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ABSTRACT 
 
Background: Tumor mutational burden (TMB, the quantity of aberrant nucleotide sequences a 
given tumor may harbor) has been associated with response to immune checkpoint inhibitor 
therapy and is gaining broad acceptance as a result. However, TMB harbors intrinsic variability 
across cancer types, and its assessment and interpretation are poorly standardized.  
Methods:  Using a standardized approach, we quantify the robustness of TMB as a metric and 
its potential as a predictor of immunotherapy response and survival among a diverse cohort of 
cancer patients. We also explore the additive predictive potential of RNA-derived variants and 
neoepitope burden, incorporating several novel metrics of immunogenic potential. 
Results: We find that TMB is a partial predictor of immunotherapy response in melanoma and 
non-small cell lung cancer, but not renal cell carcinoma. We find that TMB is predictive of overall 
survival in melanoma patients receiving immunotherapy, but not in an immunotherapy-naive 
population. We also find that it is an unstable metric with potentially problematic repercussions 
for clinical cohort classification. We finally note minimal additional predictive benefit to assessing 
neoepitope burden or its bulk derivatives, including RNA-derived sources of neoepitopes.  
Conclusions:  We find sufficient cause to suggest that the predictive clinical value of TMB 
should not be overstated or oversimplified. While it is readily quantified, TMB is at best a limited 
surrogate biomarker of immunotherapy response. The data do not support isolated use of TMB 
in renal cell carcinoma. 
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BACKGROUND 
The advent of immunotherapy as a promising form of cancer treatment has been accompanied 
by a parallel effort to explore potential mechanisms and drivers of therapeutic response. For 
instance, tumor mutational burden (TMB, the overall quantity of aberrant nucleotide sequences 
a given tumor may harbor) has been associated with response to immune checkpoint inhibitor 
therapy (1) and overall survival (2). Similarly, the quantity of non-synonymous single nucleotide 
variants was shown to be associated with immunotherapy response in several independent 
clinical cohorts (3–6). Other sources of sequence variation such as frameshifting 
insertions/deletions (7) and tumor-specific alternative splicing (e.g. intron retention (8)) have 
also been found to correlate with immunotherapy response. These phenomena are widely 
accepted and appear to be particularly pronounced in patients harboring DNA repair 
deficiencies (9). Indeed, the checkpoint inhibitor, pembrolizumab, was granted accelerated 
disease-agnostic approval by the FDA on this basis for any cancer patient harboring 
deficiencies in their capacity to perform DNA mismatch repair (10). Moreover, an expanding 
cohort of clinical immunotherapy trials (e.g. NCT03668119, NCT03178552, NCT03519412) are 
actively utilizing TMB status as a key inclusion criterion. However, there is wide variability 
among techniques for measuring and interpreting TMB, raising questions of utility and 
reproducibility (11). 
 
Given the perceived critical importance of TMB in the research setting and its emerging role in 
the oncology clinic, we sought to quantify the robustness of TMB as a metric, and explore its 
deeper nuances using pooled whole exome sequencing data from a variety of previously 
published studies. While TMB is generally correlated with downstream metrics such as 
neoepitope burden, we also explore the predictive capacity of neoepitope burden and its 
derivatives including adjustment for MHC binding robustness and peptide sequence novelty, as 
well as RNA-derived sources of neoepitopes. 
 
 
METHODS 
Variant Identification and Neoepitope Prediction 
We assembled a cohort of 457 tumor samples from 431 different cancer patients from publicly 
available data, including 302 melanoma patients (326 tumor samples) (1,4–6,12–16), 34 
non-small cell lung cancer (NSCLC) patients (34 tumor samples) (3), 10 prostate cancer 
patients (10 tumor samples) (17), 57 renal cell carcinoma (RCC) patients (58 tumor samples) 
(18), and 28 mismatch repair (MMR) deficient (as determined by polymerase chain reaction or 
immunohistochemistry (9)) colon, endometrial, and thyroid cancer patients (29 tumor samples) 
(9) (see Supplementary Table 1). Despite attempts to obtain these data, we unfortunately were 
forced to omit tumor samples from 75 NSCLC patients (19), for whom data was not available 
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due to limitations of patient consent at the time of the study. Alignment of whole exome 
sequencing (WES) reads was performed as described previously (23).The Mbp of genome 
covered was determined using bedtools genomecov (v2.26.0) (24), where any base covered by 
a depth of at least 6 reads was considered covered, as this is twice the minimum read depth 
required for variant detection by SomaticSniper (25) and VarScan 2 (26). Somatic and germline 
variant calling were performed as described previously (23). To obtain coverage-adjusted 
mutation burdens for each patient, we divided the number of consensus somatic variants by the 
Mbp of genome covered by sequencing. We employed HapCUT2 for patient-specific haplotype 
phasing. To do this, germline and consensus somatic variants were combined into a single VCF 
using neoepiscope ’s (23) (v0.3.5) merge functionality. HapCUT2’s extractHAIRS software 
was run with the merged VCF and the tumor alignment file, allowing for extraction of reads 
spanning indels, to produce the fragment file used with HapCUT2 to predict haplotypes. 
Neoepitopes of 8-24 amino acids in length were predicted for this cohort using neoepiscope , 
including background germline variation and variant phasing, and enumerating neoepitopes 
from protein coding, nonsense mediated decay, polymorphic pseudogene, T cell receptor 
variable, and immunoglobulin variable transcripts. Additionally, to better understand how the 
choice of variant caller impacts downstream neoepitope predictions, we ran neoepiscope 
excluding background germline variation and variant phasing separately for our consensus 
somatic variants and variants produced by individual variant calling tools, only enumerating 
neoepitopes from protein coding transcripts. For patients with multiple tumor samples, the 
median mutation and neoepitope burdens across samples were retained. Variants that were 
pathogenic or likely pathogenic in cancer according to ClinVar (34) were identified using 
Open-CRAVAT (35), and neoepitopes deriving from these variants were flagged. We used the 
software mSINGS (36) (bit bucket commit 030289381f3b7aee24d8eccbb69b3e66711f5bb0) to 
identify tumors with MSI positive status. The software was run on each tumor alignment file, and 
the provided TCGA msi_bed, msi_baseline, msi_intervals were used. 
 
RNA Variant Identification 
Among the overall cohort, 106 patients (89 melanoma patients (1,4–6) and 17 RCC patients 
(18)) had complementary tumor RNA-sequencing (RNA-seq) data. We aligned RNA-seq reads 
to both the GRCh37d5 and GRCh38 genomes using STAR (v2.6.1c) (37), using the ‘intronMotif’ 
--outSAMstrandField option and specifying NH, HI, AS, nM, and MD fields with the 
--outSAMattributes option. To identify putative tumor-specific splice junctions, we first 
downloaded called junction data including coverage and bed files for TCGA and GTEx using 
recount2 (38). GENCODE version 28 annotations (39) were downloaded and parsed to collect 
full coordinates and left and right splice sites of junctions from annotated transcripts. The TCGA 
phenotype file from Rail-RNA (40) was parsed to collect sample type (primary, recurrent, or 
metastatic tumor vs. matched normal). A new SQLite3 database was created to index all GTEx 
and TCGA junctions, with linked tables containing 1) sample ids and associated junction ids; 2) 
sample ids and phenotype information for each sample; and 3) junction ids and junction 
information including GENCODE annotation status and location within protein coding gene 
boundaries. Junctions were extracted from the SJ.out output files generated by STAR; only 
junctions with canonical splice motifs (GT-AG, GC-AG, and AT-AC) were collected. No minimum 
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read count was imposed for a junction to be called in a sample. The known junction index was 
queried to collect all junctions found in normal tissue either in GTEx or in TCGA matched normal 
samples and these normal junctions were filtered out from the single sample set. We used the 
MetaSRA (41) web query interface to collect Sequence Read Archive (SRA) accession numbers 
for non-cancerous melanocyte cell line (42) and primary cell (43) RNA-seq experiments. The 
resulting accession numbers were queried against the Snaptron junction database (44,45) to 
download junctions from across the entire genome. All junctions found in these normal 
melanocyte samples as well as all fully GENCODE-annotated junctions were also eliminated 
from each single-sample junction set. Again, no minimum read support was required; a single 
read covering a junction in a single non-cancer sample (SRA, GTEx, or TCGA) eliminated the 
junction from the patient set. Finally, we removed junctions where neither end was found in 
GENCODE-annotation, yielding a list of putative tumor-specific splice sites for each patient. 
Supplementary Figure 1 (rows 2-4) illustrates the variety of splicing alterations captured. 
 
We identified tumor-specific retained introns (see Supplementary Figure 1, row 5) using Keep 
Me Around (kma) (46). We aligned RNA-seq reads to a modified version of the GRCh37d5 
using Bowtie 2 (v2.3.4.3) (47), and quantified reads using eXpress (v1.5.1) (48), as per kma 
recommendations. After computing intron retention, we used kma’s filters to retain only 
transcripts that were expressed at greater than or equal to 1 transcripts per million (TPM) in at 
least 25% of samples, transcripts that had at least 5 unique counts in at least 25% of samples, 
and transcripts that had greater than 0 and less than 100 percent of introns retained. To prevent 
inclusion of artifacts from unprocessed transcripts, we identified outlier introns among the 
distribution of transcript read counts, only retaining introns with a read count greater than 3 
median absolute deviations above the median intron read count for a transcript, and greater 
than or equal to the read count for the transcript itself. To filter out retained introns that may be 
expressed in normal tissues, we performed the same analysis using using publically available 
RNA-seq reads from melanocyte samples of 106 newborns (49). Any retained introns identified 
from the melanocyte RNA-seq data were then removed from the retained introns identified from 
the tumor RNA-seq data. Neoepitopes deriving from retained introns were predicted using the 
reading frame from the 5’ end of the transcript of origin prior to the intron, enumerating peptides 
8-24 amino acids in length. 
 
HLA Type Prediction and Related Analyses 
MHC Class I alleles for each patient were predicted from tumor WES reads using Optitype 
(v1.0) (50), and MHC Class II alleles for each patient were predicted from tumor WES reads 
using seq2hla (v2.2) (51). For each neoepitope sequence predicted from phased variants (see 
above), a patient’s predicted MHC Class I and MHC Class II alleles were used for binding 
affinity predictions with MHCnuggets (v2.1) (52). Neoepitopes were counted toward a patient’s 
neoepitope burden if they bound at least one of a patient’s MHC alleles with high affinity (<= 500 
nM). For comparison with neoepitope burdens reported by the authors of the five original 
manuscripts with reported neoepitope burdens, we tallied binding predictions separately based 
on their methodology, using binding affinity predictions from NetMHCpan (v4.0) (53) for a more 
direct comparison. For patients from the studies by Carreno et al. (4) and Rizvi et al. (3) we 
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considered only 9mer epitopes; for patients from the study by Van Allen et al. (1) we considered 
only 9mer and 10mer epitopes; and for the studies by Hugo et al. (5) and Roh et al. (14) we 
considered 9mer, 10mer, and 11mer epitopes. For the epitopes from patients from the Carreno 
et al. study, we only considered binding to HLA-A*02:01 as in their paper, while for the other 
studies we considered binding to any MHC Class I epitope. Additionally, we determined the 
burden of processed neoepitopes (those predicted to be cleaved by the proteasome, 
transported by TAP, and presented on the cell surface by an MHC Class I molecule) using 
NetCTLpan (v1.1) (54). For each tumor sample, we ran NetCTLpan predictions for all 8mer, 
9mer, 10mer, and 11mer neopeptides with each MHC Class I epitope predicted by Optitype. A 
neopeptide was counted toward the burden of processed epitopes if its NetCTLpan combined 
score rank was in the top 1% for at least one MHC allele. 
 
Modified Neoepitope Burden 
To better understand how different features of tumor neoepitopes might influence response to 
immunotherapy, we produced several normalized neoepitope burdens. We first calculated 
neoepitope burden for each patient weighted by MHC allele presentation, where a predicted 
neoepitope sequence counted toward the patient’s neoepitope burden once for each of the 
patient’s MHC alleles that was predicted to bind that neoepitope with high affinity (<= 500 nM). 
Second, neoepitope burden was calculated for each patient weighted by amino acid mismatch 
as follows. The closest normal peptide in the human proteome to each neoepitope was 
identified using blastp (v2.6.0) (55), selecting for lowest E value or, in the case of a tie among 
multiple peptide sequences, the selected peptide was that with the highest weighted 
BLOSUM62 similarity (as described previously (56)). A neoepitope sequence was counted 
toward the patient’s neoepitope burden once for each amino acid mismatch between the 
neoepitope and its closest normal peptide. Third, neoepitope burden was calculated for each 
patient weighted by TCGA transcript expression of the transcript(s) of origin for each 
neoepitope. We identified expressed transcripts in matched TCGA cancer types for each 
disease type in our cohort (SKCM for melanoma, LUAD/LUSC for NSCLC, COAD for colon 
cancer, UCEC for endometrial cancer, THCA for thyroid cancer, PRAD for prostate cancer, and 
KIRC for RCC) from TPM values generated by the National Cancer Institute (57). A transcript 
was considered “expressed” for a cancer type if the 75th quantile TPM value for that transcript 
in that disease was greater than 1 TPM. Because these TPM values were based on GRCh38 
transcripts, we used liftOver (58) to convert the coordinates of a neoepitope’s mutation of origin 
to GRCh38 coordinates and identify overlapping transcripts. A neoepitope sequence was 
counted toward the patient’s neoepitope burden once for each transcript of origin expressed in 
TCGA. Note that for patients with tumor RNA-seq data (see above), we also calculated 
neoepitope burden weighted by patient-specific expression of the transcript(s) of origin for each 
neoepitope. We used Rail-RNA (v0.2.4b) (40) on RNA-seq alignments to the GRCh37d5 
genome to identify covered exons, and a transcript was considered “expressed” if at least 1 
read covered any exon in the transcript. A neoepitope sequence was counted toward the 
patient’s neoepitope burden once for each expressed transcript of origin. Finally, we 
multiplicatively combined these weighted burdens by multiplying scores for each epitope and 
totaling all epitope scores: allele presentation score by amino acid mismatch score, allele 
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presentation score by TCGA expression score, allele presentation score by patient-specific 
expression score (if relevant), amino acid mismatch score by TCGA expression score, amino 
acid mismatch score by patient-specific expression score (if relevant), allele presentation score 
by amino acid mismatch score by TCGA expression score, and allele presentation score by 
amino acid mismatch score by patient-specific expression score (if relevant).  
 
Statistical Analysis 
Statistical analysis was performed in R (v3.5.1). The rlm function from the MASS package 
(v7.3-51.4) was used for robust linear model fitting, and the cor.test function was used for 
determining Pearson product-moment correlation values. To determine variability in TMB across 
variant calling tools, the median of pairwise differences in TMB between tools was divided by 
the median TMB across tools for each patient; the median of these values across patients was 
reported. The roc function from the pROC package (v1.14.0) was used to generate ROC curves 
for any predictors of immunotherapy response and to determine their AUC for all patients with 
reported immunotherapy response status (409/414, after excluding 3 colon cancer, 1 prostate 
cancer, and 1 RCC patient that lacked documented response status). Logistic regression was 
performed using the glm function to model therapeutic response as a linear function of TMB (on 
log scale), and neoepitopes (log scale) on the 245 melanoma patients, 50 RCC patients, and 33 
NSCLC patients with reported immunotherapy response status to either aCTLA4 or aPD1 
treatment alone (excluding dual/combination checkpoint inhibitor therapy). For the subset of 
these patients with available RNA-seq data (see Supplementary Table 1), tumor variant burden 
(TVB; the sum of somatic variants, tumor-specific splice junctions, and tumor-specific retained 
introns; log2 scale) was also modeled. The fit models were subsequently used to estimate the 
odds of therapeutic response at the 25 th and 75 th TMB, TVB, and neoepitope percentiles. Each 
cancer type was modeled separately, with the melanoma model accounting for differences in 
aCTLA4 vs. aPD1 response rates. P-values were adjusted for multiple comparisons using the 
Benjamini-Hochberg method with the p.adjust function.  
 
Survival Analysis 
Due to the low number of observed events for some cancers, only melanoma and RCC patient 
cohorts were appropriate for survival analysis. Patients were included in survival analysis if they 
had information on both overall survival status, as well as either time to event or time to 
censorship data. In total, 218 melanoma patients and 56 RCC patients were selected for 
analysis in R (v3.5.1). The coxph function from the survival package (v2.44-1.1) was used to fit 
proportional hazards regression models, and the survfit function from the survival package was 
used to compute survival curves. For comparison with patients not treated with immunotherapy, 
we also performed survival analysis with SKCM and KIRC patients from TCGA. We obtained 
mutation annotation format (MAF) files and clinical data for these patients from the Broad 
Institute (59). Patients with both mutation information and survival information were used for 
analysis (320 SKCM patients and 415 KIRC patients). Mutational burden was determined by 
counting the number of somatic variants listed in each patient’s MAF file, and a patient was 
considered to have survival information if they had information on time to death or a non-zero 
and non-negative value on time to last follow up. 
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RESULTS 
 
Distribution of tumor variant and neoepitope burdens 

We find that the median TMB (based on consensus DNA variant calls; see Methods) 
varies by an order of magnitude across disease types, ranging from 635.5 variants for prostate 
cancer to 5,632.5 variants for MMR-deficient cancers (Supplementary Figure 2). Adjusting by 
genome coverage for each patient (see Methods), the median TMB was 18.03 mutations/Mbp of 
genomic coverage (ranging from 5.17 for RCC prostate cancer to 26.82 for MMR-deficient 
cancers, see Figure 1A). The majority of variants were found to be single nucleotide variants 
(median 85.07% per patient), with the remainder from in-frame and frameshift insertions and 
deletions (ranging from a median 7.52% indels for RCC to 37.26% indels for prostate cancer, 
see Supplementary Figure 3). Note that RNA variants such as alternative exon-exon junctions 
and retained introns were also assessed in the subset of patients with corresponding 
RNA-sequencing data (see Methods). Overall, tumor-specific junction burden appeared to be 
less variable across cancer types (ranging from 1301 for RCC to 2048.5 for melanoma). While 
retained introns (RI) have also been described as a source of neoepitopes (8), only 27 
melanoma patients with RNA-seq data had any predicted RIs, with a median RI burden in those 
patients of 929 introns. Integrating these tumor DNA and RNA variants (given matched 
RNA-seq data) into a single combined tumor variant burden (TVB) yielded a median increase of 
2345 variants per patient, with RNA sources of variation accounting for an average 40.8% of 
overall variants (see Figure 2). Moreover, consideration of DNA variant burden alone neglects 
substantial somatic variation for some patients, as RNA sources of variation can constitute up to 
86.7% of TVB. 

As TMB and TVB are indirect assessments of cancer neoantigen load, we next 
calculated DNA-derived, RNA-derived and overall neoepitope burdens per patient from putative 
protein-level variation (see Methods). The median per-patient DNA-derived neoepitope burden 
(for peptides predicted to bind to at least one of a patient’s MHC Class I or II alleles) was 13,512 
peptides (ranging from 5,511.5 for NSCLC to 37,710.5 for MMR-deficient cancers, see Figure 
1B) and was highly correlated with TMB itself (Pearson’s product-moment correlation of 0.63, p 
< 2.2x10 -16; see Supplementary Figure 4). There were generally more MHC Class I epitopes 
than Class II epitopes, with a median Class I epitope burden of 6,337 peptides (ranging from 
2,366 for NSCLC to 15,645.5 for MMR-deficient cancers) and a median Class II epitope burden 
of 6,027 peptides (ranging from 2,167.5 for NSCLC to 23,554.5 for MMR-deficient cancers). We 
also assessed the burden of Class I epitopes predicted to be processed via the proteasome, 
transported through TAP, and presented on the cell surface (see Methods), with a median 766 
such epitopes per patient (ranging from 366 for prostate cancer and 2,536.5 for MMR-deficient 
cancers). While not all patients possessed RIs, the median per-patient RNA-derived neoepitope 
burden among the 27 melanoma patients with predicted RIs (366,843 peptides) was an order of 
magnitude higher than DNA-derived neoepitopes in the vast majority of cases (Supplementary 
Figure 5). 

In addition to reporting the bulk number of neoepitopes per patient, we also analyzed the 
distribution of peptide presentation by patient-specific HLA types. Overall, a median of 8.91% of 
possible peptides are presented by one or more patient-specific MHC Class I or II alleles. 
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Among these, any given neoepitope is, on average, only presented by a single MHC allele 
(Figure 3A, Supplementary Figure 6A). There are many additional degrees of freedom to surveil 
the peptide-level consequences of an individual variant (e.g. individual single nucleotide variants 
may give rise to as many as 272 different peptides of 8-24aa lengths, any of which might be 
presented via one or more MHC Class I or II alleles). As such, we find that 83.4% of all DNA 
variants resulting in peptide-level change(s) have at least one neoepitope putatively presented 
by at least one HLA allele, with a median of 3 different HLA alleles able to present one or more 
neoepitopes from each individual variant (Figure 3B, Supplementary Figure 6B). Moreover, the 
percentage of variants presented increases with increasing MHC heterozygosity (Figure 3C, 
Supplementary Figure 7). Within the cohort, 329 patients had pathogenic cancer-related 
mutations (see Methods), with an average of 2.8 such variants per patient among those 
patients. Consistent with prior work demonstrating a relative paucity of peptide presentation 
from cancer driver mutations (60), we find that a smaller number (approximately 68.5%) of driver 
variants in this cohort yielded neoepitopes, with only 10.4% of neopeptides from these variants 
on average being predicted to bind to any of a patient’s HLA alleles (Figure 3). 
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Figure 1: Per-patient distribution of mutation and neoepitope burdens across 7 cancer types. A) 
The number of somatic DNA variants per patient (scaled for sequence coverage) are shown 
along the y-axis, with each dot representing an individual cancer patient (cancer types shown 
along the x-axis). Note that MMR-deficient cancers here represent a cohort of 3 different cancer 
types including colon, endometrial, and thyroid with evidence of mismatch repair deficiency as 
determined by polymerase chain reaction or immunohistochemistry (9). Red colored dots 
correspond to patients with microsatellite instability as determined by mSINGS (see Methods). 
B) The number of putative neoepitopes per patient are shown along the y-axis, with each dot 
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representing an individual cancer patient (cancer types shown along the x-axis). Abbreviations 
as follows: MMR=mismatch repair. 
 

 
Figure 2: Per-patient distribution of overall tumor variant burden and its components. The 
number of total tumor variants per patient is shown along the y-axis, with the numbers of 
retained introns (RI), tumor-specific exon-exon junctions (Jx), insertions/deletions (Indel), and 
single nucleotide variants (SNV) shown in green, blue, red, and purple, respectively. The data 
for each individual patient is displayed as stacked bars along the x-axis, sorted from left to right 
by the number of single nucleotide variants (from highest to lowest). 
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Figure 3: Robustness of putative neoepitope presentation. A) The number of unique 
patient-matched HLA alleles that are predicted to present an individual neoepitope is shown 
along the x-axis, with the y-axis (log-scale) corresponding to the overall percent of neoepitopes 
sharing that same robustness of HLA presentation. Red and blue curves denote the best fit line 
based on linear regression for all neoepitopes and those resulting from cancer driver mutations, 
respectively. The surrounding red and light blue shading denotes the 95% confidence interval 
for all and driver-derived neoepitopes, respectively. Individual data points are shown as open 
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circles, whose diameter corresponds to the number of neoepitopes as shown by the 
corresponding scale at right. B) The total number of unique patient-matched HLA alleles that are 
predicted to present one or more neoepitopes arising from a single DNA mutation is shown 
along the x-axis, with the y-axis corresponding to the overall percent of mutations sharing that 
same robustness of HLA presentation. Red and blue curves denote the best fit line based on 
local polynomial regression for all mutations and cancer driver mutations, respectively. The 
surrounding red and light blue shading denotes the 95% confidence interval for all and driver 
mutations, respectively. Individual data points are shown as open circles, whose diameter 
corresponds to the number of mutations as shown by the corresponding scale at right. C) The 
percentage of total variants that are predicted to be presented by one or more patient-matched 
HLA alleles is shown along the y-axis, with the x-axis corresponding to the number of unique 
HLA alleles for that patient. Red and blue curves denote the best fit line based on linear 
regression for all mutations and cancer driver mutations, respectively. The surrounding red and 
light blue shading denotes the 95% confidence interval for all and driver mutations, respectively. 
Individual data points are shown as open circles, whose diameter corresponds to the number of 
mutations as shown by the corresponding scale at right. Note that a predicted HLA binding 
affinity threshold of ≤500nM was used in all cases (see Methods). 
 
Tumor variant and neoepitope burdens as predictors of response and survival 

We next sought to quantify immunotherapy response rate as a function of TMB, TVB, 
and neoepitope burden. Using disease-specific logistic regression models, we found that neither 
TVB nor neoepitope burden were significant predictors of immunotherapy response (see Table 
1). In contrast, for NSCLC patients there was a 120.8% increase in the odds of response per 
log2 fold change in TMB (p = 0.034), though these results were not significant upon adjustment 
for multiple hypothesis testing (p=0.053). Similar effects were not seen for melanoma (p = 
0.267) or RCC (p = 0.973). 
 

 
Table 1: Immunotherapy (αPD1 and αCTLA4) response probability based on logistic regression 
models of tumor mutational burden (TMB), neoepitope burden (Neoepitopes), and combined 
tumor DNA- and RNA- variant burden (TVB) for melanoma, non-small cell lung cancer (NSCLC) 
and renal cell carcinoma (RCC). P-values are reported on a per-model basis without correction 
for multiple comparisons per cancer type. 
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Coverage-adjusted SNV burden predicted response to immunotherapy better than overall TMB 
or any indel burden for all cancer types except RCC, for which coverage-adjusted burden of 
in-frame indels was the most predictive burden (see Supplementary Figure 8). Neoepitope 
burden alone predicted response to immunotherapy comparatively well as TMB, calculated 
using both raw and coverage-adjusted counts (see Figure 4). There was no difference in 
predictive capacity between Class I vs Class II epitope burdens (see Supplementary Figure 9). 
Similarly, incorporation of proteasomal cleavage, TAP transport, and cell surface presentation 
did not improve predictive capacity compared to TMB and neoepitope burden (see 
Supplementary Figure 10). We also weighted neoepitope burden by several criteria 
hypothesized to be related to increased immunogenicity, including: number of amino acid 
mismatches per peptide, number of MHC alleles predicted to bind each peptide, and number of 
TCGA-expressed transcripts of origin for the peptide (see Methods). In all cases, these 
weighted burdens yielded similar predictive capabilities to TMB or unadjusted neoepitope 
burden, though mismatch- and mismatch-by-allele-weighted neoepitope burdens incrementally 
improved predictive capacity for RCC patients, and allele-weighted neoepitope burden 
incrementally improved predictive capacity for NSCLC patients (see Figure 4). Interestingly, 
global assessment of HLA presentation (unique HLA allele count per patient) added slight 
predictive capacity to TMB in melanoma, RCC, and NSCLC patients (see Figure 4). However, 
the capacity for any of these metrics to predict patient-level immunotherapy response varied 
substantially by cancer type, with the highest predictive power for the NSCLC cohort, but a very 
limited predictive capability in melanoma, RCC, or when pooled across all cancer types (see 
Figure 4). Indeed, TMB as calculated by consensus variant calls predicts immunotherapy 
response more poorly than the experimental noise of the breadth of genomic coverage (Mbp) 
obtained via DNA sequencing in melanoma, RCC, and when pooled across cancer types (see 
Supplementary Figure 11). 
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Figure 4: Receiver operating characteristic curves of predictive capacity of 11 different 
mutation/neoepitope burden metrics. The upper panels depict the true positive rate (sensitivity, 
y-axis) and false positive rate (1-specificity, x-axis) for each metric across all probability 
thresholds. The four panels represent models for four different cohorts based on different 
subsets of patients: All Cancers, which includes all patients, and Melanoma, RCC, and NSCLC, 
which include only melanoma, RCC, and NSCLC patients, respectively. The table in the lower 
panel reports the area-under-the-curve (AUC) for each metric (columns) applied to a different 
cancer cohort (rows), with colors above the methods indicating the color of the corresponding 
curve in the upper panels. TMB is used as a predictor in both raw (TMB1) and 
coverage-adjusted (TMB2) forms, as well as in a multiplicative combination with patient HLA 
allele count (TMB1*HLA). Neoepitope burden (NB) is used as a predictor in both raw and 
extended formats (see Methods). Extended neoepitope burden metrics include number of amino 
acid mismatches (M), number of HLA alleles predicted to bind each epitope (A), and number of 
transcripts expressing each epitope in TCGA (T), along with their multiplicative combinations. 
Bold-faced values indicate the best value for each cancer cohort. 
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For patients with tumor RNA-seq data, we also investigated how TVB and RNA-derived 
neoepitopes predicted response to immunotherapy (see Figure 5). We specifically considered 
tumor-specific junction burden, retained intron burden, retained intron neoepitope burden, and 
patient-specific expression-weighted neoepitope burdens (see Methods). As before, the vast 
majority of metrics (e.g. TMB, TVB) were all comparable in terms of predictive performance. 
However, considering these RNA-derived features did not increase predictive capacity over 
TMB, with the exception of the burden of tumor-specific splicing junctions, which yielded an 
increase in predictive performance for RCC patients (see Figure 5). 
 

 
Figure 5: Receiver operating characteristic curves of predictive capacity of 9 different 
variant/neoepitope burden metrics. The upper panels depict the true positive rate (sensitivity, 
y-axis) and false positive rate (1-specificity, x-axis) for each metric across all probability 
thresholds. The three panels represent models for three different cohorts based on different 
subsets of patients: All Cancers, which includes all patients, and Melanoma, and RCC, which 
include only melanoma and RCC patients, respectively. The table in the lower panel reports the 
area-under-the-curve (AUC) for each metric (columns) applied to a different cancer cohort 
(rows), with colors above the methods indicating the color of the corresponding curve in the 
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upper panels. TMB and TVB are used as predictors in the raw formats. Jx represents the 
number of tumor-specific junctions per patient, and RI represents the number of retained introns 
per patient, with RI epitopes representing neoepitopes derived from those retained introns. 
Neoepitope burden is used as predictor in its RNA-feature-extended formats (see Methods). 
Extended neoepitope burden metrics include number of expressed transcripts for each epitope 
(E), number of amino acid mismatches (M), number of HLA alleles predicted to bind each 
epitope (A), and number of transcripts expressing each epitope in TCGA (T), along with their 
multiplicative combinations.  
 

Using an established threshold for identifying tumors with “high” TMB, namely TMB that 
exceeds the disease-matched 80th percentile (2), we investigated the metric’s capacity to 
predict overall survival in the context of immune checkpoint blockade therapy. While not 
statistically significant (p > 0.05, based on Cox proportional hazard modeling), we saw a clear 
trend towards improved overall survival among individuals with renal cell carcinoma and a high 
TMB (Figure 6A). Additionally, model comparisons using different TMB percentile cutoffs 
suggest that differences in overall survival for high and low TMB groups may be threshold 
dependent and alter model significance (see Supplementary Figure 12). Notably, the lack of a 
significant TMB effect may be due to insufficient sample size as the number of patients 
qualifying as high TMB decreases steadily with increasing threshold. In contrast, the same trend 
is not seen between TMB and overall survival among a separate cohort of patients (TCGA) in 
the absence of immunotherapy (Figure 6A). We also observed no differences in survival among 
individuals with metastatic melanoma (Figure 6B). In both cases, TVB and neoepitope burden 
demonstrate comparable capacities to stratify overall survival as TMB (Supplementary Figures 
13 and 14). 
 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 28, 2020. ; https://doi.org/10.1101/665026doi: bioRxiv preprint 

https://paperpile.com/c/m1pUfX/Sr5D
https://doi.org/10.1101/665026
http://creativecommons.org/licenses/by/4.0/


 
 

 
Figure 6: Overall survival among cancer patients with high and low TMB. A) Kaplan-meier 
curves for immunotherapy-treated (+ICI) and immunotherapy-naive (-ICI) Stage III-IV melanoma 
patients with high TMB (>80th percentile) are shown in red, and dark gray, respectively, while 
immunotherapy-treated (+ICI) and immunotherapy-naive (-ICI) patients with low TMB (≤80th 
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percentile) are shown in blue and light gray, respectively. The underlying table corresponds to 
the number of patients at risk of death at each timepoint. Note: TCGA SKCM patient data (-ICI) 
is censored at 2,885 days (maximal follow-up in immunotherapy-treated cohort) to emphasize 
comparable time-scales. B) Kaplan-meier curves for the immunotherapy-treated (+ICI) and 
immunotherapy-naive (-ICI) metastatic (Stage IV) renal cell carcinoma patients with high TMB 
(>80th percentile) are shown in red, and dark gray, respectively, while immunotherapy-treated 
(+ICI) and immunotherapy-naive (-ICI) patients with low TMB (≤80th percentile) are shown in 
blue and light gray, respectively. The underlying table corresponds to the number of patients at 
risk of death at each timepoint. Note: TCGA KIRC patient data is censored at 1,724 days 
(maximal follow-up in immunotherapy-treated cohort) to emphasize comparable time-scales.  
 
Metric instability of tumor variant and neoepitope burdens 

We find, however, that TMB is not robust across variant calling methods. TMB as 
reported by individual variant calling tools was moderately similar to that reported by consensus 
calls (see Supplementary Figure 15), but variability in per-caller TMB increased with increasing 
number of variants (see Supplementary Figure 16). Additionally, the difference in TMB between 
the highest and lowest counts from individual callers per patient (median difference of 1,840 
variants per patient) reflects a substantial fraction of the overall TMB, accounting for a median 
59.3% of the value in the metric overall (see Methods). 
 
We also compared tumor mutational burden as reported by the authors of the original 
manuscripts from which our cohort originated with our standardized consensus approach. While 
author-reported and consensus values for TMB were significantly correlated (Pearson’s 
product-moment correlation of 0.35, p = 1.99x10 -7; see Supplementary Figure 17), we note that 
author-reported values have a universally higher predictive capacity than we observe using 
consensus data (Supplementary Figure 18). We also find important discrepancies in per-patient 
classification. Approximately 26.2% of patients are incongruously determined to be TMB “high” 
or “low” (using a TMB threshold >80th percentile as per (2)), however as many as 42.23% of 
patients may be dubiously classified using alternative thresholds (e.g. 29th-65th percentiles; see 
Supplementary Figure 19). Consensus and author-reported nonsynonymous mutation burdens 
exhibited a similar extent of correlation as well as per-patient instability of classification 
(Pearson’s product-moment correlation of 0.58, p < 2.2x10 -16; see Supplementary Figures 18 
and 20). The correlation between consensus-derived neoepitope burden and that reported by 
the original manuscripts was weak and not statistically significant (Pearson’s product-moment 
correlation of 0.026, p = 0.70; see Supplementary Figure 21). Moreover, we find that response 
hazard ratios are not stable based on TMB thresholds, a phenomenon especially dramatic in the 
RCC cohort (see Supplementary Figure 12), and consistent with prior findings that a single TMB 
threshold is inappropriate to apply across different cancer types (2). 
 
Finally, we find that the predictive performance of TMB is sensitive to the method(s) used to 
perform variant calling (see Figure 7). Note that the same phenomenon holds true for raw TMB 
counts (see Supplementary Figure 22). While outside the scope of the current manuscript, note 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 28, 2020. ; https://doi.org/10.1101/665026doi: bioRxiv preprint 

https://paperpile.com/c/m1pUfX/Sr5D
https://paperpile.com/c/m1pUfX/Sr5D
https://doi.org/10.1101/665026
http://creativecommons.org/licenses/by/4.0/


 
 

also that the identity of resulting neoepitopes is also highly sensitive to variant calling method 
(see Supplementary Figure 23). 
 

 
Figure 7: Receiver operating characteristic curves of predictive capacity of coverage-adjusted 
TMB from 7 different variant calling methods. The upper panels depict the true positive rate 
(sensitivity, y-axis) and false positive rate (1-specificity, x-axis) for each method across all 
probability thresholds. The four panels represent models for four different cohorts based on 
different subsets of patients: All Cancers, which includes all patients, and Melanoma, RCC, and 
NSCLC, which include only melanoma, RCC, and NSCLC, respectively. The table in the lower 
panel reports the area-under-the-curve (AUC) for each method (columns) applied to a different 
cancer cohort (rows), with colors above the methods indicating the color of the corresponding 
curve in the upper panels. TMB as determined by consensus calling (see Methods) is compared 
to the individual variant calling tools used in consensus calling. RCC=renal cell carcinoma, 
NSCLC=non-small cell lung cancer. 
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DISCUSSION 
To the best of our knowledge, this is the first study to evaluate TMB and correlated 

downstream metrics such as neoepitope burden from whole exome sequencing data using a 
gold standard ensemble approach (31,61) applied to a meta-cohort of immunotherapy-treated 
cancer patients across multiple studies and disease types. This study also introduces the 
concept of tumor variant burden, incorporating potential RNA-derived sources of variants where 
available, and is the first study to estimate immunotherapy response rate as a function of TMB, 
TVB, and neoepitope burden. Moreover, this study is the first to quantitatively evaluate the 
stability of TMB as a metric, and the first to directly compare the predictive capacities of multiple 
TMB and related metrics. 

Ultimately, we show that TMB is a dubious predictor of immunotherapy response, with 
substantial caveats regarding: 1) predictive capacity differences among different cancer types, 
with RCC being no better than random chance, 2) sensitivity of TMB and downstream metrics to 
variant calling methodology, and 3) stability of TMB thresholds and their ability to classify 
patients in a population. This suggests that the prospective clinical utilization of TMB is likely 
subject to many of these same issues, and may result in unintended harms, whether due to 
omission of therapy for individuals with “low” TMB who might nonetheless benefit, or due to 
increased risk of toxicity in a “high” TMB population subject to overuse of immunotherapy. 
Indeed, a recent study of metastatic melanoma patients (62) found significantly different 
burdens of nonsynonymous mutations between disease subgroups, but not between 
progressors/responders, highlighting the instability of this metric. 

With rare exception, we find no added predictive benefit to evaluating more complex bulk 
metrics downstream of TMB. Akin to prior observations, incorporation of HLA genotype diversity 
adds slightly to the predictive capacity of TMB (63). Given the added technical effort and costs 
required to perform these analyses, we conclude that TMB is likely the optimal bulk assessment 
of tumor variation among those tested, though inclusion of HLA diversity data may marginally 
improve estimates. However, such bulk measurements neglect the potential importance of 
individual cancer neoantigens, which recent evidence suggests may be the driving force behind 
response to cancer immunotherapy by eliciting tumor-antigen-specific T cell responses (64). 

This study has several limitations. First, numerous sampling based assays have also 
been used to assess TMB (e.g. (2,65,66)), however, we did not evaluate these data in this 
study, instead focusing on whole exome sequencing data as the prevailing gold standard for 
accurate mutational assessment. Note that these targeted assays would not enable 
incorporation of HLA allelic diversity data into a predictive model. Note also that there is wide 
variability among TMB assay design, analysis, and performance, with the potential for 
overestimation of TMB when using gene-targeted assays (67). Ultimately, along with the 
substantial variability among widely-used targeted assays (11), and the futility of expecting 
universal adoption of a single technique, this study highlights the need for increased 
standardization of TMB interpretation, a subject of active pursuit by the TMB Harmonization 
Project (68). Second, we did not compare TMB in this dataset with other potential predictors of 
immunotherapy response (e.g. based on gene expression (69) or copy number instability (70)), 
however it is possible that TMB could be synergistic with such orthogonal metrics. Third, by 
virtue of the retrospective nature of these data and limited availability of whole exome 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 28, 2020. ; https://doi.org/10.1101/665026doi: bioRxiv preprint 

https://paperpile.com/c/m1pUfX/jDj08+p028
https://paperpile.com/c/m1pUfX/Zxay
https://paperpile.com/c/m1pUfX/zes2
https://paperpile.com/c/m1pUfX/ZaA4
https://paperpile.com/c/m1pUfX/NfFs+Sr5D+bdBn
https://paperpile.com/c/m1pUfX/bELB
https://paperpile.com/c/m1pUfX/NUAY
https://paperpile.com/c/m1pUfX/NhvT
https://paperpile.com/c/m1pUfX/kp2N
https://paperpile.com/c/m1pUfX/Ddh3
https://doi.org/10.1101/665026
http://creativecommons.org/licenses/by/4.0/


 
 

sequencing cohorts, this study cannot be assumed to translate to emerging immunotherapies 
and instead is interpretable exclusively for αPD1 and αCTLA4 therapy. 

While this study is consistent with multiple prior reports demonstrating the importance of 
TMB in predicting immunotherapy response (e.g. (2,71)), the caveats raised herein are of high 
concern for the field overall. Our collective emphasis on TMB is understandable given its 
relative ease of quantification using various techniques, however it is indeed a dubious and 
indirect predictor. Tumors with higher TMB have been hypothesized to have more neoantigens 
that can be recognized by the immune system in response to checkpoint inhibition, yet the data 
presented here and data previously published (2) support the use of substantially different 
“absolute” TMB thresholds for immunotherapy response prediction across different diseases. 
Further, evidence suggests that other genomic factors, such as tumor purity and clonal 
heterogeneity, may further modulate the relationship between TMB and immunotherapy 
response (62,72). This suggests an added layer of as-of-yet undefined complexity not captured 
in the current bulk metrics, and likely related to disease-specific biology. 
 
 
CONCLUSIONS 

In conclusion, we find sufficient cause to suggest that the predictive clinical value of TMB 
should not be overstated or oversimplified. While it is readily quantified, TMB is at best a limited 
surrogate biomarker of immunotherapy response. The data confirms TMB as a reasonable 
predictor in non-small cell lung cancer, and a weak predictor in melanoma. The data does not 
support TMB in isolation as a predictive biomarker for RCC, though it may be feasibly combined 
with HLA allelic diversity to achieve marginal performance. 
 
 
LIST OF ABBREVIATIONS 
αCTLA4: Anti-cytotoxic T-lymphocyte-associated protein 4, αPD1: Anti-programmed cell death 
protein 1, AUC: Area Under the Curve, COAD: Colon Adenocarcinoma, GATK: Genome 
Analysis Toolkit, GTEx: Genotype Tissue Expression, HLA: Human Leukocyte Antigen, Indel: 
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Lung Adenocarcinoma, LUSC: Lung Squamous Cell Carcinoma, MHC: Major Histocompatiblity 
Complex, MMR: Mismatch Repair, NSCLC: Non Small Cell Lung Cancer, PRAD: Prostate 
Adenocarcinoma, RCC: Renal Cell Carcinoma, RI: Retained intron, RNA-seq: RNA sequencing, 
ROC: Receiver Operating Characteristic, SKCM: Skin Cutaneous Melanoma, SRA: Sequence 
Read Archive, TCGA: The Cancer Genome Atlas, THCA: Thyroid carcinoma, TMB: Tumor 
Mutational Burden, TPM: Transcripts Per Million, TVB: Tumor Variant Burden, UCEC: Uterine 
Corpus Endometrial Carcinoma, VCF: Variant Call Format, WES: Whole Exome Sequencing 
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SUPPLEMENTARY DATA 
 

Cancer type Number of patients Number of tumor 
samples 

Reference 

Melanoma 15 15 Amaria et al. 

Melanoma 3 6 Carreno et al.* 

Melanoma 17 17 Eroglu et al. 

Melanoma 16 16 Gao et al. 

Prostate 10 10 Graff et al. 

Melanoma 38 (27) 39 (28) Hugo et al.* 

Colon, endometrial, 
thyroid 

28 29 Le et al. 

RCC 57 (17) 58 (17) Miao et al. 

NSCLC 34 34 Rizvi et al. 

Melanoma 35 53 Roh et al. 

Melanoma 64 (20) 64 (20) Snyder et al.* 

Melanoma 110 (40) 110 (40) Van Allen et al.* 

Melanoma 4 6 Zaretsky et al. 

 
Supplementary Table 1: Summary of patients samples used for analysis. Publicly available 
WES data from 12 studies was used to determine TMB (see Materials and Methods). We 
summarize the study which produced each data set, the cancer types represented, and the 
number of patients/tumor samples sequenced. Studies that had complementary RNA 
sequencing reads available for at least a subset of patients are indicated by an asterisk in the 
“Reference” column, and the number of samples with complementary RNA sequencing data are 
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indicated in parentheses in the “Number of patients” and “Number of tumor samples” columns if 
different than the number of samples with WES. 
 
Supplementary Tables 2-7 summarize the results of our analyses of genomic data, and they are 
available in Additional File 1. Column descriptions for these tables follow. For privacy, we have 
only included summary data in these tables and not identities of predicted variants or their 
resulting neopeptides. 
 
Supplementary Table 2: Summary of patient clinical and DNA variant data. The “Patient” column 
indicates the patient identifier, the “Tumor_ID” column indicates the tumor sample identifier(s), 
and the “Normal_ID” column indicates the normal sample identifier(s); for patients with more 
than one tumor sample, median values are presented in subsequent columns of the table where 
relevant. The “Disease” column indicates the cancer type of the patient, and the “Study” column 
indicates the first author of the study from which the genomic data originated. The “Coverage” 
column indicates the Mbp of genome covered by at least 6 sequencing reads. The 
“Total_mutations” column indicates the total number of somatic DNA variants, the “SNVs” 
column indicates the number of single nucleotide variants, the “Inframe_insertions” column 
indicates the number of in-frame insertion variants, the “Inframe_deletions” column indicates the 
number of in-frame deletion variants, the “Frameshift_insertions” column indicates the number 
of frameshifting insertion variants, the “Frameshift_deletions” column indicates the number of 
frameshifting deletion variants, and the “Nonsynonymous_SNVs” indicates the number of single 
nucleotide variants resulting in a protein-level change; all of these variants burdens are the 
result of consensus variant calling from variants predicted by MuSE, MuTect, Pindel, RADIA, 
SomaticSniper, and VarScan 2. For each individual variant caller, there are four columns 
summarizing their total variant counts, SNVs, insertions, and deletions; for example, the 
“Muse_variants” column indicates the total number of variants predicted by MuSE, the 
“Muse_SNVs” column indicates the number of single nucleotide variants predicted by MuSE, 
the “Muse_deletions” column indicates the number of deletions predicted by MuSE, and the 
“Muse_insertions” column indicates the number of insertions predicted by MuSE. The 
“Tumor_HLA1_count” column indicates the number of unique MHC Class I alleles for the 
patient, and the “Tumor_HLA2_count” column indicates the number of unique MHC Class II 
alleles for the patient. The “MSI_status” column indicates whether the patient was MSI-high as 
predicted by mSINGs (binary). The “Cancer_stage” column indicates the cancer stage of the 
patient at the time of the original study. The “aPD1_treatment” column indicates whether the 
patient was given anti-PD1 treatment (binary) over the course of the original study, the 
“aPDL1_treatment” column indicates whether the patient was given anti-PDL1 treatment 
(binary) over the course of the original study, the “aCTLA4_treatment” column indicates whether 
the patient was given anti-CTLA4 treatment (binary) over the course of the original study, and 
the “Other_treatment” column indicates whether the patient was given any other treatment 
(binary) over the course of the original study. The “aCTLA4_response” column indicates 
whether the patient responded to anti-CTLA4 treatment (binary) over the course of the original 
study, the “aPD1_response” column indicates whether the patient responded to anti-PD1 
treatment (binary) over the course of the original study, and the “Combined_response” column 
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indicates whether the patient responded to any treatment (binary) over the course of the original 
study. The “PFS” column indicates the number of days the patient went without progression of 
disease over the course of the original study, the “OS” column indicates the number of days the 
patient was alive over the course of the original study, and the “Censoring_days” column 
indicates the number of days the patient was monitored over the course of the original study. 
The “Vital_status” column indicates whether the patient was deceased (binary) at the end of the 
original study, the “OS_event” column indicates whether the patient had a disease-related death 
(binary) during the course of the original study for patients, the “PFS_event” column indicates 
whether the patient experienced disease progression (binary) during the course of the original 
study, and the “Censoring_status” column indicates whether the progression/survival data for 
the patient was censored (binary) at the end of the original study. The 
“Original_nonsynonymous_mutations” column indicates the burden of nonsynonymous somatic 
mutations reported by the authors of the original study, the “Original_total_mutations” column 
indicates the burden of total somatic mutations reported by the authors of the original study, and 
the “Original_neoantigens” column represents the burden of neoantigens reported by the 
authors of the original study. The “Total_unphased_neoepitopes” column indicates the number 
of neopeptide sequences predicted from consensus somatic variants if haplotype phasing of 
variants is not considered, and the “Total_comprehensive_neoepitopes” column indicates the 
number of neopeptide sequences predicted from consensus somatic variants if haplotype 
phasing of variants is considered. The “MHCnuggets_eps” column indicates the number of 
consensus-calling-derived neoepitopes predicted to bind to one or more of a patient’s MHC 
Class I or Class II alleles as predicted by MHCnuggets, the “MHCnuggets_ClassI_eps” column 
indicates the number of consensus-calling-derived neoepitopes predicted to bind to one or more 
of a patient’s MHC Class I alleles as predicted by MHCnuggets, and the 
“MHCnuggets_ClassII_eps” column indicates the number of consensus-calling-derived 
neoepitopes predicted to bind to one or more of a patient’s MHC Class II alleles as predicted by 
MHCnuggets. The “Manuscript_binding_eps” column indicates the number of 
consensus-calling-derived neoepitopes predicted using the same peptide size and HLA allele 
restrictions as the authors of the original study (see Methods). 
 
Supplementary Table 3: Per-patient summary of driver variants and neoepitopes. The “Patient” 
column indicates the patient identifier, and the “Tumor_ID” column indicates the tumor sample 
identifier(s); for patients with more than one tumor sample, median values are presented in 
subsequent columns of the table. The “Total_clinvar_variants” column indicates the number of 
variants annotated as “pathogenic” or “likely pathogenic” in cancer by ClinVar, and the 
“Total_clinvar_neopeptides” column indicates the number of neopeptide sequences derived 
from these variants. The “Presented_clinvar_variants” column indicates the number of variants 
in the “Total_clinvar_variants” column that have at least one neopeptide predicted to bind to one 
or more of the patient’s MHC Class I or Class II alleles. The “Presented_clinvar_epitopes” 
column indicates the number of neopeptides in the “Total_clinvar_neopeptides” column that are 
predicted to bind to one or more of the patient’s MHC Class I or Class II alleles. 
 
Supplementary Table 4: Modified neoepitope burdens. The “Patient” column indicates the 
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patient identifier, and the “Tumor_ID” column indicates the tumor sample identifier(s); for 
patients with more than one tumor sample, median values are presented in subsequent 
columns of the table. The “Epitope_by_mismatch_burden” column sums for each neopeptide 
the number of amino acids changes it contains. The “Epitope_by_allele_burden” column sums 
for each neopeptide the number of MHC Class I or Class II alleles predicted to bind to that 
neopeptide. The “Epitope_by_expression_burden” column sums for each neopeptide the 
number of transcripts expressed in patient RNA-seq data (where available) that would give rise 
to that neopeptide. The “Epitope_by_TCGA_burden” sums for each neopeptide the number of 
transcripts expressed in the matched TCGA cancer type (see Methods) that would give rise to 
that neopeptide. The “Epitope_by_mismatch_and_allele_burden” column sums for each 
neopeptide the number of amino acid changes it contains multiplied by the number of MHC 
Class I or Class II alleles predicted to bind to that neopeptide. The 
“Epitope_by_mismatch_and_expression_burden” column sums for each neopeptide the number 
of amino acid changes it contains multiplied by the number of patient-expressed transcripts that 
would give rise to that neopeptide. The “Epitope_by_mismatch_and_TCGA_burden” column 
sums for each neopeptide the number of amino acid changes it contains multiplied by the 
number of transcripts expressed in the matched TCGA cancer type that would give rise to that 
neopeptide. The “Epitope_by_allele_and_expression_burden” column sums for each 
neopeptide the number of MHC Class I or Class II alleles predicted to bind to that neopeptide 
multiplied by the number of patient-expressed transcripts that would give rise to that neopeptide. 
The “Epitope_by_allele_and_TCGA_burden” column sums for each neopeptide the number of 
MHC Class I or Class II alleles predicted to bind to that neopeptide multiplied by the number of 
transcripts expressed in the matched TCGA cancer type that would give rise to that neopeptide. 
The “Epitope_by_mismatches_alleles_and_expression_burden” column sums for each 
neopeptide the number of amino acid changes it contains multiplied by the number of MHC 
Class I or Class II alleles predicted to bind to that neopeptide multiplied by the number of 
patient-expressed transcripts that would give rise to that neopeptide. The 
“Epitope_by_mismatches_alleles_and_TCGA_burden” column sums for each neopeptide the 
number of amino acid changes it contains multiplied by the number of MHC Class I or Class II 
alleles predicted to bind to that neopeptide multiplied by the number of transcripts expressed in 
the matched TCGA cancer type that would give rise to that neopeptide. 
 
Supplementary Table 5: Tumor-specific splice junction burdens. The “Patient” column indicates 
the patient identifier, and the “Tumor_ID” column indicates the tumor sample identifier(s). The 
“Jx_burden” column indicates the number of tumor-specific splice junctions per patient; for 
patients with more than one tumor sample, median values are presented. 
 
Supplementary Table 6: Tumor-specific retained intron and retained intron epitope burdens. The 
“Patient” column indicates the patient identifier, and the “Tumor_ID” column indicates the tumor 
sample identifier(s); for patients with more than one tumor sample, median values are presented 
in subsequent columns of the table. The “Intron_burden” column indicates the number of 
tumor-specific retained introns per patient. The “Intron_epitope_burden” indicates the number of 
neopeptide sequences associated with tumor-specific retained introns for that patient, and the 
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“Binding_intron_epitope_burden” indicates the number of these peptides predicted to bind to 
one or more of the patient’s MHC Class I or Class II alleles. 
 
Supplementary Table 7: Processed neoepitope burdens. The “Patient” column indicates the 
patient identifier, and the “Tumor_ID” column indicates the tumor sample identifier(s). The 
“NetCTLpan_epitopes” column represents the number of neopeptides predicted by NetCTLpan 
to be proteasomally processed, TAP transported, and cell-surface presented for at least one 
patient MHC Class I allele; for patients with more than one tumor sample, the median value 
across all samples is presented in this column. 
 

 
Supplementary Figure 1: Visual depiction of potential splice variants captured. The top row 
shows the annotated “normal” splicing for a simulated gene with 3 exons; this splicing is 
represented by junctions (jxs) 1 and 2. A potential exon skip is represented on row 2, where 
exon 2 is skipped. Possible alternate 5’ and 3’ splice sites are shown in rows 3 and 4, and a 
retained intron between exons 1 and 2 in row 5. 
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Supplementary Figure 2: Per-patient distribution of raw mutation burdens across 7 cancer types. 
The raw number of somatic DNA variants per patient are shown along the y-axis, with each dot 
representing an individual cancer patient (cancer types shown along the x-axis). Note that 
MMR-deficient cancers here represent a cohort of 3 different cancer types including colon, 
endometrial, and thyroid with evidence of mismatch repair deficiency as determined by 
polymerase chain reaction or immunohistochemistry (9). Red colored dots correspond to 
patients with microsatellite instability as determined by mSINGS (see Methods). Abbreviations 
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as follows: RCC=renal cell carcinoma, NSCLC=non-small cell lung cancer, MMR=mismatch 
repair. 
 
 

 
Supplementary Figure 3: Per-patient distribution of insertion and deletion (indel) burdens across 
7 cancer types. A) The number of somatic frameshift (FS) indels per patient are shown along 
the y-axis, with each dot representing an individual cancer patient (cancer types shown along 
the x-axis). Note that MMR-deficient cancers here represent a cohort of 3 different cancer types 
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including colon, endometrial, and thyroid with evidence of mismatch repair deficiency as 
determined by polymerase chain reaction or immunohistochemistry (9). Red colored dots 
correspond to patients with microsatellite instability as determined by mSINGS (see Methods). 
B) The number of somatic in-frame indels per patient are shown along the y-axis, with each dot 
representing an individual cancer patient (cancer types shown along the x-axis). Abbreviations 
as follows: RCC=renal cell carcinoma, NSCLC=non-small cell lung cancer, MMR=mismatch 
repair. 
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Supplementary Figure 4: TMB correlates with neoepitope burden. Tumor mutational burden 
(x-axis) and neoepitope burden (y-axis) are strongly correlated (Pearson product-moment 
correlation of 0.63, p < 2.2x10-16). The best fit line as determined by linear regression is shown 
in red, with its equation in the bottom right corner. 
 

 
Supplementary Figure 5: Per-patient distribution of overall tumor neoepitope burden and its 
components. The number of total tumor neoepitopes per patient is shown along the y-axis, with 
the numbers of neoepitopes derived from retained introns (RI) and somatic DNA variants (DNA) 
shown in green and purple, respectively. The data for each individual patient is displayed as 
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stacked bars along the x-axis, sorted from left to right by the number of neoepitopes derived 
from somatic DNA variants (from highest to lowest). 
 
 

 
Supplementary Figure 6: Robustness of putative neoepitope presentation among 5 different 
cancer groups. A) The number of unique patient-matched HLA alleles that are predicted to 
present an individual neoepitope is shown along the y-axis, with each violin plot distribution 
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corresponding to a different cancer group along the x-axis, as labeled. Note that MMR-deficient 
cancers here represent a cohort of 3 different cancer types including colon, endometrial, and 
thyroid with evidence of mismatch repair deficiency as determined by polymerase chain reaction 
or immunohistochemistry (9). B) The total number of unique patient-matched HLA alleles that 
are predicted to present one or more neoepitopes arising from a single DNA mutation is shown 
along the y-axis, with each violin plot distribution corresponding to a different cancer group 
along the x-axis, as labeled. Note that the width of each violin plot at each point along the y-axis 
corresponds to the relative quantity of data points in that group for that value of the y-axis. 
Furthermore, the lower and upper borders of the box within each violin plot corresponds to the 
25th and 75th percent quantiles of the dataset for that group, respectively, with the median 
value shown as a horizontal black line within the box. Note that a predicted HLA binding affinity 
threshold of ≤500nM was used in all cases (see Methods). 
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Supplementary Figure 7: Robustness of putative neoepitope presentation. The median number 
of unique patient-matched HLA alleles that are predicted to present one or more neoepitopes 
arising from a single DNA mutation is shown along the y-axis, with the x-axis corresponding to 
patient-specific HLA heterozygosity (as the number of unique MHC I and II alleles per patient). 
Red curve denotes the best fit line based on linear regression, with surrounding gray shading 
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denoting the 95% confidence interval. Note that a predicted HLA binding affinity threshold of 
≤500nM was used in all cases (see Methods). 
 

 
Supplementary Figure 8: Receiver operating characteristic curves of predictive capacity of 5 
different coverage-adjusted variant burden metrics. The upper panels depict the true positive 
rate (sensitivity, y-axis) and false positive rate (1-specificity, x-axis) for each metric across all 
probability thresholds. The three panels represent models for three different cohorts based on 
different subsets of patients: All Cancers, which includes all patients, and Melanoma, and RCC, 
which include only melanoma and RCC patients, respectively. The table in the lower panel 
reports the area-under-the-curve (AUC) for each metric (columns) applied to a different cancer 
cohort (rows), with colors above the methods indicating the color of the corresponding curve in 
the upper panels. All represents all DNA variants (SNVs and indels of all types), SNVs includes 
all single nucleotide variants, Indels includes all insertion/deletion variants, FS indels includes all 
frameshifting insertions and deletions, and In-frame indels includes all in-frame insertions and 
deletions. 
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Supplementary Figure 9: Receiver operating characteristic curves of predictive capacity of MHC 
Class I vs. MHC Class II neoepitope burdens. The upper panels depict the true positive rate 
(sensitivity, y-axis) and false positive rate (1-specificity, x-axis) for each metric across all 
probability thresholds. The three panels represent models for three different cohorts based on 
different subsets of patients: All Cancers, which includes all patients, and Melanoma, and RCC, 
which include only melanoma and RCC patients, respectively. The table in the lower panel 
reports the area-under-the-curve (AUC) for each metric (columns) applied to a different cancer 
cohort (rows), with colors above the methods indicating the color of the corresponding curve in 
the upper panels. 
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Supplementary Figure 10: Receiver operating characteristic curves of predictive capacity of 
processed neoepitope burden. The upper panels depict the true positive rate (sensitivity, y-axis) 
and false positive rate (1-specificity, x-axis) for genomic coverage across all probability 
thresholds. The four panels represent models for four different cohorts based on different 
subsets of patients: All Cancers, which includes all patients, and Melanoma, RCC, and NSCLC, 
which include only melanoma, RCC, and NSCLC patients, respectively. The table in the lower 
panel reports the area-under-the-curve (AUC) for coverage (right column) applied to a different 
cancer cohort (rows). RCC=renal cell carcinoma, NSCLC=non-small cell lung cancer. 
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Supplementary Figure 11: Receiver operating characteristic curves of predictive capacity of Mbp 
of genomic coverage. The upper panels depict the true positive rate (sensitivity, y-axis) and 
false positive rate (1-specificity, x-axis) for genomic coverage across all probability thresholds. 
The four panels represent models for four different cohorts based on different subsets of 
patients: All Cancers, which includes all patients, and Melanoma, RCC, and NSCLC, which 
include only melanoma, RCC, and NSCLC patients, respectively. The table in the lower panel 
reports the area-under-the-curve (AUC) for coverage (right column) applied to a different cancer 
cohort (rows). RCC=renal cell carcinoma, NSCLC=non-small cell lung cancer. 
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Supplementary Figure 12: Variation in estimated hazard ratio based on TMB threshold 
selection. For melanoma and RCC separately, cox proportional hazard models were fit 
comparing patients above and below each TMB percentile cutoff at 2% intervals. The relative 
hazard ratio for those above the threshold compared to those below the threshold was plotted, 
with red representing models with corresponding unadjusted p-values < 0.05. 
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Supplementary Figure 13: Overall survival among melanoma patients with high and low tumor 
variant burden (TVB). Kaplan-meier curves for the immunotherapy-treated patients with high 
TVB (≥80th percentile) and TVB burden (<80th percentile) are shown in red and blue, 
respectively. The underlying table corresponds to the number of patients at risk of death at each 
timepoint. 
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Supplementary Figure 14: Overall survival among melanoma and renal cell carcinoma patients 
with high and low neoepitope burden. A) Overall survival among melanoma patients with high 
and low neoepitope burden. Kaplan-meier curves for the immunotherapy-treated patients with 
high neoepitope burden (≥80th percentile) and low neoepitope burden (<80th percentile) are 
shown in red and blue, respectively. The underlying table corresponds to the number of patients 
at risk for each timepoint. B) Overall survival among metastatic renal cell carcinoma patients 
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with high and low neoepitope burdens. Kaplan-meier curves for the immunotherapy-treated 
patients with high neoepitope burden (≥80th percentile) and low neoepitope burden (<80th 
percentile) are shown in red and blue, respectively. The underlying table corresponds to the 
number of patients at risk for each timepoint.  
 

 
Supplementary Figure 15: Pairwise differences in normalized total mutation burden as 
determined by 7 different computational approaches (see Methods). Each computational 
approach is identified along the diagonal panels, while the values in the upper panels denote 
the Pearson correlation coefficients between every pairwise combination of computational 
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approaches (identified by corresponding row and column). The three red asterisks denote 
significant correlation at the p < 0.001 level. The scatterplots in the lower panels denote the 
TMB as calculated by each pairwise combination of computational approaches, with the x- and 
y-axes corresponding to the TMB calculated by the approach identified by the corresponding 
column and row, respectively; each open circle represents a single patient datapoint. Note that 
the red lines correspond to the best fit linear model. 
 

 
Supplementary Figure 16: Variation in somatic mutation count increases with increased TMB 
from consensus variant calls. The median absolute deviation (MAD) in variant count across 6 
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variant calling tools used to determine consensus variant calls (y-axis, see Methods) increases 
with increasing TMB as determined by consensus calling (x-axis). The best fit line as 
determined by linear regression is shown in red, with its equation in the bottom right corner. 
 

 
Supplementary Figure 17: Author-reported total mutation burden correlates with consensus 
TMB. The total mutational burden as described by the authors of the original manuscripts from 
which the cohort derives (y-axis) correlates with our TMB derived from consensus variant calling 
(x-axis, Pearson product-moment correlation of 0.35, p = 1.99x10-7). The best fit line as 
determined by linear regression is shown in red, with its equation in the bottom right corner. 
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Supplementary Figure 18: Receiver operating characteristic curves of predictive capacity of 
author-reported mutation and neoepitope burdens. The upper panels depict the true positive 
rate (sensitivity, y-axis) and false positive rate (1-specificity, x-axis) for each method across all 
probability thresholds. The four panels represent models for four different cohorts based on 
different subsets of patients: All Cancers, which includes all patients, and Melanoma, RCC, and 
NSCLC, which include only melanoma, RCC, and NSCLC patients, respectively. The table in 
the lower panel reports the area-under-the-curve (AUC) for each method (columns) applied to a 
different cancer cohort (rows), with colors above the methods indicating the color of the 
corresponding curve in the upper panels. Bold-faced values indicate the best value for each 
cancer cohort. RCC=renal cell carcinoma, NSCLC=non-small cell lung cancer. 
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Supplementary Figure 19: Cohort-level disagreement in classification of individual patients as 
TMB or neoepitope burden “high” v. “low”. TMB and neoepitope burdens were calculated using 
a standardized consensus approach (see Methods) and were compared with author-reported 
values from the original cohort source studies. The overall disagreement between classifications 
of consensus and author-reported data (y-axis) was calculated using different percentile 
thresholds (x-axis) to classify each individual as e.g. TMB “high” or “low”. This process was 
repeated for all mutations (black line), nonsynonymous mutations (gray line), and putative 
neoantigens (blue line). 
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Supplementary Figure 20: Author-reported nonsynonymous mutation burden correlates with 
nonsynoymous variants from consensus calling. The nonsynonymous mutational burden as 
described by the authors of the original manuscripts from which the cohort derives (y-axis) 
correlates with our consensus variant calling-derived nonsynonymous mutation burden (x-axis, 
Pearson product-moment correlation of 0.58, p < 2.2x10-16). The best fit line as determined by 
linear regression is shown in red, with its equation in the bottom right corner. 
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Supplementary Figure 21: Author-reported neoepitope burden correlates with neoepitopes 
derived from variants from consensus calling. The neoepitope burden as described by the 
authors of the original manuscripts from which the cohort derives (y-axis) correlates with our 
consensus variant calling-derived neoepitope burden (x-axis, Pearson product-moment 
correlation of 0.026, p = 0.70). The best fit line as determined by linear regression is shown in 
red, with its equation in the bottom right corner. 
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Supplementary Figure 22: Receiver operating characteristic curves of predictive capacity of 
TMB from 7 different variant calling methods. The upper panels depict the true positive rate 
(sensitivity, y-axis) and false positive rate (1-specificity, x-axis) for each method across all 
probability thresholds. The four panels represent models for four different cohorts based on 
different subsets of patients: All Cancers, which includes all patients, and Melanoma, RCC, and 
NSCLC, which include only melanoma, RCC, and NSCLC patients, respectively. The table in 
the lower panel reports the area-under-the-curve (AUC) for each method (columns) applied to a 
different cancer cohort (rows), with colors above the methods indicating the color of the 
corresponding curve in the upper panels. TMB as determined by consensus calling (see 
Methods) is compared to the individual variant calling tools used in consensus calling. 
Bold-faced values indicate the best value for each cancer cohort. RCC=renal cell carcinoma, 
NSCLC=non-small cell lung cancer. 
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Supplementary Figure 23: Detailed comparison of the complete set of neopeptide 
sequences predictions from MuSE, Mutect, Pindel, RADIA, SomaticSniper, VarScan, 
and consensus variant calling. Patterns of agreement or disagreement among groups of 
neopeptide sequences predicted from variants derived from different combinations of 
tools across all patients are shown along each column, and each row indicates the 
neopeptide predictions associated with variants from the indicated tool (e.g. the first 
column corresponds to neopeptides predicted only from Pindel variants). The number of 
neopeptides in each column (bar in upper pane) corresponds to the size of the subset 
predicted for variants from the indicated combination of tools (black circles in the bottom 
panel). Columns with gray bars represent neopeptides predicted from variants derived 
from only a single tool while columns with teal, orange, blue, pink, or green bars 
represent neopeptides predicted from variants derived from the most common two 
combinations of 2, 3, 4, 5, or 6 variant calling tools. The column with the yellow bar 
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represents neopeptides predicted from variants deriving from all tools. The column with 
the brown bar (indicated by an asterisk) represents variants derived from less common 
combinations of 2-6 variant calling tools. 
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