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In current models of neurodegeneration, individual diseases are defined by the presence of one
or two pathogenic protein species. Yet, it is the rule rather than the exception that a patient
meets criteria for more than one disease. This fact often remains hidden until autopsy, when neu-
ropathological evaluation can assign disease labels based on gold-standard criteria. Ultimately, the
prevalence of concomitant diagnoses and the inability to infer an underlying neuropathological syn-
drome from clinical variables hinders the identification of patients who might be good candidates
for a particular intervention. Here, by applying graph-based clustering to post-mortem histopatho-
logical data from 1389 patients with degeneration in the central nervous system, we generate 4
non-overlapping, data-driven disease categories that simultaneously account for amyloid-β plaques,
tau neurofibrillary tangles, α-synuclein inclusions, neuritic plaques, TDP-43 inclusions, angiopathy,
neuron loss, and gliosis. The resulting disease clusters are transdiagnostic in the sense that each
cluster contains patients belonging to multiple different existing disease diagnoses, who colocalize
in clusters according to the pathogenic protein aggregates known to drive each disease. We show
that our disease clusters, defined solely by histopathology, separate patients in terms of cognitive
phenotypes, cerebrospinal fluid (CSF) protein levels, and genotype in a manner that is not triv-
ially explained by the representation of individual diseases within each cluster. Finally, we use
cross-validated multiple logistic regression to generate high accuracy predictions (AUC > 0.9) of
membership to both existing disease categories and transdiagnostic clusters based on CSF protein
levels and genotype, both accessible in vivo. Broadly, our approach parses phenotypic and geno-
typic heterogeneity in neurodegenerative disease, and represents a general framework for identifying
otherwise-fuzzy disease subtypes in other areas of medicine, such as epilepsy, vascular disease, and
cancer. In clinical neurology, the statistical models we generate may be useful for repurposing drugs
by comparing efficacy to probabilistic estimates of disease cluster membership, as well as for future
trials that could be targeted towards an algorithmically defined family of diseases.

INTRODUCTION

Age-related neurodegenerative diseases affect over 7
million Americans1, amounting to nearly $1 trillion
in healthcare costs annually. This public health is-
sue is projected to worsen1–3 as life expectancy in-
creases and the U.S. population continues to skew to-
wards older individuals. The neurodegenerative dis-
ease umbrella includes major clinicopathological enti-
ties such as Alzheimer’s disease4, Parkinson’s disease5,
and frontotemporal dementia6, in addition to less com-
mon disease subtypes such as progressive supranuclear
palsy6, corticobasal degeneration6, and multiple systems
atrophy7. Neurology is in dire need of translational re-
search that accounts for the heterogeneous presentations
of neurodegeneration to facilitate the development of tar-
geted treatments.

Decades of evidence support the notion that patho-
logical protein aggregation is a primary disease process

in neurodegeneration8–10. These protein aggregates may
spread along large white matter fibers over time, caus-
ing dysfunction in distant regions11,12, and their toxicity
is thought to be mediated in part by the inflammatory
system13,14. Different neurodegenerative syndromes are
characterized by aggregation of specific proteins; classi-
cally, Alzheimer’s disease involves both amyloid-β and
microtubule-associated protein tau (tau)8–10, Parkin-
son’s disease involves α-synuclein5, and frontotemporal
dementia can involve tau6,15 or TDP-4316.

Despite this apparent specificity, aggregation of
amyloid-β, tau, α-synuclein, and TDP-43 is found post-
mortem in virtually all brains with neurodegenerative
disease in addition to brains from cognitively healthy
individuals17–20. To complicate matters further, nu-
merous in vitro and animal studies have demonstrated
that these proteins interact to produce unique, con-
comitant dysfunction21–24. Moreover, there are multiple
mechanisms by which molecular pathology causes cellu-
lar dysfunction25 (i.e. angiopathy, gliosis, neuronal cell
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death, signaling dysfunction), and cellular dysfunction
may be a more specific marker of cognitive dysfunction
than plaque burden alone26,27.

The healthcare system is familiar with the problem
of highly complex biology underlying variable clinical
presentations. The ever-decreasing costs of computing
hardware and easily accessible programming libraries for
advanced computational approaches, such as machine
learning and network science, provide tools to parse het-
erogeneity by defining new data-driven disease subtypes.
These tools have been applied in multiple contexts in can-
cer biology28,29, epilepsy30,31, and psychiatry32–34. Ma-
chine learning techniques and network approaches have
been utilized in speech recordings35, neuroimaging36,37,
and clinical data38 of patients with neurodegenerative
diseases, but have thus far been underutilized in the field
of neuropathology, in which multiple forms of patholog-
ical protein aggregates with different morphologies can
be measured alongside cellular dysfunction. It is also
difficult to map specific imaging phenotypes or biomark-
ers to a particular disease due to inaccuracies in clinical
diagnoses39. Indeed, the gold standard for identifying
a particular neuropathological syndrome is evaluation of
proteinopathic burden on autopsy4,6,40.

Here, we use basic statistical approaches to analyze
copathology between amyloid-β-containing plaques, α-
synuclein inclusions, tau neurofibrillary tangles, TDP-43
inclusions, neuritic plaques, neuronal loss, angiopathy,
and gliosis across 18 brain regions in a sample of 1389
patients evaluated by expert neuropathologists on au-
topsy. Next, we used a graph-based clustering approach
that assigns each patient to a single, data-driven, trans-
diagnostic “disease cluster” while accounting for all avail-
able forms of pathology. We evaluated this approach
alongside the existing model of neurodegenerative dis-
ease, in which diseases are defined by 1-2 protein species
and patients simultaneously meet criteria for multiple di-
agnoses. Consistent with the traditional understanding
of neurodegenerative disease entities, the resulting clus-
ters grouped together diseases known to be driven by the
same pathogenic protein. We also found that these dis-
ease clusters, which are defined solely by histopathology,
differed in terms of cognitive phenotype, cerebrospinal
fluid (CSF) protein levels, and genotype at the APOE
and MAPT loci. Importantly, differences in CSF pro-
tein levels and genotype remained after controlling for
the presence of individual diseases, suggesting that our
pathology-defined clusters map to transdiagnostic pheno-
typic and genotypic boundaries. Finally, using multiple
logistic regression, we achieved highly accurate identifi-
cation (AUC > 0.9) of both existing disease labels and
data-driven disease clusters from a heterogeneous clin-
ical population based solely on data available in vivo.
Our findings challenge current definitions of neurode-
generative disease syndromes and provide clinicians with
greater explanatory power for parsing disease heterogene-
ity in the context of existing biomarkers.

RESULTS

Copathology-driven clusters group heterogeneous
diseases by underlying proteinopathies

Neurodegenerative diseases are often characterized by
archetypal distributions of a single protein aggregate42,
yet co-occurring pathology involving additional forms of
protein aggregation can be found in many cases17. The
vast degree of overlap in molecular and cellular pathol-
ogy across neurodegenerative diseases complicates the
process of assigning patients to meaningful disease cat-
egories. To address this problem, we sought to identify
new categories of neurodegenerative disease that explic-
itly account for copathology. Here, using a sample of
1389 autopsy cases with various neurodegenerative diag-
noses, we computed the Spearman correlation between
vectors of pathology scores for each pair of patients as
a measure of pairwise similarity across several features
of molecular and cellular pathology (Fig. 2a). These
“pathological features” included measurements of differ-
ent types of proteinopathic features (amyloid-β antibody-
staining plaques, thioflavin-staining neuritic plaques, tau
neurofibrillary tangles, α-synuclein inclusions, TDP-43
inclusions, ubiquitin) or types of histological features (an-
giopathy, gliosis, neuron loss) taken from specific brain
regions. When patients are ordered by their arbitrary
subject number, the resulting matrix of inter-subject
Spearman correlations has no obvious structure (Fig.
2a). When patients are ordered by primary histopatho-
logical diagnosis, block-like structure becomes evident,
indicating similar histopathological findings in patients
with the same primary diagnoses (Fig. 2b). However, we
also observe large, positive correlation values on the off-
diagonal blocks, indicating similarity in histopathological
findings that is unexplained by the primary diagnosis.

To parse the observed overlap between disease enti-
ties, we grouped patients according to their distribu-
tions of pathology using an unsupervised community
detection method for networks, known as modularity
maximization43 (Fig. 2c, see Methods and Support-
ing Information for details). Notably, this algorithm
is agnostic to histopathologic diagnosis, yet consistently
grouped histopathologic diagnoses together by their un-
derlying molecular drivers. This fact became evident
when we constructed a representative patient for each
cluster by calculating the average pathology scores across
all patients in that cluster. Specifically, we saw clus-
ters characterized by tau (Cluster 1), amyloid=β (Clus-
ter 2), TDP-43 (Cluster 3), and α-synuclein (Cluster 4)
(Fig. 2d). Indeed, the subjects belonging to Cluster 1
were composed of tauopathy-family frontotemporal lobar
dementia (FTLD) syndromes6, such as Pick’s Disease,
progressive supranuclear palsy, and corticobasal degen-
eration (Fig. 2e). Cluster 2 was composed primarily
of patients with a diagnosis of Alzheimer’s disease (Fig.
2e). Cluster 3 exhibited strong representation of TDP-
43 proteinopathies, namely FTLD-TDP and amyotrophic
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FIG. 1. Schematic of data processing. (a) The burden of amyloid-β plaques, α-synuclein plaques, tau neurofibrillary
tangles, TDP-43 inclusions, ubiquitin, neuritic plaques, angiopathy, gliosis, and neuron loss was evaluated on a 5-tier ordinal
scale (0, Rare, 1+, 2+, 3+) via cerebral autopsy in 1389 patients through the Integrated Neurodegenerative Disease Database41.
Evaluation of pathological burden was performed for all proteins for the listed regions, in addition to the substantia nigra and
locus coeruleus, which are hidden for ease of visualization. Dentate gyrus and CA1/subiculum were quantified separately but
shown together here as the hippocampus for ease of visualization. (b) We compute a 1389 × 1389 similarity matrix whose ijth

element contains a Spearman correlation between pathology score vectors for patient i and patient j. Next, we use network
community detection by modularity maximization to assign each patient to a data-driven disease cluster. (c) Using linked data
from cerebrospinal fluid (CSF) protein testing and genotyping, we train statistical models to predict membership to disease
clusters.

lateral sclerosis (ALS) (Fig. 2e). Finally, Cluster 4 con-
tained primarily synucleinopathies, housing patients with
Lewy Body Dementia (LBD), Parkinson’s Disease, and
Multiple Systems Atrophy (Fig. 2e). These findings sug-
gest that the solution of our clustering algorithm respects
the known hierarchy of neurodegenerative diseases, which
is driven by aggregation of specific pathogenic proteins.

After establishing the similarity between our clustering
solution and existing schema for categorizing neurode-
generative disease, we next explored how our clustering
solution might expand upon these schema. Notably, ev-
ery cluster contained patients with a primary histopatho-
logic diagnosis of Alzheimer’s disease (Fig. 2e). To un-
derstand how our algorithm separated patients within
Alzheimer’s disease, we visualized the distribution of sec-
ondary histopathologic diagnoses in each cluster in a sub-
set of patients with primary diagnoses of Alzheimer’s dis-
ease (Fig. 2f). This analysis revealed that Alzheimer’s
patients in the tauopathy and TDP-43 proteinopathy
clusters largely did not have any additional diagnoses,
while most individuals in the synucleinopathy cluster had
LBD as a secondary diagnosis (Fig. 2f). Interestingly,
Cluster 2 mostly contained individuals that did not have

any secondary diagnoses, but also contained a smaller
cohort of individuals that did have a secondary LBD di-
agnoses, suggesting that the algorithm identified two sub-
groups of patients with concomitant amyloid-β, tau, and
α-synuclein pathology.

In order to ascertain whether global levels of each pro-
tein or specific regional distributions of each protein were
primarily driving the algorithm’s separation of patients
into clusters, we plotted the mean pathology scores for
each cluster (Fig. 2d) on a spatial map of the brain
using neuroimaging tools44,45 (Fig. S3a). This visual-
ization suggests that differences between clusters are pri-
marily driven by global levels of 1 to 3 pathological fea-
tures, although Cluster 1 and Cluster 2 differed slightly
in their regional distributions of tau neurofibrillary tan-
gles despite both having relatively high tau scores glob-
ally. Cluster 1 exhibited greater tau burden uniformly
throughout the subcortex while Cluster 2 exhibited low
tau in the cerebellum and high tau in the amygdala (Fig.
S3a). Overall, these findings show that simultaneously
accounting for multiple forms of pathology produces dis-
ease labels that both expand and respect the boundaries
of existing diagnoses.
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FIG. 2. Unsupervised clustering of copathology groups disease entities into proteinopathy families. (a) We
computed a matrix of Spearman correlations between vectors of pathology scores for each pair of subjects across all available
pathological features to quantify the similarity in distributions of pathology. (b) The same matrix as in panel (a) where
rows and columns are ordered by primary histopathologic diagnosis. Black lines along the diagonal mark blocks of patients
with the same diagnosis. (c) The same matrix as in panel (a) where rows and columns are ordered by communities detected
through modularity maximization43. Black lines along the diagonal mark blocks of patients grouped into the same cluster. (d)
Representative vector of pathology scores for each cluster (cluster centroids) demonstrate distinct profiles of pathology that
map to underlying molecular drivers of disease, including tau, amyloid-β, TDP-43, and α-synuclein. (e) Composition of each
cluster in terms of primary histopathologic diagnoses. Each cluster is comprised of disease entities that are putatively caused
by the protein most highly represented in the cluster’s centroid. Counts placed above stacked bars indicate the number of
patients in each cluster. (f) In a subset of patients, all of which have a primary diagnosis of Alzheimer’s disease, we show the
composition of each cluster in terms of secondary histopathologic diagnosis. Counts placed above stacked bars indicate the
number of patients with Alzheimer’s disease in each cluster. CBD = corticobasal degeneration, FTLD = frontotemporal lobar
dementia with TDP-43 inclusions, LBD = dementia with Lewy bodies, PSP = progressive supranuclear palsy.

Disease clusters exhibit unique in vivo phenotypes

After generating new disease categories based solely
on post-mortem pathology, we sought to characterize pa-
tients within each cluster in terms of in vivo phenotypes.
First, we evaluated cognition in an n = 147 subsample of
patients with available data from the Montreal Cognitive
Assessment (MoCA)46. To compare MoCA scores be-
tween clusters, we defined Mi−j as the median difference
between scores from patients in cluster i and scores from
patients in cluster j. Because scores were not all nor-
mally distributed, we used the Wilcoxon rank-sum test
to evaluate the null hypothesis that Mi−j = 0 for each
MoCA subscore and all unique pairs ij where i 6= j. We
corrected for multiple comparisons across all 6 unique
pairwise comparisons for all 6 MoCA subscores by ad-
justing the false discovery rate (q < 0.05). For repeti-

tion, naming, orientation, and delayed recall subsections,
Cluster 2 had lower median scores than at least one other
cluster, with the largest differences found for orientation
testing (Fig. 3a, all pFDR < 0.05). These findings are
consistent with the fact that the MoCA was designed
to evaluate Alzheimer’s disease, which makes up a large
portion of Cluster 2. Interestingly, the visuospatial sub-
section produced better separation in performance across
multiple clusters. For this section, the Cluster 2 median
was lower than the Cluster 1 median (Fig. 3a, n = 60,
M2−1 = −2.00, pFDR < 0.01) and than the Cluster 3
median (Fig. 3a, n = 58, M2−3 = −2.30, pFDR < 0.05).
The Cluster 1 median and Cluster 3 median visuospatial
scores were higher than the Cluster 4 median scores (Fig.
3a; M1−4 = 1.21, n = 89, pFDR < 0.05; M3−4 = 1.50,
n = 87, pFDR < 0.05). These results suggest that testing
of visuospatial cognition and executive function domains
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are more sensitive to variation in neuropathological dis-
ease subtype than other MoCA sections, which are pri-
marily sensitive to Alzheimer’s disease.

In addition to cognitive biomarkers of disease, we were
also interested to know how our pathology-defined clus-
ters separated patients with respect to the levels of pro-
teins found in cerebrospinal fluid (CSF), a diagnostic
test primarily used to identify Alzheimer’s disease40,48–50

with mixed success in FTLD39. Specifically, we assessed
CSF amyloid-β1−42, phosphorylated tau, and total tau
in an n = 268 subsample of patients with available data.
Again, we used the Wilcoxon rank-sum test to evaluate
the null hypothesis that the median sample difference
between every unique pairwise combination of clusters is
equal to 0 for each CSF protein, correcting for multiple
comparisons over 6 unique tests for 3 CSF proteins by ad-
justing the false discovery rate (q < 0.05). We found sta-
tistically significant differences in median CSF amyloid-
β1−42 between every pair of clusters except for Cluster 1
relative to Cluster 3 (Fig. 3b, all pFDR < 0.05). Phospho-
rylated tau levels separated Cluster 2 from every other
cluster (Fig. 3b; M2−1 = 19.00, n = 187, pFDR < 10−6;
M2−3 = 19.10, n = 189, pFDR < 10−6; M2−4 = 13.85,
n = 192, pFDR < 0.001), as well as Cluster 4 from Clus-
ters 1 and 3 (Fig. 3b; M4−1 = 4.34, n = 79, pFDR < 0.05;
M4−1 = 5.00, n = 81, pFDR < 0.05). Total tau lev-
els alone separated Cluster 2 from every other cluster
(Fig. 3b; M2−1 = 52.00, n = 187, pFDR < 10−6;
M2−3 = 36.29, n = 189, pFDR < 0.001; M2−4 = 48.00,
n = 192, pFDR < 10−6). These results are again con-
sistent with the fact that the analysis of these particu-
lar CSF proteins was developed with Alzheimer’s disease
pathophysiology in mind. It is particularly notable that
amyloid-β1−42 and phosphorylated tau produced separa-
tion between nearly all 4 disease clusters, suggesting that
certain ranges of CSF amyloid levels may be characteris-
tic of particular underlying disease processes.

Finally, we hypothesized that by considering multiple
forms of pathology in defining new disease categories,
the patients within the resulting categories would exhibit
phenotypic differences that transcend boundaries of ex-
isting disease labels. To test this hypothesis, we repeated
our analysis of CSF protein levels while either excluding
Alzheimer’s disease from Cluster 2 (Fig. S4a) or iso-
lating patients with Alzheimer’s disease (Fig. S4b). No-
tably, this approach greatly reduced our statistical power,
but we performed the analysis nevertheless to probe the
phenotypic boundaries of our disease clusters. We de-
fined Alzheimer’s disease as both Braak and CERAD
scores > 1, requiring evidence of both neurofibrillary
tangle and neuritic plaque burden, respectively. This
diagnostic criterion is hereafter referred to as “Braak-
CERAD Alzheimer’s disease.” In an n = 126 subsample
with no patients in Cluster 2 meeting the Braak-CERAD
Alzheimer’s disease definition, we found that Cluster 2
still demonstrated lower median CSF amyloid-β1−42 than
Cluster 1 (Fig. S4a; M2−1 = −78.08, n = 45, pFDR <
0.01) and than Cluster 3 (Fig. S4a, M2−3 = −71.82,

n = 47, pFDR < 0.05). Additionally, Cluster 2 still had
a higher median CSF phosphorylated tau than Cluster 1
(Fig. S4a; M2−1 = 7.62, n = 45, pFDR < 0.05). In an
n = 159 subsample of patients exclusively meeting the
Braak-CERAD Alzheimer’s disease definition, we did not
find any statistically significant differences between Clus-
ter 2 and Cluster 4 (the only two clusters with > 2 pa-
tients with Braak-CERAD Alzheimer’s disease and CSF
protein data available). However, compared to Clus-
ter 4, CSF amyloid-β1−42 was lower in Cluster 2 (Fig.
S4b, M2−4 = −18.47, n = 159, pFDR > 0.05) and to-
tal (Fig. S4b, M2−4 = 29.00, n = 159, pFDR > 0.05)
and phosphorylated tau (Fig. S4b, M2−4 = 10.46,
n = 159, pFDR > 0.05) were higher in Cluster 2, con-
sistent with the pattern observed in Fig. 3b and Fig.
S4a. In sum, these disease clusters may represent a new
subtype of neurodegeneration, whose phenotypic bound-
aries cross Braak-CERAD Alzheimer’s disease. Overall,
our findings highlight the transdiagnostic nature of the
pathology-based disease clusters.

Genotypic signatures of disease clusters

Genetic factors play an important role in determin-
ing risk for development of neurodegenerative disease.
The ε4 allele at the apolipoprotein E (APOE ) gene
locus is a strong risk factor for Alzheimer’s disease,
while the ε2 allele is thought to be protective51. In-
terestingly, the H1 haplotype at the gene locus encod-
ing tau (MAPT ) has been associated with progressive
supranuclear palsy (PSP)52, Parkinson’s disease53, and
Alzheimer’s disease54, three diseases with putatively dis-
tinct etiologies. We sought to understand how these
genetic risk factors might be represented within our
pathology-based disease clusters. Using a subsample of
1306 patients with genotyping at the APOE and MAPT
loci, we measured the representation of alleles within each
cluster (Fig. 4a-b). Next, using multiple logistic regres-
sion, we measured the odds of cluster membership given
the presence of risk alleles.

First, we used this approach to investigate how APOE
alleles were distributed across our disease clusters. We
found that subjects carrying an APOE -ε4 allele had
higher odds of belonging to Cluster 2 than to any other
cluster (Fig. 4f, all pFDR < 10−6; Cluster 1, β = 2.01,
df = 669; Cluster 3, β = 1.38, df = 815; Cluster 4:
β = 0.73, df = 803). Also, subjects carrying an APOE -
ε2 allele had lower odds of belonging to Cluster 2 than
to Cluster 1 or Cluster 3 (Fig. 4e; Cluster 1, β = −1.11,
df = 669, pFDR < 0.001; Cluster 3, β = −1.36, df = 815,
pFDR < 10−6). Importantly, when we carried out the
same analysis in an n = 891 subsample with no Braak-
CERAD Alzheimer’s disease patients in Cluster 2, the
remaining patients in Cluster 2 were still more likely to
carry an ε4 allele relative to Cluster 1 and Cluster 3 (Fig.
S5e; Cluster 1, β = 1.69, df = 248, pFDR < 10−6; Clus-
ter 3, β = 1.08, df = 394, pFDR < 0.001, respectively),
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FIG. 3. Cognitive deficits and CSF protein levels in disease clusters. (a) Pairwise intercluster comparisons of median
Montreal Cognitive Assessment (MoCA) subscores46 using the Wilcoxon rank-sum test, FDR-corrected for multiple comparisons
(q < 0.05) over all pairwise tests for 6 subscores. (b) Pairwise intercluster comparisons of median CSF protein levels for amyloid-
β1−42, phosphorylated tau, and total tau using the Wilcoxon rank-sum test, FDR-corrected for multiple comparisons (q < 0.05)
over all pairwise tests for all 3 proteins. These results were robust to the removal of the two subjects with total tau > 1000
pg/ml in Cluster 3 (Fig. S9). Plots were constructed using code from R package ggpubr47. ns, pFDR > 0.05. *, pFDR < 0.05.
**, pFDR < 0.01. ***, pFDR < 0.001. ****, pFDR < 10−6. CSF, cerebrospinal fluid.

supporting the transdiagnostic nature of our disease clus-
ters. These results suggest that APOE -ε4 may not carry
risk for Alzheimer’s disease per se, but rather for a syn-
drome with alternative boundaries with respect to molec-
ular and cellular pathology.

Next, we used the same regression-based approach
to examine how MAPT alleles were distributed across
our disease clusters. We found that the presence of
two H2 alleles portended lower odds of Cluster 1 mem-
bership relative to all other clusters (Fig. 4g; Clus-
ter 2, β = −2.14, df = 670, pFDR < 10−6; Cluster
3, β = −1.67, df = 504, pFDR < 0.001; Cluster 4,
β = −1.33, df = 492, pFDR < 0.001). Similarly, the odds
of Cluster 1 membership were higher given the presence
of an H1 allele relative to all other clusters (Fig. 4c;
Cluster 2, β = 0.67, df = 670, pFDR < 0.001; Clus-
ter 3, β = 0.64, df = 504, pFDR < 0.01; Cluster 4,
β = 0.45, df = 492, pFDR < 0.05). PSP is known to
be associated with the MAPT H1 haplotype and was
primarily found in Cluster 1. Therefore, we repeated the
above analysis while excluding PSP patients from Clus-
ter 1 to test whether the associations between Cluster
1 membership and MAPT haplotypes could be simply

explained by the sequestration of PSP patients in Clus-
ter 1. When excluding PSP from Cluster 1, the rela-
tionship between the odds of Cluster 1 membership and
the presence of an H2 allele was still present (Fig. S6a;
Cluster 2, β = −1.96, df = 597, pFDR < 10−6; Clus-
ter 3, β = −1.53, df = 431, pFDR < 0.001; Cluster 4,
β = −1.23, df = 419, pFDR < 0.01), although the rela-
tionship between Cluster 1 odds and H1 allele presence
was weakened (Fig. S6a, all pFDR > 0.05; Cluster 2,
β = 0.27, df = 597; Cluster 3, β = 0.25, df = 431;
Cluster 4, β = 0.09, df = 419). Overall, these findings
suggest that our pathology-based clusters automatically
produced categories whose genotypic compositions cross
boundaries drawn by existing disease labels.

Multivariate classification of disease labels from in
vivo biomarkers

Clinicians currently utilize CSF protein analy-
sis and genotyping in diagnosing neurodegenerative
disease6,40,48. However, heterogeneity within existing
disease categories hinders the use of these tests to ac-
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FIG. 4. Prevalence of Alzheimer’s disease risk alleles differs across disease clusters. (a-b) Within each cluster, we
calculated the proportion of each allele for APOE (panel a) and MAPT (panel b). (c,g) Matrix of logistic regression β-weights,
whose ij-th element reflects the increase in log odds ratio for membership to cluster i relative to cluster j given the presence
of MAPT -H2 (panel g) or MAPT -H1 (panel c). (d-f) Matrix of logistic regression β-weights, whose ij-th element reflects the
increase in log odds ratio for membership to cluster i relative to cluster j given the presence of APOE -ε2 (panel e), APOE -ε3
(panel d), or APOE -ε4 (panel f ). ns, pFDR > 0.05. *, pFDR < 0.05. **, pFDR < 0.01. ***, pFDR < 0.001. ****, pFDR < 10−6.

curately infer a specific underlying histopathologic syn-
drome afflicting a patient with putative dementia. We
were interested in quantifying the utility of in vivo
biomarkers in predicting histopathologic disease labels
from our clustering solution compared with labels from
existing disease definitions. In 268 patients with available
data, we trained a multiple logistic regression model to
identify a single class of disease label out of the remain-
ing heterogeneous group of patients using CSF amyloid-
β1−42, phosphorylated tau, and total tau protein levels.
In this way, we convert a multi-class prediction problem
to a one-vs.-all scenario to increase the available sam-
ple size for model training. Additionally, compared to
a pairwise comparison between two disease entities49,50,
a one-vs.-all prediction is both more difficult and con-
tributes more information if performed accurately, as it
requires no clinical priors or narrowing of problem scope
to a particular syndrome.

Interestingly, we found that the out-of-sample area
under the receiver-operater characteristic curve (AUC)
was very similar with the inclusion of genotype data
(Fig. S7), suggesting that CSF protein levels and
APOE/MAPT genotype explain common variance in

disease status. Notably, however, disease labels can still
be predicted from genotype alone with above-chance ac-
curacy (Fig. S10). We achieved similar accuracy using
random forest55, an algorithm capable of learning non-
linear relationships between classes and features (Fig.
S8). Here, we present the out-of-sample performance of
a multiple logistic regression model using only CSF pro-
tein levels as features. The model was able to identify a
neuropathologic diagnosis of Alzheimer’s disease (defined
as both Braak and CERAD scores > 1) with mean AUC
= 0.94 (Fig. 5a, c). Performance in identifying neu-
ropathologic diagnoses of Lewy body dementia (LBD)
or FTLD-TDP was weaker yet still above chance, with
mean AUC of 0.70 and 0.75, respectively (Fig. 5a, c). We
did not attempt to predict diseases with fewer than 25
patients with CSF protein data. Collectively, these find-
ings suggest that CSF protein can be used to distinguish
patients with a particular traditional neuropathologic di-
agnosis from a group of patients with a heterogeneous
mix of neurodegenerative diseases.

After demonstrating that we could predict existing dis-
ease labels with high accuracy from CSF protein levels,
we next asked whether the disease cluster we identified
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FIG. 5. Identifying disease labels from initial testing of CSF protein. (a, c) Characteristics of prediction of existing
diagnoses (panel a) or disease clusters (panel c) in held-out testing data using multiple logistic regression to predict disease
labels from CSF protein levels. Sub-panels i and ii show the test-set sensitivity and specificity, respectively, using a threshold
value of 0.5. Sub-panel iii shows the area under the curve (AUC) on the test-set, reflecting performance over a range of threshold
values. Bar length represents mean performance, and error bars indicate 95% confidence intervals over 100 repetitions of k-fold
cross-validation at k = 10. Sub-panel iv shows representative receiver-operator characteristic curves for test-set predictions of
existing diagnoses (panel a) or disease clusters (panel c). (b, d) Mean standardized multiple logistic regression β across 100
repetitions of k-fold cross-validation at k = 10 in the prediction task for existing disease labels (panel e) or disease clusters
(panel f). The β weights can be interpreted as the increase in log-odds ratio for a one standard deviation increase in the value
of the predictor. TPR, true positive rate. FPR, false positive rate. Total Tau, total CSF tau protein. Phosph. Tau, total CSF
phosphorylated tau. Amyloid-β1−42, total CSF amyloid-β1−42.

could improve our ability to infer histopathologic syn-
dromes from clinical data. With the same group of pa-
tients, we carried out the same identification procedure
using disease cluster membership as class labels instead
of existing disease definitions. We achieved mean AUCs
of 0.68, 0.83, 0.91, and 0.86 for each cluster, respectively
(Fig. 5c-d). Using the data-driven disease clusters, we
identified Cluster 3 with higher AUC by 0.08 than FTLD-
TDP as defined under the traditional system of disease
labels. We compare Cluster 3 to FTLD-TDP because
79.1% of FTLD-TDP patients were grouped into Cluster
3. Additionally, we could identify Cluster 1 member-
ship (tauopathies, Fig. 2e) with AUC = 0.86, whereas
no individual disease with meaningful representation in
Cluster 1 had enough available patients for classification.
These findings suggest that the disease cluster labels were
resolved by CSF protein levels at least as well as tradi-
tional definitions of neurodegenerative disease. The dis-
ease cluster labels also allow for prediction of tauopathy
family membership by automatically grouping together
related diseases.

Next, we aimed to explore how the transdiagnostic na-
ture of our clusters interacted with our ability to classify

patients using CSF protein. Notably, the AUC for Clus-
ter 2 was similar to that for Alzheimer’s disease, consis-
tent with Cluster 2’s primary composition of Alzheimer’s
disease patients (Fig. 2e). However, Cluster 2 also in-
cludes a heterogeneous mix of patients without a di-
agnosis of Braak-CERAD Alzheimer’s disease. There-
fore, despite displaying slightly lower (0.03) mean AUC
than the identification of Braak-CERAD Alzheimer’s dis-
ease, Cluster 2 identification (AUC = 0.91) is impressive
in light of Cluster 2’s heterogeneous composition. Fur-
thermore, when we exclude patients with Braak-CERAD
Alzheimer’s disease from Cluster 2, we could still predict
the heterogeneous subsample of Cluster 2 with accuracy
above chance (Fig. S11, AUC = 0.74) despite a greatly
reduced sample size. Overall, these findings indicate that
we can infer membership to 4 neurodegenerative disease
clusters, each characterized by a particular pathogenic
protein process, with high accuracy solely from CSF pro-
tein.

Finally, in order to understand how each model classi-
fied certain patients into disease clusters compared with
existing diagnoses, we examined the feature weights from
our multiple logistic regression model. Feature weights
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for Cluster 1 and Cluster 2 were similar to those for
Alzheimer’s disease and FTLD, respectively. This find-
ing suggests that the ability to accurately identify pa-
tients falling into alternative histopathologic boundaries
relies on slight readjustments to the weight on each CSF
feature, without drastically altering the ratios between
feature weights.

DISCUSSION

Neurodegenerative diseases are typically defined by
the increased burden of one or two pathogenic protein
species. However, it is the rule rather than the exception
that individual patients meet criteria for multiple dis-
eases and exhibit several pathogenic protein aggregates.
In the present work, we analyzed a large post-mortem
sample of patients with a diverse representation of neu-
rodegenerative diseases. Using a disease-blind approach,
we assigned each patient to a new disease cluster by si-
multaneously accounting for the levels of 6 key aggre-
gated protein species and 3 histological features across 18
regions. The resulting clusters, defined only from pathol-
ogy data, differed in terms of cognition, genetics, and
CSF protein levels. Finally, we trained statistical mod-
els that were able to classify cluster membership with
above-chance accuracy from in vivo measurements. This
work represents an advance in our understanding of the
clinical and neuropathologic heterogeneity among neu-
rodegenerative diseases. Furthermore, our methods and
approach provide a general framework that could be ap-
plied to various clinical populations outside of patients
with neurodegeneration.

Accounting for copathology produces
transdiagnostic categories of neurodegenerative

disease

Existing definitions of neurodegenerative disease typ-
ically require the presence of one or two pathological
proteins and reflect decades of clinical and scientific
consensus4,6,7. Faced with the reality of co-occurring
pathology, this system will assign multiple disease labels
to a single patient, making it difficult to identify clinical
phenotypes and genetic variants associated with neurode-
generative processes. In the present work, we define 4
non-overlapping disease categories using an unsupervised
approach that simultaneously considers 162 pathological
features (Fig. 2). These categories appear to be primar-
ily driven by global levels of 4 proteins (Fig. S3; Cluster
1: tau, Cluster 2: amyloid-β, Cluster 3: TDP-43, and
Cluster 4: α-synuclein), rather than their regional distri-
butions.

We found that our clustering approach groups together
existing disease entities caused by each pathological pro-
tein, while simultaneously parsing heterogeneity both
within and between diseases. Patients with Alzheimer’s

disease were found in all 4 clusters, though primarily in
Cluster 2. However, nearly all patients with Alzheimer’s
disease in Cluster 4 had a secondary diagnosis of LBD,
while most Alzheimer’s patients in Cluster 1 and 3 had
no additional diagnoses. Additionally, a small cohort of
Alzheimer’s disease patients within Cluster 2 also carried
a secondary diagnosis of LBD, though most harbored no
additional diagnoses. The bifurcation of patients with
concomitant amyloid-β, tau, and α-synuclein pathology
into Cluster 2 and Cluster 4 could reflect the existence
of multiple strains of α-synuclein56, which may differen-
tially interact with tau57.

Despite being defined solely from pathology data, our
clusters separated patients phenotypically and genotypi-
cally. We found that mean CSF amyloid-β and APOE -ε4
allele representation differed between almost every pair
of clusters (Fig. 2 and 3). These differences are in-
herently transdiagnostic due to the cluster composition,
but we confirmed that differences involving Cluster 2
were not trivially driven by the large Alzheimer’s dis-
ease component. Indeed, Cluster 2 members who did not
meet criteria for Alzheimer’s disease also exhibited in-
creased APOE -ε4 prevalence (Fig. S5) and reduced CSF
amyloid-β relative to other clusters (Fig. S4). This sepa-
ration of Cluster 2 is likely in part achieved by the relative
exclusion of Alzheimer’s disease patients from other clus-
ters, as well as by the inclusion of patients in Cluster 2
who did not meet criteria for Alzheimer’s disease but may
bear pathological similarity with respect to cellular fea-
tures or sub-diagnostic levels of amyloid-β and tau. Over-
all, these phenotypic and genotypic differences support
a clinical and biological relevance for our copathology-
driven disease clusters. Our results suggest that low CSF
amyloid-β and the APOE -ε4 allele, markers tradition-
ally associated with Alzheimer’s disease, might in real-
ity reflect a pathological syndrome with slightly different
histopathological boundaries than Alzheimer’s disease.

Statistical models expand the utility of CSF protein
analysis

An ideal route towards targeted therapies generally
involves the identification of a sufficiently homogeneous
clinical population whose biological characteristics moti-
vate the use of a targeted treatment. In the case of neu-
rodegenerative disease, phenotypic and genotypic hetero-
geneity, along with discordance between clinical diag-
noses and gold-standard neuropathological diagnoses39,
limit a clinician’s ability to map biomarkers to spe-
cific neurodegenerative processes. To address this prob-
lem, we trained generalized linear models to predict
histopathologic disease class membership based on CSF
protein levels and genotype at the APOE and MAPT
loci. Notably, for all predictive modeling, we included
all available patients regardless of diagnosis, used the
chronologically earliest available CSF sample, and re-
ported model performance on a distribution of held-out
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samples in order to mirror a realistic clinical scenario. We
were able to identify Braak-CERAD Alzheimer’s disease
(AUC = 0.94) and Cluster 2 membership (AUC = 0.91)
from a heterogeneous clinical population of patients with
neurodegenerative disease using CSF protein levels (Fig.
5a,c). The high accuracy prediction of Cluster 2 mem-
bership is impressive in light of its data-driven construc-
tion and heterogeneous composition of overlapping tra-
ditional diagnoses. Predicting this alternative category
only requires slight readjustments to the weights on each
CSF feature, without perturbing the relative directional-
ity of the weights (Fig. 5e-f). Additionally, while indi-
vidual tauopathies were too sparsely represented to train
predictive models that could be robustly tested out-of-
sample, the disease cluster system allowed us to accu-
rately identify membership to a family of tauopathies
(AUC = 0.86). Finally, we demonstrated above chance
accuracy in disease class identification based solely on
genotype at two loci.

All in all, these findings suggest an untapped utility in
genotyping and CSF protein analysis for identifying sub-
groups of patients within flexibly defined histopathologic
boundaries, using simple statistical models to generate
predictions. Such models may be valuable for designing
and repurposing pharmaceuticals, immunotherapies, or
combination therapies58 by allowing their efficacy to be
compared against probabilistic estimates of membership
to a particular histopathologic disease class. Moreover,
predictions based on genotype would be stable through-
out an individual’s life span, allowing for prospective
evaluation of treatments designed to intervene early in
the disease course.

Limitations

We acknowledge a number of limitations in the present
study. First, the semiquantitative assessment of the
degree of each pathological feature precludes the use
of statistical methods relying on interval or continu-
ous data and is subject to issues of inter-rater reli-
ability. More granularity in the levels of pathology
might be obtained through quantitative, automated im-
age analysis59,60. Continuous pathology data would lend
itself well to principal component analysis, which might
identify dimensions of covarying neuropathological fea-
tures. The loadings on these dimensions could then be
correlated with phenotype in a continuous fashion, rather
than generating a hard partition and performing compar-
isons of means, as in the present work. However, such
approaches for quantitative mapping are still being vali-
dated and the large sample size of manually labeled data
vastly outweighs the benefit of using smaller amounts of
automatically labeled data. The fact that we are able
to generate meaningful disease categories consistent with
prior work argues that the use of ordinal data is not a
drastic limitation, and may inspire others to use similar
approaches on datasets that have remained incompletely

explored due to their discrete nature.

Another caveat is that the cluster definitions depend
on the sample composition. However, application of the
same approach to samples with different compositions
might yield independently interesting results by relative
subtyping. Nevertheless, a new observation (from any
new patient) could be assigned to one of the clusters
analyzed in this paper by simply taking the maximum
Spearman correlation with each cluster centroid.

Finally, the availability of phenotypic measurements
(MoCA and CSF protein analysis) are biased by clinical
decision making. One can imagine that lumbar punc-
ture followed by CSF protein analysis and detailed cog-
nitive phenotyping were not routinely performed on pa-
tients primarily exhibiting motor symptoms. However,
our sample size was large enough that we were able to
validate our model in a distribution of held-out samples,
unlike prior applications of CSF-based predictive mod-
els which report training set accuracy in smaller samples
with well-circumscribed disease boundaries49,50. This
validation procedure increases confidence in the external
validity of our model. Nevertheless, the true model per-
formance “in the wild” cannot be accurately estimated
without external validation in an independent sample.

Future directions

The utility of the statistical models in the present work
are limited by sample size, but also in the availability
of relevant features. Incorporation of quantitative data
on clinical symptomatology, along with more complete
genomic data, would likely also enhance the predictive
value of these models. Several of the disorders studied
in the present work can be identified clinically, and are
associated with multiple genetic variants6,61,62. Clini-
cal symptomatology and genotype can be obtained non-
invasively, and might be applied more easily as well as
explain additional variance in disease. In particular, a
model based purely on genotype could theoretically pro-
vide an estimate of disease risk at birth, which would
allow for the development of preventative therapies tar-
geting early, preclinical disease.

Furthermore, the general approach we utilized in the
present work is neither specific nor limited to neurode-
generative disease. Unsupervised learning can be applied
to similarity matrices based upon any set of features
pertinent to a disease with overlapping pathophysiologic
modes, as in multifactorial disorders such as epilepsy, vas-
cular disease, or cancer. Crucial to this endeavor is the
compilation of large multimodal and multisite datasets
that capture a broad range of diagnoses, phenotypes, and
genotypes. In addition to the potential clinical utility
of biomarker-based forecasting of histopathological syn-
dromes, the present work may serve as a model for the use
of unsupervised methods to identify data-driven, trans-
diagnostic disease subtypes in any field.
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METHODS

Sample construction

All data were obtained through the Integrated Neu-
rodegenerative Disease Database (INDD)41,63, hosted by
the Center for Neurodegenerative Disease Research at the
Hospital of the University of Pennsylvania. A team of
expert neuropathologists assessed the extent of 6 molec-
ular pathological features (amyloid-β, neuritic plaques,
tau, α-synuclein, TDP-43, and ubiquitin) and 3 cellular
pathological features (angiopathy, neuron loss, and glio-
sis) for 18 brain regions during autopsy for 1757 patients
as previously described41,63. Semiquantitative pathology
scores (0, Rare, 1+, 2+, 3+) were converted to integers
from 1 to 5 and treated as ordinal data except when com-
puting mean regional pathology scores to visualize clus-
ter centroids. Individuals with missing data for > 75%
of pathological features were excluded from further anal-
ysis, and all available pathological features were included
in all analysis (Fig. S1a-b, see Supplementary Informa-
tion for discussion).

Expert neuropathologists assigned up to 4 histopatho-
logic diagnoses to each patient according to well-accepted
disease definitions codified in the neuropathology liter-
ature; namely, Alzheimer’s disease4, amyotrophic lat-
eral sclerosis (ALS)6, argyrophilic grain disease6, cere-
bral amyloid angiopathy (CAA)4, cerebrovascular disease
(CVD)4, frontotemporal lobar dementia with TDP-43
inclusions (FTLD-TDP)6, frontotemporal lobar demen-
tia without TDP-43 inclusions (FTLD-Other)6, demen-
tia with Lewy bodies (LBD)64, Parkinson’s disease with
and without dementia64, multiple system atrophy7, pri-
mary age-related tauopathy (PART)65, Pick’s disease6,
and progressive supranuclear palsy (PSP)6. We com-
bined LBD and Parkinson’s disease with dementia for
simplicity. All patients were also given a clinical diagno-
sis by their physician prior to autopsy.

Unsupervised clustering of patients by molecular
pathology

Traditional definitions of neurodegenerative diseases
typically only account for 1-2 species of protein aggre-
gate. Here, we sought to group patients into clusters us-
ing all available pathological features in an unsupervised
manner66–68. Thus, we constructed a matrix W whose
elements Wij equal the Spearman correlation between
vectors of all pairwise complete observations of 152 re-
gional pathology scores for patient i and patient j. Before
computing the Spearman correlation, we demeaned each
feature to control for differences in the relative meaning
of each score (i.e., a 1+ for amygdala tau may not cor-
respond to the same relative burden as a 1+ for angular
gyrus neuritic plaques). Next, we performed 1000 iter-
ations of modularity maximization69 on the matrix W,
using a definition of modularity designed for networks

with both positive and negative weights70,71. This defi-
nition of modularity considers the positive and negative
weights in Wij separately, such that the absolute values
of the positive and negative weights in Wij are denoted
as W+

ij and W−
ij , respectively. The total weight of the

network, v± =
∑

ij W
±
ij , is the sum of all positive or

negative weights. The strength of node i, s±i =
∑

j W
±
ij ,

is the sum of all positive or negative weights at node i.
Then, modularity is defined as

Q∗ =
1

v+

∑
ij

(W+
ij − γe

+
ij)δMiMj

−

1

v+ + v−

∑
ij

(W−
ij − γe

−
ij)δMiMj

,

(1)

where the expected positive or negative connection

weights within modules are e±ij =
s±i s±j
v± , δMiMj = 1 when

i and j are in the same module and 0 otherwise, and
γ is a resolution parameter72. This approach71 uses a
Louvain-like73 locally greedy algorithm to maximize Q∗

through the selection of a partition M . In this instan-
tiation of modularity maximization, larger values of γ
result in the identification of many small clusters, while
smaller values of γ result in the identification of a few
larger clusters. We selected the γ value that gave us the
highest partition stability, reflected by the mean z-scored
Rand index74 between all partitions generated at a par-
ticular value of γ75. Partition stability peaked between
γ values of 1.5 and 1.8. Accordingly, we present results
for γ = 1.7 in the main text (see Supporting Information
and Fig. S2 for further discussion).

Group comparisons of phenotypic measurements

We used non-parametric testing to compare pheno-
types between disease clusters. Using pairwise Wilcoxon
rank-sum tests, we compared mean scores in 6 subdo-
mains of the Montreal Cognitive Assessment46 (MoCA)
between all unique combinations of clusters. All p-values
were FDR-corrected (q < 0.05) over all comparisons for
all 6 subdomains. The abstraction score was excluded
due to missing data. We also used pairwise Wilcoxon
rank-sum tests to compare CSF protein levels between
all unique combinations of clusters. For patients that un-
derwent multiple CSF studies, we only considered their
earliest measurement in order to control for disease pro-
gression as much as possible. All p-values were FDR-
corrected (q < 0.05) over all comparisons for the 3 CSF
proteins that we assessed.
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Logistic regression of cluster membership on allele
counts

Assuming a multiplicative genomics model76, we used
multiple logistic regression to perform pairwise compar-
isons of allele distributions between disease cluster mem-
bership as binary phenotypes77. First, for each pair of
clusters i = 1, .., k and j = 1, .., k, we constructed a
Nij×1 binary outcome vector Yij , where Nij is the num-
ber of patients belonging to cluster i or cluster j. The
elements of Yij indicate whether a patient belongs to clus-
ter i or cluster j. A value of 1 indicates membership to
cluster i and a value of 0 indicates membership to cluster
j. Next, we construct a corresponding Nij × ng allele
table A, where ng is the number of non-wild type alleles
for a given gene g. The table A consists of ng column
vectors, Aa, where a = 1, .., ng, and the elements of each
column vector Aa indicate how many copies of allele a of
gene g are present in each of the Nij patients belonging to
cluster i or cluster j. Next, we assumed additive genetic
effects and used logistic regression77 to fit the following
model to predict Yij from an allele table Ag for each gene
g:

ln

(
p

1− p

)
= β0 +

ng∑
a=1

βaAa + ε , (2)

where p is the probability that a patient belongs to clus-
ter i, β0 and βa are parameters obtained by fitting the
model, ln is the natural logarithmic function, and ε is
an error term. We fit this model for all unique pairwise
comparisons of clusters, such that ij correspond to kC2.
In this model, β0 is interpreted as the log odds that a
patient belongs to cluster i given that the patient has
two wild-type alleles. The parameter βa is the change
in log odds that a patient belongs to cluster i given the
presence of 1 copy of allele a. We adjusted p-values over
all comparisons for all genes and all alleles to control the
false discovery rate at q < 0.05.

Supervised learning of disease labels

In order to demonstrate a practical clinical use for mul-
tivariate models of biomarkers, we used data available
in vivo to predict whether a patient met criteria for a
specific neurodegenerative disease or was classified into
a particular data-driven disease cluster. We converted
this multi-class prediction scenario into a one-versus-all
binary prediction scenario, in which we attempted to pre-
dict a N × 1 binary disease label vector Di, whose ele-
ments equal 1 for patients positive for the ith disease label
and equal 0 for patients negative for the ith disease label.
Here, the disease labels were Alzheimer’s disease, LBD,
FTLD-TDP, and the four clusters, indexed by i = 1, .., 7,
and N is the number of patients with available data, ei-
ther CSF protein levels, allele counts, or both. We used

multiple logistic regression to predict ln
(

p
1−p

)
, where p is

the probability that a patient is positive for the ith dis-
ease label, from a feature matrix X, whose dimensions
are N × q, where N is the number of patients with avail-
able data and q is the number of features. Depending on
the analysis, X contained allele counts for non-wild-type
alleles of 2 genes (N = 1312, q = 3), levels of 3 CSF
proteins at initial evaluation (N = 268, q = 3), or both
allele count and CSF protein levels (N = 262, q = 6).

When evaluating the performance of a model in pre-
dicting the ith disease label, we wanted to ensure that
our results were robust across multiple patient samples
and consistent in a held-out sample of patients that were
not involved in training the model. Therefore, we used
100 repetitions of k-fold cross validation78 to obtain esti-
mates and confidence intervals for the out-of-sample per-
formance of each model. For each repetition, we ran-
domly split X and Di along their rows into k = 10 sub-
sets Xj and Dj for j = 1, .., k. When the jth subset was
used as the held-out testing dataset, Xj and Dj were
the independent and dependent variables, respectively.
The remaining k − 1 subsets were compiled into a train-
ing dataset, whose independent and dependent variables
we refer to as Xr and Dr. In order to aid the training
process, we ensured class balance in Xr and Dr by ran-
domly under-sampling their rows79,80, such that 50% of
patients in Xr and Dr were positive for disease label i
prior to training. Using multiple logistic regression, we
fit the following equation with the training data:

ln

(
p

1− p

)
= β0 + βrXr + ε , (3)

where p is a vector of probabilities that each patient is
positive for the ith disease label, β0 is an intercept vector,
βr is a vector of feature weights obtained through model
fitting, ln is the natural logarithmic function, and ε is a
vector of random error terms. Next, we used the inter-
cept β0 and feature weights βr obtained by fitting our
model to the training data to evaluate the out-of-sample
performance of our model. We used the held-out test-
ing data Xj to compute Dp = β0 + βrXj, where Dp is a
vector of predicted log odds that each patient is positive
for the ith disease label. We converted Dp from a vec-
tor of log odds to a vector of probabilities and evaluated
the performance of Dp in predicting Dj . We repeated
this procedure for j = 1, .., k until each subset Dj and
Xj was used as the held-out data exactly one time. The
entire k-fold cross-validation procedure was repeated 100
times for the ith disease label to generate a distribution of
test-set performance metrics (sensitivity, specificity, area
under the curve). Reported sensitivity, specificity, and
accuracy were obtained using a classification threshold
value of 0.5 for Dp, although prediction characteristics
for a range of threshold values from 0 to 1 can be found
in the receiver-operator characteristic curves.
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SUPPORTING INFORMATION

Treatment of missing data

We examined the representation of missing values
within the data to identify a rule by which we could
choose subjects so as to maximize our sample size while
still being able to compute a complete similarity matrix
(Fig. 2a-c). When the pairwise available features be-
tween two patients lack variance, a correlation cannot be
computed. This issue arises when a patient has uniform
pathology and a small number of available features. Miss-
ing data was especially prevalent with features involving
the dentate gyrus, occipital cortex, and ubiquitin, whose
sampling was discontinued as a result of updated autopsy
protocols. Notably, including additional features only in-
creases the likelihood that a correlation can be computed
and therefore we did not exclude any regions.

When we set a threshold for the maximum allowable
percentage of features with missing data for each subject,
we noticed that the number of available subjects did not
begin to decrease substantially until a threshold value of
75% (Fig. S1a). Accordingly, we selected 75% as our
threshold value such that no subject has missing data for
>75% of the available features. We generated the same
plot for thresholding the maximum allowable percentage
of subjects with missing data for each feature, and we
noticed that the number of available features also did not
begin to decrease substantially until a threshold value of
75% (Fig. S1b). However, for reasons discussed above,
we did not exclude any features.

Optimization and validation of clustering procedure

In order to group patients into disease categories that
simultaneously account for all measured forms of molec-
ular and cellular pathology, we employed a graph-based
clustering approach. First, we performed 1000 itera-
tions of modularity maximization using a Louvain-like
algorithm71 for γ values ranging from 0 to 3 in incre-
ments of 0.1. We computed the mean z-scored Rand
index74 between all unique pairs of partitions at each
γ value as a measure of partition stability at each res-
olution. We sought to choose the resolution with the
highest mean similarity, because it can be more reliably
and consistently generated. The highest mean similar-
ity was reached at γ = 0.2, but this value appeared to
be an unstable peak (Fig. S2a). However, we found
a locally maximal plateau in mean similarity values be-
tween γ = 1.5 and γ = −1.8 (Fig. S2a). Accordingly,
we proceeded with γ = 1.7. By examining a plot of the
number of patients in each cluster as a function of γ, one
can see that the partition at γ = 1.7 was generated for
γ = 1.3 − 1.8, suggesting that the partition used in the
main text does not depend on a narrow range of γ values.

Next, we demonstrated that our clustering approach
was robust to outliers by generating 1000 n = 1111 sub-

samples (80%) of our n = 1389 sample, demeaning the
subsample, computing a Spearman correlation similarity
matrix, and performing 50 iterations of modularity max-
imization at γ = 1.7 on that matrix followed by selection
of the highest mean similarity partition. This procedure
yielded 1000 subsampled partitions. We computed cen-
troids for each partition and matched them to the most
similar centroids from the full sample only if a set of
unique matches could be made. Next, we plotted the
distribution of correlations between the subsampled cen-
troids and full-sample centroids (Fig. S2b), which showed
that > 75% of the generated centroids had a Pearson cor-
relation of near r = 1 with their respective best matched
pair. These results suggest that the partition generated
in the full sample and studied in the main text of the
paper is robust to outliers, because it can be regenerated
with subsets of the original data set.

Disease clusters separate phenotypes and genotypes
independent of existing disease labels

In order to probe the transdiagnostic nature of our
disease clusters, we repeated the analyses in Fig. 3b and
Fig. 4 while excluding or isolating certain existing disease
entities. In this way, we examine how our disease clus-
ter system parses heterogeneity both across and within
existing disease boundaries.

First we compared CSF protein levels in an n = 126
subsample of patients from Cluster 2 after excluding
patients with Braak-CERAD Alzheimer’s disease. We
found that Cluster 2 still exhibited lower CSF amyloid-
β1−42 than Cluster 1 (Fig. S4a, pFDR < 0.01) and Clus-
ter 3 (Fig. S4a, pFDR < 0.05). Additionally, Cluster
2 had higher CSF phosphorylated tau than Cluster 1
(Fig. S4a, pFDR < 0.05). These results suggest that
non-Alzheimer’s disease Cluster 2 members are pheno-
typically similar to Alzheimer’s disease relative to other
clusters.

When we isolated only individuals with Braak-CERAD
Alzheimer’s disease, we had sufficient sample size (n > 2)
to compare CSF protein levels between Cluster 2 and
Cluster 4. While we did not find any statistically sig-
nificant differences between Braak-CERAD Alzheimer’s
disease in Cluster 2 versus Cluster 4, Cluster 2 exhib-
ited a prototypical Alzheimer’s disease CSF profile, that
is, low CSF amyloid-β1−42 with high CSF total tau and
phosphorylated tau (Fig. S4b).

Next, we performed a similar analysis with respect
to genotype. Specifically, we excluded Braak-CERAD
Alzheimer’s disease from Cluster 2, yielding an n = 887
sample, and quantified the distribution of APOE and
MAPT alleles across each cluster (Fig. S5a-b). Using
pairwise multiple logistic regression, we estimated the in-
crease in log odds ratio of cluster membership given the
presence of APOE alleles (Fig. S5c-e). We found that
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FIG. S1. Missing data. (a) The y-axis shows the percentage of subjects available under different values on the x-axis for the
maximum allowable percentage of missing features. (b) The y-axis shows the percentage of features available under different
values on the x-axis for the maximum allowable percentage of missing subjects.
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FIG. S2. Choosing γ for modularity maximization. (a) Mean z-scored Rand Index between all unique combinations
of n = 1000 partitions generated by applying modularity maximization for a range of γ values to the matrix of Spearman
correlations in Fig. 2a. Blue line represents mean z-scored Rand index and red dashed line points to γ value with maximum
mean z-scored Rand index. (b) Histogram of Pearson correlation values between 3986 centroids generated by carrying out the
clustering procedure on 1000 80% subsamples of the n = 1389 sample and the original centroids from the full sample.

the presence of an APOE -ε4 allele increased the odds of
Cluster 2 membership relative to Cluster 1 (Fig. S5e,
pFDR < 10−6) and Cluster 3 (Fig. S5e, pFDR < 0.001).
These findings suggest that even Cluster 2 members with
no diagnosis of Braak-CERAD Alzheimer’s disease were
more likely to possess the APOE ε4 allele relative to other
disease categories.

We also analyzed the extent to which progressive
supranuclear palsy (PSP) was driving the genotypic asso-
ciations involving Cluster 1. To answer this question, we
excluded patients with PSP from Cluster 1, generating
an n = 1239 sample, and then we used multiple logistic
regression to compare the representation of MAPT alle-
les across clusters. We found that the log odds ratio of
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FIG. S3. Spatial maps of representative disease cluster members. (a) We plotted mean regional pathology scores
onto a surface rendering of a standard structural image44 using an anatomical parcellation45 to map autopsy sample sites41.
Color-scaled mean pathology scores for each region and each pathological feature are shown for each disease cluster. In general,
pathology was quantified for only one hemisphere, chosen at random, and therefore only one cortical hemisphere is shown and
subcortical structures are plotted symmetrically for ease of visualization. Pathology scores from the substantia nigra and locus
coeruleus were included in the data-driven clustering procedure, but those areas are not visualized here. Additionally, the
dentate gyrus and CA1/subiculum were treated separately in the data-driven clustering procedure, but here are plotted as an
average on the entire hippocampus. See Fig. 1a for schematic of region labels.

Cluster 1 membership was reduced given the presence of
two H2 alleles at the H2 locus relative to Cluster 2 (Fig.
S6a, pFDR < 10−6), Cluster 3 (Fig. S6a, pFDR < 0.001),
and Cluster 4 (Fig. S6a, pFDR < 0.01). We did not
find statistically significant regression weights for H1 al-
leles as a predictor of Cluster 1 membership relative to

any cluster, though the estimates were all greater than 0
(Fig. S6b, pFDR > 0.05).
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FIG. S4. Differences in CSF protein levels between clusters extend beyond existing disease labels. (a-b) Pairwise
intercluster comparisons of median CSF protein levels for amyloid-β1−42, phosphorylated tau, and total tau using Wilcoxon
rank-sum test, FDR-corrected for multiple comparisons (q < 0.05) over all 3 proteins. In panel a, analysis is performed on
an n = 126 subsample of patients with Braak-CERAD Alzheimer’s disease excluded from Cluster 2. In panel b, analysis is
performed on an n = 159 subsample of patients, all of whom meet criteria for Braak-CERAD Alzheimer’s disease. Clusters 1
and 3 were excluded because they contained 2 or fewer patients with Braak-CERAD Alzheimer’s disease. ns, pFDR > 0.05. *,
pFDR < 0.05. **, pFDR < 0.01. ***, pFDR < 0.001. ****, pFDR < 10−6. CSF, cerebrospinal fluid.

Variations on disease label prediction task

In the main text, we present prediction of cluster mem-
bership using an unpenalized multiple logistic regression
classifier trained only on CSF protein levels. However,
we attempted 3 variations on this approach in the ex-
perimental process. Conversion to a one-versus-all pre-
diction, class-balancing, splitting of training and testing
samples, and evaluation of out-of-sample performance
was performed here exactly as in the main text (see Meth-
ods for details).

First, we trained an unpenalized multiple logistic re-
gression model to predict membership to existing disease
labels and disease clusters using both CSF protein and
genotype at the APOE and MAPT loci. Compared to
the out-of-sample accuracy and AUC achieved in Fig. 5
using only CSF protein, the performance of these models
was virtually identical. Mean AUCs in predicting LBD,
FTLD, and Alzheimer’s disease were 0.71 (Fig. S7a 95%
CI, 0.70-0.72; Fig. 5a 95% CI, 0.69-0.71), 0.74 (Fig. S7a
95% CI, 0.73-0.74; Fig. 5a 95% CI, 0.74-0.76), and 0.94

(Fig. S7a 95% CI, 0.94-0.94; Fig. 5a 95% CI, 0.93-0.94),
respectively. Mean AUCs in predicting Cluster 1, Clus-
ter 2, Cluster 3, and Cluster 4 were 0.67 (Fig. S7b 95%
CI, 0.67-0.68; Fig. 5c 95% CI, 0.67-0.69), 0.83 (Fig. S7b
95% CI, 0.82-0.83; Fig. 5c 95% CI, 0.83-0.84), 0.91 (Fig.
S7b 95% CI, 0.91-0.91; Fig. 5c 95% CI, 0.91-0.91), and
0.84 (Fig. S7b 95% CI, 0.84-0.84; Fig. 5c 95% CI, 0.86-
0.86) respectively. These findings suggest that genotype
at the APOE and MAPT loci do not explain meaning-
ful unique variance in disease class membership, under
the traditional system of disease labels or our system of
disease clusters.

We also used a random forest algorithm to predict dis-
ease class labels from both CSF protein and genotype
at the APOE and MAPT loci, in case there were non-
linear relationships or interactions between genes, CSF,
and class labels. This approach again produced simi-
lar performance to that of a multiple logistic regression
model trained on CSF only. Prediction of Cluster 1 (Fig.
S8c 95% CI, 0.88-0.89; Fig. 5c 95% CI, 0.86-0.86) and AD
(Fig. S8a 95% CI, 0.91-0.91; Fig. 5a 95% CI, 0.93-0.94)
may have been slightly more accurate, but prediction of
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FIG. S5. Genotypic differences between clusters at the APOE locus persist when excluding Alzheimer’s disease.
Using an n = 887 sample excluding patients with Braak-CERAD Alzheimer’s disease from Cluster 2, we assessed the prevalence
of APOE alleles across clusters. (a-b) Within each cluster, we calculated the proportion of each allele for APOE (panel a) and
MAPT (panel b). (c-e) Matrix of logistic regression β-weights, whose ijth element reflects the increase in log odds ratio for
membership to cluster i relative to cluster j given the presence of APOE -ε2 (panel c), APOE -ε3 (panel d), APOE -ε4 (panel
e). ns, pFDR > 0.05. *, pFDR < 0.05. **, pFDR < 0.01. ***, pFDR < 0.001. ****, pFDR < 10−6.

Cluster 3 (Fig. S8c 95% CI, 0.80-0.81; Fig. 5c 95% CI,
0.83-0.84) was slightly less accurate. These findings sug-
gest that accounting for non-linearities and interactions
does not improve the ability to map phenotype and geno-
type at 2 loci to disease labels, and again supports the
idea that genotype at the APOE and MAPT loci do not
provide useful information beyond what can be obtained
through CSF protein analysis.

However, the fact that the genotypes we studied do
not improve prediction in a model that already contains
CSF protein data does not mean that prediction based
on genotype is not potentially useful. In fact, predic-
tion based on genotype may be more useful in that it is
less invasive and could provide an estimate of risk for a
particularly disease class before the onset of subclinical
neurodegeneration. To assess this possibility, we trained
a multiple logistic regression classifier to predict disease
labels based on APOE and MAPT genotype. The clas-
sifier was able to predict PSP, Multiple System Atrophy,
LBD, FTLD, corticobasal degeneration, amyotrophic lat-
eral sclerosis, and Alzheimer’s disease with above-chance
out-of-sample accuracy. Additionally, Cluster 1, Cluster

2, and Cluster 3 could be predicted out-of-sample with
above-chance accuracy. Prediction of Alzheimer’s disease
(Fig. S10a; 95% CI 0.71-0.71) and Cluster 2 (Fig. S10c;
95% CI 0.70-0.71) were very similar, consistent with the
fact that these histopathologically defined groups overlap
genetically (Fig. S5c-e and Fig. 4d-f).

Finally, we wished to assess the extent to which the
strong representation of Alzheimer’s disease in Cluster
2 was driving the high classification accuracy of Cluster
2. We trained multiple logistic regression classifiers to
predict membership to disease clusters from CSF protein
levels after excluding Braak-CERAD Alzheimer’s disease
from Cluster 2. We found that out-of-sample accuracy
was diminished for all clusters, likely due in part to re-
duced sample size and the elimination of Alzheimer’s
patients from Cluster 2, which represents a population
of phenotypically distinct individuals. Nevertheless, we
were able to identify Cluster 2 with AUC of 0.74. Overall,
these results suggest that individuals in Cluster 2 with-
out Alzheimer’s disease are somewhat phenotypically dis-
tinct from other clusters in terms of CSF protein levels,
although not as much as individuals with Alzheimer’s
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FIG. S6. Genotypic differences between clusters at the MAPT locus persist when excluding progressive supranu-
clear palsy. In panels a-b, we analyze an n = 1239 sample excluding all patients with progressive supranuclear palsy. (a-b)
Matrices of logistic regression β-weights, whose ijth element reflects the increase in log odds ratio for membership to cluster i
relative to cluster j given the presence of MAPT -H2 (panel a) or MAPT -H1 (panel b). ns, pFDR > 0.05. *, pFDR < 0.05. **,
pFDR < 0.01. ***, pFDR < 0.001. ****, pFDR < 10−6.

disease.
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FIG. S7. Genotype adds minimally to identification of disease labels when using CSF protein data. (a-b)
Characteristics of prediction of existing diagnoses (panel a) or disease clusters (panel b) in held-out testing data using multiple
logistic regression to predict disease labels from CSF protein levels and genotype. Sub-panels i, and ii show the test-set
sensitivity and specificity, respectively, using a threshold value of 0.5. Sub-panel iii shows the area under the curve (AUC) on
the test-set, reflecting performance over a range of threshold values. Bar length represents mean performance, and error bars
indicate 95% confidence intervals over 100 repetitions of k-fold cross-validation at k = 10. Sub-panel iv shows representative
receiver-operator characteristic curves for test-set predictions of existing diagnoses (panel a) or disease clusters (panel b). (c-d)
Mean standardized multiple logistic regression β across 100 repetitions of k-fold cross-validation at k = 10 in the prediction
task for existing disease labels (panel e) or in the prediction task for disease clusters (panel f). The β weights can be interpreted
as the increase in log-odds ratio for a one standard deviation increase in the value of the predictor in the case of continuous
predictors, or for a one unit increase in allele count in the case of interval predictors. TPR, true positive rate. FPR, false
positive rate. Total Tau, total CSF tau protein. Phosph. Tau, total CSF phosphorylated tau. Amyloid-β1−42, total CSF
amyloid-β1−42. E2 and E4, ε2 and ε4 alleles at the APOE locus. H1, MAPT haplotype.
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FIG. S8. Random-forest algorithm exhibits similar performance to multiple logistic regression in identifying
disease labels. (a, c) Characteristics of prediction of existing diagnoses (panel a) or disease clusters (panel c) in held-out
testing data using a random forest classifier to predict disease labels from CSF protein levels. Sub-panels i and ii show the
test-set sensitivity and specificity, respectively, using a threshold value of 0.5. Sub-panel iii shows the area under the curve
(AUC) on the test-set, reflecting performance over a range of threshold values. Bar length represents mean performance, and
error bars indicate 95% confidence intervals over 100 repetitions of k-fold cross-validation at k = 10. Sub-panel iv shows
representative receiver-operator characteristic curves for test-set predictions of existing diagnoses (panel a) or disease clusters
(panel c). (b, d) Representative decrease in accuracy δ when removing each predictor individually in the prediction task for
existing disease labels (panel e) or in the prediction task for disease clusters (panel f). A larger decrease in accuracy indicates
that a feature was more important for a particular prediction task. TPR, true positive rate. FPR, false positive rate. Total
Tau, total CSF tau protein. Phosph. Tau, total CSF phosphorylated tau. Amyloid-β1−42, total CSF amyloid-β1−42. E2 and
E4, ε2 and ε4 alleles at the APOE locus. H1, MAPT haplotype.
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FIG. S9. Differences in CSF total tau levels are robust to outliers. (a) Effect sizes and statistical significance of
pairwise intercluster comparisons of median CSF total tau levels using Wilcoxon rank-sum test, FDR-corrected for multiple
comparisons (q < 0.05) over all 3 proteins. In the left panel, the analysis is performed on the full sample as in Fig. 3b, and in
the right panel, two outliers in Cluster 3 with total tau > 1000 pg/ml were removed. Results were virtually identical with or
without these outliers included in the analysis. ns, pFDR > 0.05. *, pFDR < 0.05. **, pFDR < 0.01. ***, pFDR < 0.001. ****,
pFDR < 10−6. CSF, cerebrospinal fluid.
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FIG. S10. Disease labels can be predicted with above-chance accuracy from APOE and MAPT genotype. (a,
c) Characteristics of prediction of existing diagnoses (panel a) or disease clusters (panel c) in held-out testing data using
multiple logistic regression to predict disease labels from genotype. Sub-panels i and ii show the test-set sensitivity and
specificity, respectively, using a threshold value of 0.5. Sub-panel iii shows the area under the curve (AUC) on the test-set,
reflecting performance over a range of threshold values. Bar length represents mean performance, and error bars indicate
95% confidence intervals over 100 repetitions of k-fold cross-validation at k = 10. Sub-panel iv shows representative receiver-
operator characteristic curves for test-set predictions of existing diagnoses (panel a) or disease clusters (panel c). (b, d) Mean
standardized multiple logistic regression β across 100 repetitions of k-fold cross-validation at k = 10 in prediction task for
existing disease labels (panel e) or disease clusters (panel f). The β weights can be interpreted as the increase in log-odds ratio
for a one unit increase in allele count. TPR, true positive rate. FPR, false positive rate. E2 and E4, ε2 and ε4 alleles at the
APOE locus. H1, MAPT haplotype.
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FIG. S11. Non-Alzheimer’s disease patients in Cluster 2 can be identified with accuracy above chance. (a)
Characteristics of test set prediction of disease clusters from CSF protein in an n = 126 sample with Braak-CERAD Alzheimer’s
disease excluded from Cluster 2 only, using multiple logistic regression. Sub-panels i and ii show the test-set sensitivity and
specificity, respectively, using a threshold value of 0.5. Sub-panel iv shows the area under the curve (AUC) on the test-set,
reflecting performance over a range of threshold values. Bar length represents mean performance, and error bars indicate 95%
confidence intervals over 100 repetitions of k-fold cross-validation at k = 10. (b) Representative receiver-operator characteristic
curves for test-set prediction of disease clusters. TPR, true positive rate. FPR, false positive rate. Total Tau, total CSF tau
protein. Phosph. Tau, total CSF phosphorylated tau. Amyloid-β1−42, total CSF amyloid-β1−42.
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