factors that interact with BES1, and, in 311 

this way, change the composition and thereby the targets of the auxin/BR transcriptional 312 

complex. Future studies are needed to fully understand how each potential transcriptional 313 
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complex impacts target gene selectivity and growth dynamics in a tissue- and developmental 314 

stage-specific manner. 315 
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Figure legends 341 

Figure 1. BES1 increases auxin sensitivity and DNA binding by ARF5. 342 

(A) Hypocotyl response of wild-type (WT) and bes1-D gain-of-function mutant seedlings to the 343 

synthetic auxin picloram (PIC). Open symbols are seedlings exposed to control treatments, and 344 

closed symbols are hormone treated samples. bes1-D was significantly taller than WT on D4-345 

under mock and treated conditions. bes1-D was significantly longer than WT on D4-8 Asterisks 346 

indicate p value< 0.001  (B) Binding by ARF5 on several promoters was enhanced in bes1-D 347 

mutants under mock condition. Bars represent the mean of four biological replicates. 348 

 349 

 350 

Figure 2. BEH4 acts redundantly with BES1 to regulate auxin and BR seedling responses. 351 

(A) 7-day-old seedling (upper panel) and 6-weeks rosette (lower panel) phenotype of wild-type, 352 

bin2-D, bes1-2 beh4, bes1-2 and beh4-1 mutants grown in short day conditions. Hypocotyl 353 

response of wild-type (WT) and bes1-2 beh4-1 mutant seedlings to (B) brassinolide (BL) and (C) 354 

picloram (PIC), grown as indicated in Figure1. Open symbols are seedlings exposed to control 355 

treatments, and closed symbols are hormone treated samples. bes1-2 beh4-1 was significantly 356 

shorter than WT on D4-8 (p value< 0.01) under control and brassinolide, and only on D7-8 (p 357 

value< 0.05) picloram conditions. WT and bes1 beh4-1 control samples are the same and 358 

repeated for reference in panel B and C. 359 

 360 

Figure 3. Expression of ARF5-BES1 targets is hormone sensitive and important for growth. 361 

(A) BES1 and BEH4 status affects the expression of ARF5 targets. RT-qPCR analysis of 362 

bipartite target gene expression in 7-day-old seedlings without any treatment. The fold change 363 

expression of XTH19, IAA6, PIF7 and LNG1 is shown in bes1-D and bes1-2 beh4-1 double 364 

mutants relative to WT. (B) Hormone responsiveness of target genes in WT under control 365 

(mock), 3h of IAA or BL treatment. (C) Hormone responsiveness of target genes is altered in 366 

bes1-D and bes1-2 beh4-1 double mutant. Means of three biological replicates (relative 367 

expression value normalized to housekeeping gene) is shown ± SE in A-C. (D) ARF5 target 368 

genes are important for growth. Hypocotyl response of 7-day-old WT, pif7-2, xth17 and lng1-3 369 

mutant seedlings under control (mock), brassinolide (BL) or picloram (PIC) treatments. *:p 370 
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value< 0.05; ** :p value< 0.01 in comparisons between mock and treated samples in (B) and WT 371 

vs. mutant phenotypes in (D).  372 

 373 

Figure 4. Other members of XTH19 gene clade with bipartite promoter structure exhibit 374 

similar hormone responsiveness in a BES1-dependent manner. 375 

(A) Promoter architecture of XTH genes. One kilobase upstream of the transcriptional start site is 376 

shown. qPCR analysis of several XTH gene expression in 7-day-old seedlings in response to 377 

control (mock), IAA or BL in (A) WT, (B) bes1-D and (C) bes1-2 beh4-1 double mutant. Means 378 

of three biological replicates (relative expression value normalized to housekeeping gene) is 379 

shown ± SE. ** refers to p value< 0.01, * to p value< 0.05.  380 

 381 

Figure 5. Promoter architecture predicts hormone sensitivity. 382 

Left panel: Promoter architecture of non-bipartite XTH genes. One kilobase upstream of the 383 

transcriptional start site is shown. Right panel: RT-qPCR analysis of selected non-bipartite XTH 384 

gene expression in 7-day-old wild-type in response to 3h of control (mock), 50µM IAA or 1µM 385 

BL (relative expression value normalized to housekeeping gene in WT). *: p value< 0.05 of 386 

significant difference between treated and mock samples. 387 

 388 

Figure 6. ARF5-BES1-BEH4 transcriptional hub acts as a molecular switch to integrate 389 

signals. 390 

Bipartite elements allow ARF5, BES1 and BEH4 to work together as a transcriptional module to 391 

connect expression of a suite of growth-promoting genes to specific environmental conditions.  392 

  393 
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Figure 1. BES1 increases auxin sensitivity.
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Figure 2. BEH4 acts redundantly to BES1 to regulate

auxin and BR responses.
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Figure 3 . Expression of ARF5-BES1 targets is hormone sensitive and important for

growth.
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Figure 4. Other members of XTH19 gene clade with bipartite promoter structure

exhibit similar hormone responsiveness in a BES1-dependent manner.
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Figure 5. Promoter architecture predicts hormone sensitivity.
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Figure 6. ARF5-BES1-BEH4 transcriptional hub acts as a molecular switch to

integrate signals.
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