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Abstract 17 

Sexual displays that require extreme feats of physiological performance have the potential 18 

to reliably indicate the signaller’s skill. The hypothesis that the structure of bird song is 19 

physiologically constrained remains controversial. We tested for evidence of performance 20 

constraints in Adelaide’s warblers (Setophaga adelaidae) songs. At the note level, we 21 

identified three trade-offs with well-defined limits. At the song level, we identified two 22 

trade-offs, but their limits were less well-defined than the note-level limits. Trade-offs at 23 

both levels suggest that song structure is constrained by limits to the speed of both 24 

frequency modulation (while vocalizing and between notes) and respiration.  Individual 25 

males experience the same trade-offs that characterize the population, but the intensity of 26 

those trade-offs varies among individuals. Performance metrics derived from the observed 27 

limits to performance varied moderately among individuals and strongly among song 28 

types. Note-level performance metrics were positively skewed, as predicted by the 29 

hypothesis that this population has experienced positive selection for constrained 30 

performance. We conclude that physiological limits on frequency modulation and 31 

respiration constrain song structure in male Adelaide’s warblers. Further work is needed to 32 

determine whether receivers respond to natural levels of variation in performance, and 33 

whether performance correlates with singer quality.  34 

Key words: Bird song, frequency excursion (FEX), Luscinia, Parulidae, sexual selection, 35 

wood-warbler 36 
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Introduction 38 

Animal displays are dynamic signals that often function as sexual advertisements. Many sexual 39 

displays challenge the signaller’s motor abilities (Byers et al. 2010). For example, male 40 

hummingbird courtship displays are pinnacles of length-specific velocity and acceleration 41 

(Larimer and Dudley 1995; Clark 2009), male pronghorns’ (Antilocapra americana) circle chase 42 

displays require extreme angular acceleration (Byers 1997), and the success of male fiddler 43 

crabs’ (Uca perplexa) displays depends on the speed and height of their waving claws (Murai 44 

and Backwell 2006). In these examples and others, it appears that female choice for high 45 

performance has promoted the evolution of displays that reliably showcase males’ abilities to 46 

perform near their species’ physiological limits (Smith and Harper 2003; Byers et al. 2010; 47 

Bradbury and Vehrencamp 2011). Bird song is another sexual display that may fit that 48 

description (Nowicki et al. 1992; Podos 1997; Podos et al. 2009). 49 

Performance constraints in bird song 50 

Song performance has been proposed to serve as a reliable signal of sender condition that is 51 

salient to both male and female receivers (reviewed in Podos 2017). To sing, a bird must rapidly 52 

coordinate the output of its brain, syrinx, bill, and respiratory system. Motor constraints on any 53 

of these systems, or on the ability to coordinate them, could generate reliable correlations 54 

between motor abilities and song structure, and signal receivers could learn about a signaller’s 55 

quality by listening to his or her song. A history of female choice for (or male deference to) 56 

males that sing with high performance could explain the widespread evolution of songs with 57 

rapid changes in fundamental frequency and rapid sequences of notes.  58 

Several physiology studies indicate that motor constraints limit song structure (Hoese et al. 2000; 59 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 11, 2019. ; https://doi.org/10.1101/664896doi: bioRxiv preprint 

https://doi.org/10.1101/664896
http://creativecommons.org/licenses/by-nc-nd/4.0/


4 

 

Podos and Nowicki 2004; Plummer and Goller 2008). Most studies of motor performance in bird 60 

song, however, do not directly measure physiological limits during song production (Cardoso 61 

2017). Rather, they test the prediction that physiological constraints induce trade-offs between 62 

acoustic traits. Podos (1997) performed the first such analysis when he described a trade-off 63 

between the trill rate and frequency bandwidth in sparrow (Emberizidae) songs. Sparrow songs 64 

with wide frequency bandwidth do not have high trill rates, and those with high trill rates do not 65 

have wide frequency bandwidths (Fig. 5 in Podos 1997). This pattern can be at least partially 66 

explained by limits on the speed of voiced frequency modulation (FM) and unvoiced FM 67 

(frequency jumps between notes). Since Podos’s pioneering work, several other studies have 68 

identified trill rate vs. frequency bandwidth trade-offs in other species (reviewed in Wilson et al. 69 

2014; Podos 2017). 70 

Bird song researchers have identified several other acoustic trade-offs that suggest performance 71 

constraints since Podos’s studies of trill rate vs. frequency bandwidth trade-offs. A few have 72 

started to study performance constraints at the level of the note. Relative to song-level analyses, 73 

note-level analyses can be expected to provide clearer evidence of trade-offs if there is less 74 

unmeasured structural variation among notes than there is among songs. For a given number of 75 

recordings, note-level analysis also produces more data points than song-level analysis, resulting 76 

in a more thorough description of acoustic space. Finally, note-level analyses permit tests of 77 

hypotheses about specific physiological constraints, because they allow researchers to isolate 78 

song elements related that might be subject to that constraint.  79 

A recent note-level study showed that the difference in fundamental frequency between the end 80 

of one note and the beginning of the next note trades off against the length of the silent gap 81 

between notes (Geberzahn and Aubin 2014a). Larger frequency jumps between syllables require 82 
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longer silent gaps. This trade-off suggests a limit to the speed of unvoiced FM, one of the 83 

constraints that may contribute to the widely-observed trade-off between trill rate and frequency 84 

bandwidth. 85 

A second line of note-level research showed that longer notes are associated with longer silent 86 

gaps before the subsequent note (Mota and Cardoso 2001; Cardoso et al. 2007). This trade-off 87 

seems to be caused by a respiratory constraint. When singing rapidly, songbirds take unvoiced 88 

mini-breaths between notes (Hartley and Suthers 1989). Long notes use more air than short 89 

notes, so they require longer subsequent mini-breaths (Suthers and Zollinger 2004). Extremely 90 

short notes are produced by a mechanism called ‘pulsatile expiration,’ which does not require 91 

mini-breaths (Hartley and Suthers 1989).  92 

Measuring performance in bird song 93 

Trade-offs in acoustic traits can be used to quantify song performance. Cardoso (2017, p. e29) 94 

defines song performance as ‘the degree of challenge to the motor system, the respiratory 95 

system, or other physiological processes involved in singing’ (see also Byers et al. 2010). Song 96 

performance metrics based on acoustic trade-offs estimate performance based on the acoustic 97 

distance to an observed acoustic performance limit (Podos 2001). Vocalizations that are close to 98 

or beyond the limit are high performance, whereas those that are far from the limit are low 99 

performance (Fig. 1). Performance measurements derived in this way are called ‘deviations’ 100 

because they measure the orthogonal deviation from the performance limit (Podos 2001).  101 

Critiques of bird song performance research 102 

Recently, research on bird song performance has come under criticism (Kroodsma 2017b, 103 
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2017a). Kroodsma argues that performance is unlikely to be a reliable signal of singer quality 104 

because it varies a great deal among song types, but little or not-at-all among individuals. One 105 

way to test this hypothesis is to measure the repeatability (intraclass correlation coefficient, ICC) 106 

of putative performance metrics for individuals and for song types (Cardoso et al. 2009). We 107 

want to know whether a receiver’s ability to compare individual singers’ performance is limited 108 

by the ICC for individuals, so our ICC calculation should reflect the receiver’s assessment 109 

strategy. The ICC for individuals should be based on the average performance of each song type 110 

from each singer (as in Cardoso et al. 2009) if receivers first assess each song type separately, 111 

and then average the performance of all of the song types in a singer’s repertoire to estimate his 112 

quality. However, if receivers assess singers’ performance based on all of the songs they hear, 113 

without first averaging within song type, the ICC should be based on all sampled songs. We did 114 

not know how (or whether) receivers assess singers’ performance, so we applied both methods.  115 

Kroodsma (2017b) also argues that the bounded scatterplots that others have interpreted as 116 

evidence of performance constraints (e.g., Figs. 1, 4, & 5) do not represent performance limits, 117 

but are a consequence of the cultural transmission of song structure. According to this 118 

‘constrained learning’ hypothesis, it is physically possible for birds to sing beyond the observed 119 

limits, but they do not because they have not learned songs beyond these limits. In any specific 120 

case, the performance constraint hypothesis and constrained learning hypothesis are mutually 121 

exclusive because they attempt to explain the same thing (bounded scatterplots). We used two 122 

predictions to distinguish between these competing hypotheses. First, we predicted that 123 

performance constraints would result in scatterplots with boundaries that slope in the expected 124 

direction given plausible motor constraints. Constrained learning may or may not result in sloped 125 

boundaries, and the direction of the slope should be random with respect to plausible motor 126 
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constraints. Second, if a performance limit constrains the structure of vocalizations and singers 127 

have evolved under positive selection for singing performance, vocalizations should cluster near 128 

the limit, and deviation scores should skew away from the limit. The constrained learning 129 

hypothesis generates a different prediction: Selection for species-specific song structure should 130 

cause vocalizations to cluster in the middle of the distribution, where they are least likely to be 131 

mistaken for heterospecific song. This pattern would produce a symmetrical deviation 132 

distribution (skew ≈ 0) with diffuse (low-density) edges.  133 

The present study 134 

We analysed a sample of male Adelaide’s warbler (Setophaga adelaidae) songs for evidence of 135 

performance constraints. We tested for three trade-offs at the note level and four trade-offs at the 136 

whole song level, while controlling for variation attributable to individuals. We then analysed the 137 

deviation scores. We tested whether receivers might be able to distinguish high-performance 138 

singers from low-performance singers by estimating note-level and song-level ICC’s for 139 

individuals. We also estimated ICC’s for song types, to better understand the relationship 140 

between song type repertoires and vocal performance, and to permit comparisons with other 141 

species. Finally, we tested opposing predictions of the constrained learning and constrained 142 

performance hypotheses by measuring the skewness of the deviation distributions.  Although 143 

several previous studies have examined acoustic trade-offs in bird songs, this study is 144 

distinguished by its comprehensiveness, sample size at the note level, and novel analytic 145 

approach.  146 

 147 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 11, 2019. ; https://doi.org/10.1101/664896doi: bioRxiv preprint 

https://doi.org/10.1101/664896
http://creativecommons.org/licenses/by-nc-nd/4.0/


8 

 

Methods 148 

Study species 149 

Adelaide’s warbler is a socially monogamous insectivore endemic to Puerto Rico and Vieques. 150 

Mated pairs maintain all-purpose territories throughout the year (Toms 2010). Male songs are 151 

frequency modulated trills (Fig. 2). Individual males sing repertoires of song types (avg. ≈ 23 152 

songs), many of which are shared with other males (Staicer 1991; Kaluthota et al. 2019). Each 153 

male’s repertoire comprises two categories, A and B, which are characterized by distinct times of 154 

delivery, song rates, and song switching frequencies (Staicer 1991; Kaluthota et al. 2019). The 155 

individual notes comprising songs are structurally simple, with almost all of the energy 156 

concentrated in the fundamental frequency. There exists considerable among-note variation in 157 

length, frequency, and frequency modulation (Fig. 2).  158 

Ethics 159 

This research was approved by the Institutional Animal Care and Use Committee at the 160 

University of Puerto Rico, Mayagüez (17 September, 2010). It adheres to the ASAB/ABS 161 

Guidelines for the use of animals in research. Birds were captured under D.M.L.’s federal bird 162 

banding permit (no. 23696). The U.S. Fish and Wildlife Service granted permission to work at 163 

the Cabo Rojo Wildlife Refuge (permit 2012-01).  164 

Recording and scoring 165 

We recorded nine mated male Adelaide’s Warblers at the Cabo Rojo National Wildlife Refuge 166 

(US Fish and Wildlife Service) during the breeding season between March and June, 2012. Each 167 

male was recorded on four days, from 45 minutes before sunrise until 2 hours and 45 minutes 168 

after sunrise. Consecutive recordings of a given male were separated by at least four days, except 169 
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on two occasions when recordings were made on consecutive days because of logistical 170 

constraints. Recordings were made with Marantz PMD 661 digital recorders and Sennheisser 171 

ME67 shotgun microphones (file format = wav, sampling rate = 44.1KHz, bit depth = 16 bits). 172 

This is the same set of recordings used in a previous study of short-term variation in song 173 

performance (Schraft et al. 2017), a methods paper on song sequences (Hedley et al. 2018), and 174 

an analysis of singing modes (Kaluthota et al. 2019). 175 

We visualized recordings as sound spectrograms in Syrinx PC v.2.6 (J. Burt, Seattle, WA; 176 

Settings: Blackman window, transform size = 1024 points). Each song recording from a focal 177 

male was assessed for recording quality. One person (D.M.L.) assigned song recordings to song 178 

types. The inter-rater reliability of song type scoring of these recordings was estimated to be 179 

100% within an individual bird, and 87% among individuals (Kaluthota et al. 2019). We only 180 

used high-quality recordings (high signal-to-noise ratio, minimal overlap with other sounds) for 181 

song measurements. High quality song recordings were analysed in Luscinia v2.14 (max. freq. = 182 

10kHz, frame length = 5ms, time step = 1ms, dynamic range = 35 dB, dynamic equalization = 183 

100ms, de-reverberation = 100%, de-reverberation range = 100ms, high pass threshold = 1.0kHz, 184 

noise removal = 10dB; Lachlan 2007). We loosely outlined the trace of each note with a stylus 185 

on a touchscreen monitor, and Luscinia’s algorithms identified the signal and rejected 186 

background noise. Acoustic parameters for all notes were output to a spreadsheet. Luscinia offers 187 

several frequency metrics. We chose peak frequency because visual inspection of spectrograms 188 

showed that it tracked the fundamental frequency better than the fundamental frequency metric. 189 

Analysis: trade-offs  190 

The note-level analysis omitted the one or two low-amplitude notes that began some songs and 191 
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the final note of all songs. We omitted final notes because it was impossible to define the length 192 

of the silent gap following the last note. For the note-level analyses, we analysed the frequency 193 

bandwidths and durations of both notes and silent gaps (Fig. 3). Following Cardoso (2013), our 194 

measures of frequency bandwidth (BW) comprise the ratio of the maximum frequency to the 195 

minimum frequency. Gap length and gap BW are taken from the silent gap after the focal note. 196 

Gap BW is based on the end of the focal note and the beginning of the subsequent note. We 197 

tested three comparisons at the note level that might reveal trade-offs indicative of performance 198 

constraints: note length vs. gap length (respiratory), note BW vs. note length (voiced FM), and 199 

gap BW vs. gap length (unvoiced FM).  200 

We chose four parameters for the song-level analyses: trill rate, average frequency bandwidth, 201 

percent of sound, and duration. Trill rate (TR) was calculated as the number of notes in the song 202 

minus one, divided by the time from the beginning of the first note to the beginning of the last 203 

note. We excluded the final note from this calculation because TRs based on the full song 204 

necessarily omit the ‘gap’ after the last note, biasing estimates upward for songs with fewer 205 

notes. Adelaide’s warbler songs are frequency modulated trills (Fig. 2), so the total frequency 206 

bandwidth of a song is only weakly related to the amount of FM in the song. We therefore 207 

calculated a song’s BW as the average BW of the notes in the song. Percent of sound (PoS) is the 208 

percent of the song that is voiced. It was calculated as the sum of note lengths, divided by the 209 

total length of the song, multiplied by 100. Lastly, we measured song length because many kinds 210 

of performance increase in difficulty with increasing duration (Byers et al. 2010). We tested four 211 

comparisons that might reveal trade-offs at the song level: TR vs. mean BW (FM, respiratory), 212 

length vs. TR (respiratory endurance), length vs. PoS (respiratory endurance), and TR vs. PoS 213 

(respiratory).  214 
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Wilson et al. (2014) recommend quantile regression to test for acoustic trade-offs. Quantile 215 

regression produces a linear function to estimate a defined quantile Y over a range of X (Cade 216 

and Noon 2003). We conducted mixed quantile regression analyses to characterize potential 217 

trade-offs while accounting for the non-independence of acoustic units from the same individual 218 

(Geraci 2014). To the best of our knowledge, this is the first study to use mixed quantile 219 

regression to test for acoustic trade-offs. To conform to recommended best practices, we treated 220 

both intercepts and slopes as random variables (Barr et al. 2013). We predicted positive lower 221 

boundaries for all note-level analyses, because higher values of acoustic variable X were 222 

predicted to constrain the minimum values of variable Y (as in Geberzahn and Aubin 2014a). In 223 

contrast, we predicted negative upper boundaries for all song-level analyses, because higher 224 

values of variable X were predicted to constrain the maximum values of variable Y as in (as in 225 

Podos 1997). For the note-level dataset, we tested lower boundaries with 10th quantile 226 

regressions (tau = 0.10), following advice in Wilson et al. (2014). Similarly, we ran 90th quantile 227 

regressions (tau = 0.90) to estimates upper boundaries in the song-level dataset (Wilson et al. 228 

2014).  229 

Population-level performance limits could arise from a pooled analysis of individuals that do not 230 

themselves exhibit trade-offs. For example, some individuals might sing high-trill-rate, low-231 

bandwidth songs while others sing low-trill-rate, high-bandwidth songs, resulting in a sloping 232 

limit to the population’s distribution when individuals’ data are pooled. Alternatively, different 233 

individuals may be subject to similar trade-offs, which combine to produce a population-wide 234 

trade-off. We therefore examined data from individual birds for evidence of trade-offs. We also 235 

asked whether different individuals experience trade-offs differently by generating a reduced 236 

model without random slopes and comparing its Akaike Information Criterion (AIC) value 237 
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against that of the full model. Differences in AIC values (ΔAIC) greater than 20 were interpreted 238 

as evidence that the model with the higher AIC lacked support (Burnham et al. 2010).  239 

In addition to the hypothesis tests described above, we offer several visual representations of our 240 

data. We graphed the whole distributions with semi-transparent points and average quantile 241 

regression lines. To show individual variation near the boundaries, we also present zoomed-in 242 

views of the boundary regions with separate colours for each individual and polygons that mark 243 

the limit of each individual’s distribution. Polygons were generated with the geom_encircle 244 

command in the ggalt package (Rudis et al. 2017), with settings s_shape =1 (no added curvature) 245 

and expand = 0 (polygon edges intersect extreme points). Finally, we present separate 246 

distributions for each individual in the electronic supplementary material.  247 

Analysis: Performance metrics 248 

Deviation scores were calculated as the orthogonal distance from the quantile regression lines, 249 

such that higher (more positive) values indicate lower putative performance (Podos 2001). We 250 

estimated intra-class correlations (ICCs) to test how repeatable individuals were with respect to 251 

note-level deviation scores averaged over songs and song-level deviation scores. We conducted 252 

ICCs for individuals using both the entire sample and the average scores for each song type 253 

within individual (see Introduction). We also tested the repeatability of song types for note-level 254 

deviation scores averaged over songs and song-level deviation scores. We used log-likelihood 255 

tests to generate p-values for the ICCs.  256 

We generated Pearson’s correlation matrices of deviation scores for notes and songs. The song-257 

level correlation matrix included song-level deviations, note-level deviations averaged over 258 

songs, and the performance metric Frequency Excursion (FEX). Frequency excursion attempts to 259 
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estimate the speed with which the vocal apparatus adjusts frequency by measuring the rate of 260 

change in the fundamental frequency, including during silent gaps (Podos et al. 2016; Schraft et 261 

al. 2017). We calculated the skewness of the deviation scores to test competing predictions of the 262 

constrained performance and constrained learning hypotheses. 263 

All statistics were conducted in R Studio (Team 2015). Mixed quantile regressions relied on the 264 

lqmm package (Geraci 2014). Intra-class correlations were assessed with the rptR package 265 

(Stoffel et al. 2017). Data visualizations relied on the package ggplot2 (Wickham and Chang 266 

2008). Data and R code are available at (DRYAD link when available).  267 

 268 

Results 269 

Note-level: Descriptive statistics 270 

Subjects contributed an average of 320 ± 185 (average ± SD) songs, belonging to 20.8 ± 3.7 song 271 

types and comprising 7622 ± 4568 notes, to our analyses (Table 1). On average, notes were 50.8 272 

± 23.9 ms long and silent gaps were 35.7 ± 11.5 ms long. Our measure of note-level frequency 273 

bandwidth, the ratio of maximum peak frequency to minimum peak frequency, averaged 2.0 ± 274 

0.57 for notes, and 1.93 ± 0.57 for silent gaps.  275 

Note level: Trade-offs 276 

Mixed quantile regression analyses for note length vs. gap length (intercept = 12.87, slope = 277 

0.24, pslope < 0.0001) and note BW vs. note length (intercept = 18.45, slope = 8.46, pslope < 278 

0.0001) were significant and positive, and all individuals’ slope estimates were positive (Table 279 
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ESM-1). The analysis of gap BW vs. gap length produced a positive slope estimate (intercept = 280 

23.02, slope = 3.19, pslope = 0.03), but the p-value was marginally significant at the α = 0.05 281 

level, and eight out of nine individuals’ slope estimates were positive. Individuals’ slopes varied 282 

significantly in the note length vs. gap length (ΔAIC = 981) and gap BW vs. gap length (ΔAIC = 283 

2724) comparisons, but not in the note BW vs. note length comparison (ΔAIC = -178). 284 

Pooled scatterplots revealed sharply demarcated, approximately linear lower boundaries, except 285 

for a prominent bulge in the lower left part of the boundary on the note length vs. gap length plot 286 

(Fig. 4a-c). Average quantile regression lines approximated the slopes of boundaries of the 287 

distributions, but their fit was imperfect (Fig. 4). The fit of the average quantile regression line 288 

was particularly poor for the gap BW vs. gap length distribution (Fig. 4c). The polygons and 289 

individual-level scatter plots showed positively sloping lower boundaries for all individuals, and 290 

inter-individual variation in the slopes of the boundaries (Figs. 4d-f; ESM-1-3). The bulge in the 291 

lower left portion of the note length vs. gap length comparison is apparent in most of the 292 

individual-level plots (Fig. ESM-1).  293 

Note-level: Deviations 294 

When we used the entire sample of songs, all three note-level deviations averaged over songs 295 

were significantly repeatable by individual, with moderate repeatability estimates (Table 2). 296 

Using the average deviation scores for each song type from each individual resulted in lower 297 

repeatability estimates, and rendered the note BW vs. note length deviation ICC non-significant 298 

at the α= 0.05 level. All three deviation scores were significantly repeatable among song types, 299 

with moderate to high repeatability estimates.  300 

Deviation scores from the gap BW vs. gap length and note length vs. gap length comparisons 301 
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were highly positively correlated (r = 0.874). There was a moderate correlation between gap BW 302 

vs. gap length and note BW vs. note length scores (r = 0.574), and a weak correlation between 303 

note BW vs. note length and note length vs. gap length deviations (r = 0.112).  304 

The distributions of deviation scores were all positively (right) skewed (Table 2). Note-level 305 

deviation scores were strongly skewed, while note-level deviations averaged over songs 306 

produced moderately skewed distributions. We graphed deviation against rank to identify 307 

statistical outliers that fell below the regression lines (n = 72). Most of these outliers were 308 

attributable to either reverberation or background noise that was accidentally treated as signal 309 

when the songs were outlined in Luscinia, resulting in two notes being merged into one. We 310 

excluded these outliers from graphs, but we did not exclude them from statistical analyses 311 

because they comprise a small proportion of the overall dataset (~0.1%), and pruning only those 312 

scoring errors that were outliers would bias the dataset.  313 

 Song level: Descriptive statistics 314 

TRs averaged 11.64 ± 1.58 notes / second. Average mean frequency bandwidths were 2.05 ± 315 

0.23. The average PoS was 59.80 ± 3.52 %. Songs were 2025.56 ± 299.11 ms long, with an FEX 316 

score of 66.39 ± 11.45, on average.  317 

Song level: Trade-offs 318 

Quantile regression analyses indicated the presence of statistically significant, negatively sloping 319 

upper boundaries for all four song-level comparisons, although the TR vs. PoS slope was only 320 

marginally significant (TR vs. mean BW: intercept = 3.19, slope = -0.074, pslope < 0.0001; length 321 

vs. TR: intercept = 14.95, slope = -0.0011, pslope = 0.0071; length vs. PoS: intercept = 70.38, 322 
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slope = -0.003, pslope = 0.0001; TR vs. PoS: intercept = 74.21, slope = -0.92, pslope = 0.0356). All 323 

of the individual slope estimates were negative except for one individual’s length vs. TR 324 

estimate (Table ESM-2). Individuals’ slopes varied significantly in the TR vs. mean BW (ΔAIC 325 

= 3529), length vs. TR (ΔAIC = 4648), and TR vs. PoS (ΔAIC = 8473) comparisons, but not in 326 

the length vs. PoS comparison (ΔAIC = -23,945). 327 

The pooled scatterplots suggest overall negative trends and loosely-defined negatively sloping 328 

upper limits for the TR vs. mean BW and TR vs. PoS comparisons (Fig. 5a, g). The average 90th 329 

quantile regression lines appeared to fit the upper boundaries of the TR vs. mean BW and TR vs. 330 

PoS distributions well (Fig. 5a, g). Polygons and individual-level scatterplots from most 331 

individuals showed evidence of negative relationships for the TR vs. mean BW and TR vs. PoS 332 

comparisons (Figs. 5b, h, ESM-4, ESM-7). In contrast, the length vs. TR and length vs. PoS 333 

pooled scatterplots, polygons, and individual-level scatterplots did not provide evidence of 334 

negative relationships (Fig. 5c-f, ESM-5, ESM-6). 335 

Song level: Deviations 336 

All four song-level deviation scores and FEX were moderately repeatable among individuals 337 

when all songs were considered (Table 3). When we used the average of each song type within 338 

individual to calculate ICCs, all repeatability estimates were lower except for those derived from 339 

the TR vs. PoS deviations, and the TR vs. mean BW repeatability was not statistically 340 

distinguishable from zero. The song-level metrics of performance were moderately to highly 341 

repeatable among song types.  342 

FEX, song-level deviations, and note-level deviations averaged over songs were intercorrelated 343 

(Table 4). We found strong negative relationships between FEX and each of the following 344 
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deviation scores: TR vs. mean BW, mean note BW vs. note length and mean gap BW vs. gap 345 

length. Rapid FM and high TRs are indicated by high FEX values and low deviations, so these 346 

negative correlations may imply redundancy. By contrast, FEX was only weakly correlated with 347 

the TR vs. PoS and mean note length vs. gap length deviations. The song level metric TR vs. PoS 348 

deviation correlated strongly with the mean note-level deviations from the note length vs. gap 349 

length and gap BW vs. gap length deviations. The mean gap BW vs. gap length deviations were 350 

also highly correlated with the mean note length vs. gap length deviations and the mean note BW 351 

vs. note length deviations, but those two were not strongly correlated with each other.  352 

  353 

Discussion 354 

Sexual displays can reliably indicate the signaller’s skill when physiology constrains display 355 

structure. We found evidence that the structure of a bird’s song is constrained by the speed with 356 

which singers can modulate frequency and replenish expired air. Some males consistently 357 

performed closer to the estimated population-wide performance limits than others, so signal 358 

receivers (e.g., potential mates and rivals) may be able to assess among-individual variation in 359 

song performance. Among song type variation in performance metrics indicates that some song 360 

types are more challenging to sing than others.  361 

Trade-offs and performance constraints 362 

We found strong evidence of three acoustic trade-offs at the note level. The note-level 363 

scatterplots with sharply-defined, positively sloping boundaries comprise what we believe to be 364 

the most compelling acoustic evidence of performance constraints in bird song to date (Fig. 4, 365 

ESM-1-3). Individuals’ scatterplots and slope estimates showed that each male was subject to the 366 
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trade-offs that constrain vocal production. Inter-individual variation in slope estimates for the 367 

note length vs. gap length and gap BW vs. gap length comparisons suggests the novel hypothesis 368 

that high quality individuals are subject to weaker trade-offs (lower slopes) than are low quality 369 

individuals.  370 

The observed trade-off between note length and gap length supports the hypothesis that 371 

respiratory performance constrains song structure (Figs. 4a, d). Relative to short notes, long 372 

notes require birds to expire more air, necessitating longer subsequent mini-breaths to replenish 373 

the bird’s air supply in preparation for the next note. A similar pattern was previously identified 374 

in male serin (Serinus serinus) and dark-eyed junco (Junco hyemalis) songs (Mota and Cardoso 375 

2001; Cardoso et al. 2007). The lower boundary for the note length vs. gap length distribution 376 

bulges downward at short note lengths in the pooled plot and in many of the individual plots 377 

(Figs. 4a, ESM-1). We hypothesize that this bulge represents notes that are short enough for 378 

birds to sing with pulsatile expiration (Hartley and Suthers 1989; Mota and Cardoso 2001). We 379 

do not yet know whether Adelaide’s warbler receivers respond to variation in respiratory 380 

performance, but there is evidence that other species do. Male skylarks (Alauda arvensis) 381 

increase the sound density of their songs when challenged with playback (Geberzahn and Aubin 382 

2014b). Male dusky warblers (Phylloscopus fuscatus) that sing with consistently high amplitude 383 

live longer and enjoy extra-pair paternity benefits (Forstmeier et al. 2002). Similarly, male zebra 384 

finches (Taeniopygia guttata) that sing with higher sound density are preferred by females 385 

(Holveck and Riebel 2007).  386 

We interpret the results from the note BW vs. note length and gap BW vs. gap length 387 

comparisons as evidence that frequency modulation speed is constrained (Figs. 4b, c, e, f). At the 388 

limit of performance, large frequency changes require more time than do small frequency 389 
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changes. Podos (1997) first described a constraint on the speed of FM in general, and Geberzahn 390 

and Aubin (2014a) identified the constraint on unvoiced FM in skylarks. We believe that the 391 

present study is the first to specifically characterize a constraint on voiced FM. The apparent 392 

physiological basis of both constraints is that the magnitude of FM scales with the magnitude of 393 

physical change in the vocal apparatus and the vocal apparatus requires time to reconfigure itself 394 

(Suthers 2004). The speed of FM may be constrained by the bird’s ability to coordinate the 395 

various component of the vocal apparatus (brain, left and right syrinx, upper vocal tract, etc.; 396 

reviewed in Podos et al. 2009) that are involved in frequency modulation. Alternatively, a 397 

limitation on any component could limit the entire system. For example, bill size constrains 398 

singing speed in various taxa (Westneat et al. 1993; Podos 2001; Derryberry et al. 2012). There 399 

is widespread evidence that signal receivers attend to variation in FM speed (Drăgănoiu et al. 400 

2002; Ballentine 2004; Illes et al. 2006; Cramer and Price 2007; DuBois et al. 2009; DuBois et 401 

al. 2011; Moseley et al. 2013; Vehrencamp et al. 2013; Phillips and Derryberry 2017a, 2017b).  402 

We also found evidence of constrained performance at the song level. All four song-level 403 

quantile regressions were statistically significant, but the visual data from the length vs. TR and 404 

length vs. PoS comparisons were not compelling (Figs. 5c, d, e, f). We conclude that there is 405 

insufficient evidence to support the hypotheses that song length (or the combination of length 406 

and other variables) advertises singers’ motor abilities. Singing does not require much more 407 

oxygen than resting, and mini-breaths between notes may permit birds to escape respiratory 408 

constraints on song length (Oberweger and Goller 2001; Suthers and Zollinger 2004). Another 409 

study that found no evidence of constrained song length did find that birds sang longer songs 410 

when they were vocally interacting with other males (Cardoso et al. 2009). The authors 411 

concluded that ‘the length of songs is a plastic trait that varies with social context in a way that 412 
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seems to reflect overall motivation or singing intensity’ (p. 904).  A similar dynamic may be at 413 

play in our study system.  414 

We found robust evidence that TR trades off against mean BW, replicating Podos’s (1997) 415 

canonical finding in sparrows (see Podos et al. 2016 for a general review), as well as a previous 416 

finding in other taxa (Wilson et al. 2014), including wood-warblers (Cardoso and Hu 2011). We 417 

originally believed that the TR vs. mean BW trade-off was caused by constraints on FM speed 418 

during voiced notes and unvoiced gaps. However, the modest correlations between TR vs. mean 419 

BW deviations and the mean deviations from note BW vs. note length (r = 0.223) and gap BW 420 

vs. gap length (r = 0.310) suggest that note-level FM constraints may not fully explain the TR vs. 421 

mean BW constraint. We conclude that TR vs. BW trade-offs probably emerge from some 422 

combination of constraints to voiced FM, unvoiced FM, and note repetition rate. The TR vs. PoS 423 

analysis provides further evidence that note repetition rate is constrained.  424 

We tentatively conclude that the balance of evidence supports the existence of a TR vs. PoS 425 

trade-off, such that fast trills include more silence than do slow trills. The regression results were 426 

marginally significant (p = 0.0356), and visual analysis indicated negative trends in the pooled 427 

data, and some evidence of negative trends in the individual data (Figs. 5g, h, ESM-7). Although 428 

other studies have examined metrics similar to PoS (Forstmeier et al. 2002; Leadbeater et al. 429 

2005; Holveck and Riebel 2007; Cardoso et al. 2009), we believe that this is the first study to 430 

show a relationship between PoS and TR. The physiological basis of this trade-off is probably 431 

similar to the respiratory constraint responsible for the note length vs. gap length trade-off. 432 

Indeed, the deviation scores from these two analyses are highly correlated (r = 0.886). To 433 

approach the upper boundary of the TR vs. PoS distribution, a bird must both minimize gap 434 

lengths, as in the note length vs. gap length trade-off, and also emit notes at a high rate.  435 
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At the limit of performance, the relationship between acoustic variables varied among 436 

individuals in both the TR vs. mean BW and TR vs. PoS comparisons. As in the note-level 437 

analysis, we propose that some individuals may be more robust to trade-offs than others, and that 438 

this variation may indicate quality.  439 

Comparing levels of analysis 440 

The evidence for trade-offs at the note level was much stronger than the evidence at the song 441 

level. The boundaries of the note-level distributions were clearly defined, allowing us to see the 442 

shape of the boundary (e.g., the node in Fig. 4a). In contrast, the song-level boundaries were 443 

diffuse (compare Figs. 4 & 5). We believe that the main cause of this difference is that notes 444 

have a simpler structure than the songs they comprise. This simpler structure means that 445 

measured acoustic variables describe notes more completely than songs. Unmeasured variation 446 

among acoustic units contributes random error, making it harder to identify performance limits 447 

with song-level variables. Notes are also more numerous than songs, and large sample sizes 448 

permit more precise characterization of performance limits. It is often, but not always, possible 449 

to scale up from note-level performance to song-level performance (see the discussion of TR vs. 450 

PoS deviations above). We conclude that note-level analysis is a powerful approach for studying 451 

acoustic trade-offs, but it cannot completely replace song-level analyses.  452 

Methodological considerations 453 

The present study revealed two important limitations to quantile regression. First, the line that it 454 

produces is not always parallel to the border of the point cloud, reducing our ability to accurately 455 

estimate performance limits and deviation scores. Part of the reason for the poor fit is that the 456 

quantile regression algorithm is influenced by points that are distant from the focal edge. This 457 
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effect is most apparent in the gap BW vs. gap length scatterplot (Fig. 4c), in which the large 458 

number or long, low BW gaps influences the line to slope less steeply than the lower boundary. 459 

When the regression line does not parallel the edge of the distribution, deviation scores 460 

incorrectly weight their constituent variables. We overlooked this issue in the current study 461 

because our lines fit well enough to demonstrate trade-offs and approximate deviation scores, 462 

and because we did not want to introduce and justify a novel edge detection paradigm in a report 463 

that already contained many analyses. A second problem with the quantile regression analyses is 464 

that we found statistically significant quantile regressions even when plots did not appear to 465 

show strong evidence of performance limits (compare Figs. 5c-5f to the results of the 466 

corresponding quantile regressions). This problem was not unique to the lqmm package – 467 

standard quantile regressions were also statistically significant (unpublished analyses). 468 

Considering these limitations, we recommend that users supplement the results of quantile 469 

regression analyses with visual inspection of scatterplots and encourage the continued 470 

development of statistical methods for detecting and defining performance limits. 471 

Our sample comprised many songs (n = 2879) and very many notes (n = 68,602), recorded from 472 

relatively few individuals (n = 9). This sampling scheme allowed us to characterize individuals’ 473 

distributions with high precision, especially at the note level. We were thus able to determine 474 

whether individuals were subject to trade-offs, and whether constraints varied among 475 

individuals. The large sample size of notes also resulted in dense point clouds that were 476 

amenable to visual assessment. Thus, we had a great deal of power to establish within individual 477 

patterns. Although the sample of individuals was modest, it was sufficient to test for population-478 

level trade-offs without pseudoreplicating individuals because all individuals were subject to 479 

these note-level trade-offs.  480 
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Repeatability of performance metrics 481 

Most note-level deviation scores were repeatable by individual and by song type. ICC’s for 482 

individuals based on all songs indicated that 14-20% of variation in song performance can be 483 

attributed to individual differences. Whether receivers can differentiate among singers’ 484 

performance is an empirical question that is amenable to experimental investigation. Simulation 485 

models in which receivers sample varying numbers of songs from two singers and assess their 486 

relative performance, would also be useful. Estimates of repeatability by individual based on all 487 

songs tended to be considerably higher than those based on the averages for each song type 488 

within individual (Table 2). This difference has implications for both signallers and receivers.  489 

Signallers do not sing all song types in their repertoires with equal frequency, but instead sing 490 

some song types more than others. Relative to a flat distribution of song types, the observed 491 

distribution of song types resulted in greater individual distinctiveness. This finding suggests the 492 

hypothesis that more skilled singers are able to sing demanding song types more often than are 493 

less skilled singers. Turning to receivers, our results indicate that estimating the average 494 

performance of all sampled songs would be a more efficient assessment strategy than would 495 

averaging for each song type and then averaging over song types. The former strategy is also less 496 

cognitively demanding because it includes fewer steps and requires less memory. Receivers’ 497 

assessment strategies require further investigation (Guilford and Dawkins 1991; Bateson and 498 

Healy 2005; Podos 2017). 499 

Performance metrics were moderately to highly repeatable among song types (Tables 2 & 3). If 500 

deviation scores represent performance, then song types vary with respect to their performance 501 

demands. The deviation scores that measured FM speed (those that included BW and FEX) were 502 
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highly repeatable by song type. That result was unsurprising because we used patterns of 503 

frequency modulation to classify song types (Fig. 2).  504 

A previous study of male dark-eyed junco songs also found that repeatability estimates for song 505 

types were higher than repeatability estimates for individuals (Cardoso et al. 2009). That study 506 

averaged performance over song types within individuals before estimating individual ICC, and 507 

arrived at similar estimates to the comparable analysis in our study. Their estimates of song type 508 

repeatability were higher than ours, but that difference could be attributable to differences in 509 

song type scoring. The authors conclude that receivers could use acoustic performance to 510 

estimate singers’ quality, but go on to write, ‘the main conclusion from our results it that, 511 

because most of the variation in performance depends on the song type, a receiver that compares 512 

a few song types from different males is likely to obtain little information about performance 513 

differences between males’ (p. 905). In our study system, receivers would get considerably more 514 

information if they based their assessments on all songs (rather than averaging performance 515 

within song types and then within males). If high quality males sing more challenging song 516 

types, averaging performance within song type before calculating repeatability would 517 

underestimate receivers’ abilities to discern singers’ quality. Further, it is unlikely that 518 

Adelaide’s warbler receivers would only hear one or a few song types, because males rapidly 519 

cycle through their song types during dawn singing (Staicer 1991; Kaluthota et al. 2019).  520 

Correlations among performance metrics 521 

Several pairs of performance metrics were positively correlated, suggesting that metrics are 522 

partially redundant or that different kinds of performance covary positively. It appears that note 523 

length vs. gap length deviation scores and gap BW vs. gap length deviation scores are highly 524 
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correlated because short gaps generate low deviation scores in both comparisons. The correlation 525 

coefficient is inflated by the poor fit of the quantile regression line in the gap BW vs. gap length 526 

comparison (see above). Nevertheless, short gap lengths may indicate high quality with respect 527 

to both FM speed and respiratory performance. The high correlation between note BW vs. note 528 

length deviation and gap BW vs. gap length deviations may arise because short notes tend to be 529 

followed by short gaps, and vice-versa (as shown in the note length vs. gap length comparison).  530 

At the level of the whole song, we found that FEX correlated strongly with various performance 531 

metrics that measure FM speed, but FEX was not strongly correlated with two metrics that seem 532 

to measure respiratory performance. Thus, FEX is useful for measuring overall FM speed, and 533 

note-level deviation scores are useful for parsing FM speed between voiced and unvoiced 534 

portions of the song, but FEX does not measure respiratory performance. The strong correlation 535 

between TR vs. PoS deviations and the deviation scores that involve gap length emphasizes the 536 

importance of short inter-note intervals for various performance metrics. Overall, we did not find 537 

evidence that FM performance trades off against respiratory performance.   538 

Skewness of performance metrics 539 

Note-level deviation scores were positively skewed, as predicted by the hypothesis that the 540 

population has evolved under selection to sing near the physiological limits of performance 541 

(Table 2). We did not find this pattern with the song-level deviations (Table 3). The difference 542 

between patterns of skewness at the two levels of analysis may be attributable to the greater 543 

statistical noise in the song-level metrics. We tentatively conclude that the note-level skewness 544 

results support the performance constraint hypothesis and fail to support the constrained learning 545 

hypothesis, but equivalent data from other study systems are needed.  546 
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Conclusions and future directions 547 

Most research on performance constraints in bird song is based on acoustic trade-off analysis, 548 

but this paradigm has recently come under strong criticism (Kroodsma 2017b, 2017a). We 549 

responded to these criticisms with a study that included multiple comparisons at two levels, a 550 

note-level sample size that was nearly ten times larger than the largest comparable dataset 551 

(Geberzahn and Aubin 2014a), and novel statistical approaches to control for pseudoreplication 552 

and test for evidence of selection for high performance. We believe that this approach has 553 

produced the most compelling acoustic evidence yet that physiological limits constrain the 554 

structure of bird song.  555 

 We conclude that performance constraints on the speed of voiced FM, unvoiced FM, and 556 

respiration limit the acoustic structure of male Adelaide’s warbler songs. We hypothesize that 557 

this species sings trills of rapid frequency sweeps because of a history of sexual selection for FM 558 

and respiratory performance.  559 

This study opens the door for future research on performance constraints in Adelaide’s warbler 560 

and other species. One critical question is whether male or female receivers attend to variation in 561 

one or more performance metrics in this population. It would be particularly interesting to know 562 

if they can accurately assess synthesized ‘singers’ with realistic performance ICC’s. Future 563 

studies should also examine the link between song performance and male phenotype, 564 

performance and among-individual variation in song type use, and how performance varies 565 

across contexts, including vocal interactions (Logue and Forstmeier 2008).   566 
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Tables and table legends 724 

 725 

Table 1. Sample sizes, separated by individual.  726 

individual songs notes song types 

DDLb 605 13,465 19 

KYK 110 2,449 23 

LgRLg 255 6,427 17 

LgWV 254 5,955 16 

OWO 461 11,512 18 

PDP 139 3,064 23 

RbRbO 425 9,137 24 

RDY 509 13,895 27 

ROLb 121 2,698 20 

Total 2,879 68,602 187 * 

* There were 61 unique song types. 727 

  728 
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Table 2. Intra-class correlation and skewness values for note-level deviation scores.  729 

statistic (sample)  note length vs. gap 

length  

note BW vs.  

note length 

gap BW vs.  

gap length 

individual ICC (all 

songs) 

r = 0.178 

p < 0.0001 

r = 0.161 

p < 0.0001 

r = 0.206 

p < 0.0001 

individual ICC (song 

types w/in individual) 

r = 0.154 

p = 0.0002 

r = 0.056  

p = 0.052 

r = 0.116  

p = 0.0025 

song type ICC (song 

types w/in individual) 

r = 0.167  

p = 0.0098 

r = 0.641  

p < 0.0001 

r = 0.372  

p < 0.0001 

note-level skewness 

(notes) 

sk = 3.28 sk = 1.29 sk = 2.21 

avg. note-level 

skewness (songs) 

sk = 0.58 sk = 0.55 sk = 0.51 

ICCs rely on note-level deviation scores averaged over songs.  730 

 731 
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Table 3. Results of intra-class correlation analysis and skewness analysis on song-level deviation 733 

scores and FEX.  734 

statistic (sample)  TR vs. 

mean 

BW 

length vs. 

TR 

length vs. 

PoS 

TR vs. 

PoS 

FEX 

individual ICC (all 

songs) 

r = 0.161 

p < 

0.0001 

r = 0.158 

p < 

0.0001 

r = 0.156 

p < 0.0001 

r = 0.144 

p < 0.0001 

r = 0.140 

p < 0.0001 

individual ICC (song 

types w/in 

individual) 

r = 0.009 

p = 0.455 

r = 0.079 

p = 0.011 

r = 0.126 

p = 0.0006 

r = 0.148 

p = 0.0002 

r = 0.068 

p = 0.040 

song type ICC (song 

types w/in 

individual) 

r = 0.556 

p < 

0.0001 

r = 0.604 

p < 

0.0001 

r = 0.280 

p < 0.0001 

r = 0.117 

p = 0.0254 

r = 0.534 

p < 0.0001 

skewness (all songs) -0.092 -0.264 0.162 0.138 -0.070 

 735 
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Table 4. Pearson’s correlation matrix for song-level deviation scores, frequency excursion, and 737 

note-level deviation scores averaged over songs.  738 

 TR vs. 

mean 

BW 

length 

vs. TR 

length 

vs. PoS 

TR vs. 

PoS 

mean note 

length vs. 

gap length  

mean note 

BW vs. note 

length 

mean gap 

BW vs. 

gap length 

FEX  

-

0.707 

-0.310 0.072 

-

0.063 

-0.229 -0.420 -0.423  

TR vs. mean BW   0.108 0.108 0.156 0.187 0.223 0.310  

length vs. TR     

-

0.343 

0.017 0.416 0.884 0.728  

length vs. PoS       0.873 0.636 -0.638 0.282  

TR vs. PoS         0.886 -0.293 0.640  

mean note length 

vs. gap length 

          0.090 0.900  

mean note BW 

vs. note length 

            0.508  

 739 
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Figures 741 

Figure 1 742 

 743 
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Figure 2 745 

 746 
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Figure 3 748 

 749 
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Figure 4 751 
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Figure 5 755 
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Figure captions  758 

Figure 1: Scatterplot depicting a hypothetical performance constraint between two traits. The 759 

10th quantile regression line is shown in black. For comparisons in which the trait on the x-axis 760 

scales positively with performance and the trait on the y-axis scales negatively with performance, 761 

any performance limit would follow the lower edge of the distribution and slope upward, and 762 

performance would increase as one moves down and to the right (this figure, Fig. 4). For 763 

comparisons in which both the x- and y-axes scale positively with performance, performance 764 

limits follow the upper edge of the distribution and slope downward, and performance increases 765 

as one moves up and to the right (e.g., Fig. 5). 766 

Figure 2: Sound spectrograms of three Adelaide’s warbler song types. 767 

Figure 3. Six note-level measurements. The focal note is in the middle. We used Ƒmaxnote and 768 

Ƒminnote to determine the note frequency bandwidth, and Ƒmaxgap and Ƒmingap to determine the 769 

gap frequency bandwidth.  770 

Figure 4: Plots comparing acoustic properties of Adelaide’s warbler notes. Data points in 771 

scatterplots (A-C) are semi-transparent to show density. Polygon plots (D- F) focus on the 772 

bottom of each distribution. Each colored polygon represents the limits of an individual males’ 773 

note sample. Royal blue lines represent 10th quantile regression lines. Scales differ between the 774 

scatterplots and the polygon plots.  775 

Figure 5: Plots comparing acoustic properties of Adelaide’s warbler songs. Data points in 776 

scatterplots (A, C, E, G) are semi-transparent to facilitate interpretation. Each colored polygon in 777 

the polygon plots (B, D, F, H) represents the limits of an individual males’ song sample. Royal 778 

blue lines represent 90th quantile regression lines.  779 
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