
Leveraging Family History in Case-Control Analyses of1

Rare Variation2

Claudia R. Solis-Lemus1∗, S. Taylor Fischer2∗, Andrei Todor1, Cuining Liu3, Elizabeth J.3

Leslie1, David J. Cutler1, Debashis Ghosh3, Michael P. Epstein1
4

∗ Joint first author
1 Department of Human Genetics, Emory University, Atlanta, GA
2 Department of Biostatistics and Bioinformatics, Emory University, Atlanta, GA
3 Department of Biostatistics and Informatics, University of Colorado, Aurora, CO

5

1

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 9, 2019. ; https://doi.org/10.1101/665075doi: bioRxiv preprint 

https://doi.org/10.1101/665075
http://creativecommons.org/licenses/by-nc-nd/4.0/


Short title: Family History in Case-Control Studies6

Key words: rare variant, gene mapping, complex human traits7

Address for correspondence:
Dr. Michael Epstein
Department of Human Genetics
Emory University School of Medicine,
Atlanta, GA, 30030
Email: mpepste@emory.edu
Phone: (404) 712-8289

8

2

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 9, 2019. ; https://doi.org/10.1101/665075doi: bioRxiv preprint 

https://doi.org/10.1101/665075
http://creativecommons.org/licenses/by-nc-nd/4.0/


Abstract9

Standard methods for case-control association studies of rare variation often treat disease outcome as a10

dichotomous phenotype. However, both theoretical and experimental studies have demonstrated that subjects11

with a family history of disease can be enriched for risk variation relative to subjects without such history.12

Assuming family history information is available, this observation motivates the idea of replacing the standard13

dichotomous outcome variable used in case-control studies with a more informative ordinal outcome variable14

that distinguishes controls (0), sporadic cases (1), and cases with a family history (2), with the expectation15

that we should observe increasing number of risk variants with increasing category of the ordinal variable. To16

leverage this expectation, we propose a novel rare-variant association test that incorporates family history17

information based on our previous GAMuT framework (Broadaway et al., 2016) for rare-variant association18

testing of multivariate phenotypes. We use simulated data to show that, when family history information is19

available, our new method outperforms standard rare-variant association methods like burden and SKAT20

tests that ignore family history. We further illustrate our method using a rare-variant study of cleft lip and21

palate.22
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1 Introduction23

Sequencing and exome-chip technologies facilitate the discovery of rare genetic variation influencing complex24

diseases. Many rare-variant association studies of complex diseases now exist with most studies employing25

traditional case-control sampling designs for analysis (De Rubeis et al., 2014; Sanders et al., 2017). Under26

such a design, studies typically test whether patterns of rare variation within a gene or region of interest27

differ between affected and unaffected subjects using either burden (Li and Leal, 2008) or variance-component28

(Wu et al., 2011) approaches based on an underlying logistic-regression framework that treats disease status29

as a simple dichotomous outcome variable. While such an analysis strategy is commonplace, there may exist30

helpful secondary information collected by the study that can facilitate the creation of a modified outcome31

variable that is more refined than the coarse dichotomous outcome typically considered. Use of this refined32

outcome variable within the study can reduce heterogeneity and potentially lead to more powerful analyses.33

One valuable source of secondary information often collected in a case-control study (but rarely utilized) is34

whether a sample participant reports a family history of the disease under study. Subjects with a family35

history of disease demonstrate different patterns of genetic variation than their sporadic counterparts. In36

particular, several papers have noted that a sample of cases reporting affected relatives are more enriched for37

a causal variant than cases without such family history (Teng and Risch, 1999; Zöllner, 2012; Epstein et al.,38

2015) since more risk variants tend to segregrate in families with multiple affected individuals. Likewise,39

controls with a family history of disease should have elevated frequency of a causal variant compared to40

sporadic controls (Liu et al., 2017). These observations motivate replacement of the standard dichotomous41

outcome variable for disease with a more refined variable that incorporates family-history information into42

the coding.43

In deciding how to refine the variable, we note that we should expect the frequency of a risk variant to follow44

a gradient that increases in frequency from sporadic controls to controls with a family history to sporadic45

cases to cases with a family history. One way to exploit this phenomenon in genetic analysis is to recode the46

disease variable as a ordinal cateogorical variable with four possible levels: controls (0), controls with a family47

history (1), sporadic cases (2), and cases with a family history (3). If family-history information is unavailable48

for controls, we instead consider a ordinal categorial variable with three possible levels: controls (0), sporadic49

cases (1), and cases with a family history (2). In either case, this recoding requires the development of50

novel methods for rare-variant analysis that can handle ordinal variables. To fill this gap, we propose a51

novel approach that is an extension of our previous GAMuT approach (Broadaway et al., 2016), which52

is a nonparametric association test using a kernel-distance covariance (KDC) framework that can handle53
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multi-dimensional genotypes and phenotypes. Kernel-based approaches have found success in rare variant54

associations due to the natural incorporation of epistatic effects, and sparsity in the methodology. Here, we55

show how GAMuT can model ordinal outcomes in rare-variant analysis while correcting for confounding56

covariates such as population stratification. Furthermore, just like the standard GAMuT, the newly proposed57

ordinal GAMuT produces analytical p-values, which facilitates scaling to genome-wide analyses.58

The structure of this paper is as follows: after introducing the ordinal GAMuT method using the KDC59

framework (Gretton et al., 2008; Székely et al., 2007; Kosorok, 2009; Zhang et al., 2012; Hua and Ghosh,60

2015), we present simulation work to show that leveraging family history information via ordinal categorical61

variables can improve power in rare-variant association tests compared to standard dichotomous modeling of62

disease phenotypes that ignore such information, like the burden test (Li and Leal, 2008) and Sequence Kernel63

Association Test (SKAT) (Wu et al., 2011). Finally, we apply ordinal GAMuT to rare and less-common64

variant data from a genome-wide study of craniofacial defects (Leslie et al., 2016a,b; Mostowska et al., 2018).65

2 Materials and Methods66

2.1 Leveraging Family Information through Ordinal Phenotype67

We assume a sample of N subjects that are genotyped for V rare variants in a target gene or region, so68

that Gj = (Gj,1, Gj,2, . . . , Gj,V ) represents the genotypes of subject j at V rare-variant sites in the gene of69

interest. Note that Gj,v represents the number of copies of the minor allele that the subject possesses at the70

vth variant. Thus, the matrix of rare-variant genotypes for the sample is denoted G ∈ RN×V .71

Let Q be an N -dimensional vector with binary disease status for N subjects. That is, Qj = 0 if subject j is72

a control, and Qj = 1 if subject j is a case. When family history information is available, we can instead73

employ a more informative ordinal phenotype. Assuming family history information is only available on cases,74

we can define the ordinal score as Q̃j = 0 if the subject is a control, Q̃j = 1 if the subject is a case without75

family history of the disease, and Q̃j = 2 if the subject is a case with family history of the disease. If family76

history information is available for controls, we can modify appropriately by extending the ordinal variable to77

the case of four categories: controls without (Q̃j = 0) and with family history (Q̃j = 1), and cases without78

(Q̃j = 2) and with family history (Q̃j = 3). The resulting phenotype vector Q̃ is an N -dimensional ordinal79

vector with disease binary status adjusted for family history for the N subjects.80
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2.2 Adjusting for Covariates81

After transforming the binary phenotype to ordinal phenotype by incorporating the family history information,82

we can account for other covariates by regressing the phenotypes Q̃j on covariates Xj with a cumulative-logit83

regression model, and use the residuals in our subsequent rare-variant association test. To illustrate the84

cumulative-logit regression model, let Q̃j be an ordinal response with M categories, and let P (Q̃j ≤ k) be85

the cumulative probabilities for k = 1, . . . ,M . The proportional odds model (McCullagh and Nelder, 1989) is86

a subclass of cumulative-logit regression models and it is defined as87

logitP (Q̃j ≤ k|Xj) = θk − βT Xj

for k = 1, . . . ,M − 1. Note that the negative sign is a convention to guarantee that large values of βT Xj88

increase the probability in the larger values of k. In addition, the vector of intercepts θ = (θ1, . . . , θM−1)89

should satisfy θ1 ≤ θ2 ≤ · · · ≤ θM−1.90

This model is denoted proportional odds because the ratio of the odds of P (Q̃j ≤ k|Xj) and P (Q̃j′ ≤ k|Xj′)91

do not depend on the specific category k. That is,92

P (Q̃j ≤ k|Xj)/(1− P (Q̃j ≤ k|Xj))
P (Q̃j′ ≤ k|Xj′)/(1− P (Q̃j′ ≤ k|Xj′))

= exp(−βT (Xj −Xj′))

This is also denoted a parallelism assumption on β (Yee, 2010).93

Note that for an ordinal response with M categories, we fit M − 1 logit regression models. Thus, in our94

particular setting, we have three categories: controls (k = 0), cases without family history (k = 1) and cases95

with family history (k = 2), and thus, we will fit 2 models: logitP (Q̃j ≤ 0) and logitP (Q̃j ≤ 1). With these96

models, we estimate the multinomial response probabilities for each individual. That is, for individual j, we97

have:98

µj,0 = P (Q̃j = 0), µj,1 = P (Q̃j = 1), µj,2 = P (Q̃j = 2)

Thus, the matrix of fitted values (denoted M) will be a N × 3 matrix where each row sums to 1, and the ith
99

row corresponds to the estimated multinomial probabilities for individual i: (µ̂j,0, µ̂j,1, µ̂j,2). To obtain the100

matrix of residuals, we first transform the ordinal response into a N × 3 binary matrix (denoted IQ̃) where101

the ith row corresponds to the 3-dimensional vector for individual i with three indicator functions, one for102

each category: (I(Q̃j = 0), I(Q̃j = 1), I(Q̃j = 2)). For example, if Q̃j = 2, then the binary vector in the103

jth row would be (0, 0, 1). As a result, the matrix of residuals R will be the N × 3 matrix of the difference104
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between the binary matrix and the matrix of estimated multinomial probabilities: IQ̃ −M. This matrix105

of residuals will then be input into the GAMuT framework to enable rare-variant association testing. The106

GAMuT framework allows for correlated phenotypes, and will be described in the following section.107

2.3 GAMuT Test of Cross-Phenotype Associations108

GAMuT tests for independence between the phenotype matrix R = IQ̃ −M (the N × 3 matrix of phenotype109

residuals) and G (the N × V matrix of multivariate rare-variant genotypes) by constructing an N × N110

phenotypic-similarity matrix Y, and an N ×N genotypic-similarity matrix X. These similarity matrices111

depend on a user-selected kernel function (Kwee et al., 2008; Schaid, 2010; Wu et al., 2010, 2011). For example,112

the matrix Y can be modeled with the projection matrix: Y = R(RT R)−1RT . Alternatively, if γ(Ri,Rj)113

denotes the kernel function between subjects i and j, the linear kernel is defined as γ(Ri,Rj) =
∑L

l=1 Ri,lRj,l,114

which corresponds to the (i, j) entry in Y: Yij . See Broadaway et al. (2016) for more details on other kernel115

functions to model pairwise similarity or dissimilarity.116

After constructing the similarity matrices Y and X, we center them as Yc = HYH and Xc = HXH, where117

H = (I − 11T /N) is a centering matrix (HH = H), I ∈ RN×N is an identity matrix, and 1 ∈ RN×1 is a118

vector of ones. With the centered similarity matrices (Yc,Xc), we construct the GAMuT test statistic as119

TGAMuT = 1
N

trace(YcXc).

Under the null hypothesis where the two matrices are independent, TGAMuT follows the asymptotic distribution120

as the weighted sum of independent and identically distributed χ2
(1) variables (Broadaway et al., 2016). We121

then use Davies’ method (Davies, 1980) to analytically calculate the p-value of TGAMuT .122

2.4 Simulations123

We conducted simulations to show that ordinal GAMuT properly preserves the type I error and to assess the124

power of ordinal GAMuT relative to standard case-control burden (Li and Leal, 2008) and SKAT (Wu et al.,125

2011) tests that do not account for family history information.126

For the genetic data, we simulated trios (parents and offspring) with 10,000 haplotypes of 10 kb in size using127

COSI (Schaffner et al., 2005), a coalescent model that accounts for linkage disequilibrium (LD) pattern, local128

recombination rate, and population history for individuals of European descent. We defined rare variants as129

those with MAF ≤ 3%. For the power simulations, we assumed the proportion of causal variants to be 15%,130
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with effect size for each causal variant given by log(C)
4 | log10(MAF )| plus a Normal noise with mean 0 and131

variance 0.1. We varied C = 4, 6. This setup defines the effect size of any given causal variant as inversely132

proportional to its MAF, which implies that very rare variants will have a larger effect size.133

For the ordinal phenotype, the proband’s probability of disease depended on the sequence data and the disease134

prevalence, which we varied as 0.01, or 0.05, while the family members’ probability of disease depended on135

the sequence data and the conditional recurrence risk ratio (λ = 2, 4, 8) (Epstein et al., 2015). If the proband136

was unaffected, we defined the person as a control. If the proband was affected and none of the parents were137

affected, we defined the person as a case without family history. Finally, if the proband was affected and at138

least of the parents was affected, we defined the person as a case with family history.139

For each simulated dataset, we generated an equal number of controls, cases without family history, and cases140

with family history. We varied this number among N = 400, 750, 1000, 1500. For each simulated dataset, we141

applied our ordinal GAMuT method that modeled cases with and without family history separately. We also142

applied standard burden and SKAT tests that combined all cases together without regards to family history143

information. For each method, we weighted rare variants using the weighting scheme recommended by Wu144

et al. (2011); wv = Beta(MAFv, 1, 25)/Beta(0, 1, 25).145

We used the R package VGAM and function vglm to fit the cumulative-logit regression model with proportional-146

odds assumption (Yee, 2010), and use the resulting residuals to construct the phenotypic similarity matrix147

input in the GAMuT package (Broadaway et al., 2016).148

2.5 Analysis of Pittsburgh Orofacial Cleft Multiethnic GWAS149

Orofacial clefts (OFCs) such as cleft lip (CL), cleft palate (CP), and cleft lip with cleft palate (CLP) are150

among the most common birth defects in humans with prevalence between 1 in 500 and 1 in 2,500 live births151

(Tessier, 1976; Mossey et al., 2009). Extensive recent studies identified common nucleotide variants associated152

with orofacial clefts, such as 1p22.1, 2p24.2, 3q29, 8q24.21, 10q25.3, 12q12, 16p13.3, 17q22, 17q23, 19q13,153

and 20q12 (Birnbaum et al., 2009; Grant et al., 2009; Beaty et al., 2010; Mangold et al., 2009; Wolf et al.,154

2015; Leslie et al., 2016a,b; Mostowska et al., 2018). However, the role of rare genetic variation in OFCs is155

still underway.156

The Pittsburgh Orofacial Cleft Multiethnic GWAS (Leslie et al., 2016a,b) seeks to identify genetic variants157

that are associated with the risk of OFCs. This dataset includes a multi-ethnic cohort with 11,727 participants158

from 13 countries from North, Central or South America. Asia, Europe and Africa. Most of the participants159

were recruited as part of genetic and phenotyping studies coordinated by the University of Pittsburgh Center160
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for Craniofacial and Dental Genetics and the University of Iowa. The study cohort includes OFC-affected161

probands with their family members, and controls without history of OFC. Affection status consists of cleft162

lip (CL) with or without palate (CL/P).163

We performed standard data cleaning and quality control (see Leslie et al. (2016a)). We analyzed only164

Caucasian participants, and we kept rare variants with MAF in (0.001, 0.05) and genotype call rate greater165

than 95%.166

The final sample consisted of 1411 individuals, among which there were 835 controls, 309 cases without167

family history and 267 cases with family history. We did not include any covariates except for 5 principal168

components of ancestry (see Leslie et al. (2016a) for the details on the Principal Components Analysis). We169

applied ordinal GAMuT using linear kernel to measure pairwise phenotypic similarity. We also ran SKAT170

and burden tests, with the typical weights defined in Wu et al. (2011). For GAMuT, we used a weighted171

linear kernel (with the weighting scheme in Wu et al. (2011)) to measure pairwise genotypic similarity.172

Data availability statement The URLs for software: https://github.com/crsl4/ordinal-gamut and http:173

//www.genetics.emory.edu/labs/epstein/software. The dataset title and accession number for dbGaP are174

“Center for Craniofacial and Dental Genetics (CCDG): Genetics of Orofacial Clefts and Related Phenotypes”,175

“dbGaP Study Accession: phs000774.v2.p1”.176

3 Results177

3.1 Type I Error Simulations178

Figure 1 shows the quantile-quantile (QQ) plots of 10,000 null simulations with different subjects per group,179

target disease prevalence, and λ values. We show the comparison with ordinal GAMuT, SKAT and burden180

test. All methods compared properly control the type I error.181

3.2 Power Simulations182

Now, we compare the power of ordinal GAMuT with SKAT and burden test (Figure 2). The power was183

estimated by computing the proportion of p-values less than the significance level (α = 5×10−5 for effect sizes184

of 4 and 6) out of 1000 replicates per scenario and model. For these power simulations, we use different effect185

sizes in figures (C = 4, 6). Columns refer to the conditional recurrence risk ratio λ = 2, 4, 8, and rows refer to186

disease prevalences 0.01, 0.05 . We compare the empirical power for sample sizes of N = 400, 750, 1000, 1500187
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Figure 1: Q-Q plots of p-values for gene-based tests of rare variants for three methods: burden test, SKAT,
and the ordinal GAMuT here proposed. Simulated datasets (10,000) assumed a 10kb region and rare variants
defined as those with MAF <3%. Top: 750 subjects per group, disease prevalence of 0.01 and λ = 2. Middle
Top: 750 subjects per group, disease prevalence of 0.05 and λ = 2. Middle Bottom: 750 subjects per
group, disease prevalence of 0.01 and λ = 4. Bottom: 750 subjects per group, disease prevalence of 0.05 and
λ = 4.
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Figure 2: Power for gene-based testing comparing three methods: burden test (blue, square), SKAT (green,
triangle) and ordinal GAMuT (red, circle). We compared two disease prevalences 0.01, 0.05 (rows), different
conditional recurrence risk ratio λ = 2, 4, 8 (columns).

subjects per group. First, we note that we observe an increased number of causal variants in cases with family188

history compared to controls (see Supplementary Materials). Our method (ordinal GAMuT) outperformed189

the burden test (Li and Leal, 2008) and SKAT (Wu et al., 2011), with power increasing as sample size,190

recurrence risk, and effect size increased. Our method is more powerful given that other methods merge two191

clearly distinct groups: cases with and without family history, and thus, they cannot exploit the information192

present in the enrichment of causal variants in the cases with family history. Our ordinal approach models193

reality better by explicitly separating these two groups that have distinct genetic characteristics.194

3.3 Analysis of Pittsburgh Orofacial Cleft Multiethnic GWAS195

We applied our method to a Pittsburgh Orofacial Cleft (POFC) Multiethnic GWAS (Leslie et al., 2016a),196

(Leslie et al., 2016b) with 1,411 Caucasian subjects (267 cases with family history of clefting (up to third197

degree relatives), 309 cases without family history and 835 controls) and 61,671 variants used for annotation198

with Bystro (Kotlar et al., 2018). We filtered rare variants with MAF [0.001, 0.05], and filtered genes to199

having minimum 4 rare variants, which resulted in 5,137 gene tests. We tested the association between200

the 5,137 genes and CL or CL/P status, adjusting for principal components for population structure. We201

compared our results (ordinal GAMuT) with the burden test and SKAT approach. Neither of the methods202

show any p-value inflation (Fig. 3).203
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Figure 3: Q-Q plots of p-values for gene-based tests of rare variants for three methods: burden test (Li and
Leal, 2008), SKAT (Wu et al., 2011) and the ordinal GAMuT here proposed in the GWAS of Pittsburgh
Orofacial Cleft Multiethnic.
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Figure 4: Gene-based test on Pittsburgh Orofacial Cleft (POFC) Multiethnic GWAS using burden, SKAT and
ordinal GAMuT approach. Manhattan plots for each of the three tests. Red line: genome-wide significance
level (− log10(0.05/5137) = 5.0117). Blue line: suggestive level (− log10(1× 10−4) = 4).

None of the methods identified any genes significantly associated with CL/P. However, ordinal GAMuT204

identified one gene (GRHL2) on chromosome 8 that passes the suggestive significance threshold (Fig. 4).205

GRHL2 is in the same gene family as GRHL3, which is a transcription factor that causes syndromic forms of206

clefting and is associated with nonsyndromic clefting in other GWAS (Leslie et al., 2016a,b; Carpinelli et al.,207

2017; Peyrard-Janvid et al., 2014).208

4 Discussion209

Standard GWAS methods for case-control studies usually define a disease outcome as a dichotomous phenotype.210

This phenotype ignores family history of disease, even if this information is available in the dataset at hand.211
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Given that cases with a family history of disease can be enriched for risk variation relative to sporadic cases212

and may represent a source of case heterogeneity, incorporating family history is expected to increase power213

to detect genetic variants associated with disease.214

We introduce an extension to the GAMuT method (Broadaway et al., 2016) to incorporate family information215

to enhance case-control association studies. This approach converts the usual binary phenotype of case-control216

status into an ordinal phenotype with three levels: cases with family history, cases without family history217

and controls, and it allows adjustment for covariates. Even though we do not include controls with family218

history, this ordinal approach can easily be extended to the case of four categories: controls with and without219

family history, and cases with and without family history by considering an ordinal phenotype with 4 levels.220

Finally, just as the standard GAMuT test, the ordinal GAMuT obtains analytic p-values from Davies’ method221

(Davies, 1980) which is computationally efficient, allowing the analysis of datasets in the genomic scale.222

Simulation studies of rare variant sets showed that our ordinal GAMuT method is more powerful compared223

to usual gene-based tests like burden test (Li and Leal, 2008) and SKAT (Wu et al., 2011), possibly due to224

the fact that subjects with family history are more enriched for rare causal variants. Applying our method to225

Pittsburgh Orofacial Cleft Multiethnic GWAS (Leslie et al., 2016a,b), we identified a gene (GRHL2) (not226

previously reported) to suggestively associate with cleft lip and palate phenotypes. GRHL2 is in the same227

gene family as GRHL3, which is a transcription factor that causes in syndromic forms of clefting and was228

found to be associated with nonsyndromic clefting in GWAS (Leslie et al., 2016a,b; Carpinelli et al., 2017;229

Peyrard-Janvid et al., 2014). Burden and SKAT on these same phenotypes (figure 4) failed to identify any230

significant or suggestive genes. Among the weaknesses of the proposed method, extra care should be taken231

if there is a small cell count of cases with family history in the dataset, or in highly unbalanced dataset in232

which one of the categories is highly dominant in frequency compared to the other categories.233

We envision two main future extensions of ordinal GAMuT: 1) to include information of more nuanced234

definitions of family history, and 2) to use disease liability as continuous phenotype instead of a categorical235

phenotype. Regarding disease liability, options for enhanced outcome variables could involve conditional236

means from liability-threshold models which have the potential to increase the power to detect genetic237

variants that are associated with disease risk. In fact, the popularity of proportional odds can be related to238

its connection to a linear regression model on a continuous latent response (e.g. the liability score). That is,239

the ordinal variable Y is obtained from a latent continuous variable Z by Y = k if ck−1 < Z ≤ ck. Thus,240

current ordinal GAMuT which utilizes proportional odds model has a natural extension into linear regression241

of the latent phenotype of disease liability. In the liability scale, family history can then be modeled as joint242

liability scores with a covariance matrix defined by the heritability of the disease.243
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Perhaps here or in model definition, we should note that the proportional odds/“parallel” assumption may244

be relaxed, highlighting the flexibility of the phenotype entering GAMuT (and by extension, the flexibility245

of ordinal GAMuT) Similarly, can replace the proportional odds model with something like an ordinal246

continuation ratio model (different logit formulations)247

Finally, ordinal GAMuT is not restricted to rare genetic variants. Similar analysis could be performed for248

gene-based analysis of common variation.249
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Supplementary Material259

Enrichment of Causal Variants260

In Figure 5, we show that, as expected, the average number of causal rare variants is greater for the cases261

with family history, followed by cases without family history, and lastly for controls. This simulated dataset262

comprises of 1000 controls, 1000 cases without family history, and 1000 cases with family history for three263

levels of conditional recurrence risk ratios (columns: λ = 2, 4, 8) and 2 siblings as family history. The effect264

size was set as C = 2.265
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Figure 5: Average of 1000 simulations of number of causal rare variants (left) and probability of disease

(right) in proband for three groups: controls, cases without family history, and cases with family history

under two disease prevalences (red=0.01, blue=0.05), with one (top) or two (bottom) siblings, and three

conditional recurrence risk ratios as columns.
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