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Abstract.

Background: Influx and clearance of substances in the brain parenchyma occur by a combi-
nation of diffusion and convection, but the relative importance of thiese mechanisms is unclear.

Accurate modeling of tracer distributions in the brain relies on parameters that are partially

unknown and with literature values varying up to 7 orders of magnitude. In this work, we rig-
orously quantified the variability of tracer enhancement in the brain resulting from uncertainty

in diffusion and convection model parameters.

Methods: In a mesh of a human brain, using the convection-diffusion-reaction equation, we
simulated tracer enhancement in the brain parenchyma after intrathecal injection. Several

models were tested to assess the uncertainty both in type of diffusion and velocity fields and

also the importance of their magnitude. Our results were compared with experimental MRI
results of tracer enhancement.

Results: In models of pure diffusion, the expected amount of tracer in the gray matter reached

peak value after 15 hours, while the white matter does not reach peak within 24 hours with
high likelihood. Models of the glymphatic system behave qualitatively similar as the models

of pure diffusion with respect to expected time to peak but display less variability. However,
the expected time to peak was reduced to 11 hours when an additional directionality was pre-

scribed for the glymphatic circulation. In a model including drainage directly from the brain

parenchyma, time to peak occured after 6-8 hours for the gray matter.
Conclusion: Even when uncertainties are taken into account, we find that diffusion alone is

not sufficient to explain transport of tracer deep into the white matter as seen in experimental

data. A glymphatic velocity field may increase transport if a directional structure is included
in the glymphatic circulation.

Keywords: cerebrospinal fluid, interstitial fluid, diffusion, convection, glymphatic system,
paravascular space, uncertainty quantification

Introduction

Over the last decade, there has been a significant renewed interest in the waterscape of the
brain; that is, the physiological mechanisms governing cerebrospinal fluid (CSF) and interstitial
fluid (ISF) flow in (and around) the brain parenchyma. A number of new theories have emerged
including the glymphatic system [37, 39], the intramural periarterial drainage (IPAD) theory [18,
5], and the Bulat-Klarica-Oreskovic hypothesis [53], along with critical evaluations [34, 11, 68].
A great deal of uncertainty and a number of open questions relating to the roles of diffusion,
convection and clearance within the brain parenchyma remain.

Exchange between CSF and ISF is hypothesized to occur along small fluid-filled spaces surround-
ing large penetrating arteries in the brain parenchyma known as paravascular spaces (PVS) [61, 37].
Tracer has been observed to move faster in paravascular spaces in response to increased arte-
rial pulsations, and arterial pulsation has thus been proposed as the main driver of paraarterial
flow [30, 38, 48]. After entering the extracellular space (ECS), a bulk flow of ISF from paraarterial
to the paravenous spaces has been proposed to occur before re-entry to the the subarachnoid space
(SAS) [39]. This concept of CSF/ISF fluid circulation has been named the glymphatic system, with
bulk flow as a mechanism for effective waste clearance from the brain parenchyma. Xie et al. [75]
showed glymphatic influx to increase in sleeping mice, linking the importance of sleep to clearance
of waste products. Sleep was also associated with an increased interstitial space volume fraction,
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a possible explanation for increased flow through the interstitial space. MRI investigations have
also found evidence for glymphatic function in human brains [64, 63].

While several studies demonstrate CSF influx along paraarterial spaces [60, 37, 16, 48], the
efflux route is more debated. Carare et al. [18] found evidence of solutes draining from the brain
parenchyma along basement membranes of capillaries and arteries, going in the opposite direction
of blood flow and possible PVS fluid movement. This flow is however not facilitated by arterial
pulsations [23], but by the movement of smooth muscle cells [6]. Bedussi et al. [15] observed tracers
move towards the ventricular system, ultimately leaving the brain via the cribriform plate and the
nose. A continuous pathway alongside capillaries to the paravenous space has been suggested [31],
and capillaries continuously filtrate and absorb water inside the brain parenchyma [53]. In addition,
substances may leave the parenchyma crossing the blood-brain barrier, or possibly directly to
lymph nodes [35].

In a recent review, Abbott and colleagues [2] concluded that bulk flow within the parenchyma
is likely to be restricted to the PVS and possibly white matter tracts, and not present in the
neuropil of gray matter. Earlier studies have reported a bulk flow velocity of less than 1 µm/s
[51], while recent evidence suggests average net bulk flow of around 20 µm/sec, restricted to the
PVS [14, 48]. Nevertheless, since tracer movement in in-vivo studies does not necessarily directly
reflect underlying fluid flow [8], the exact velocity field governing ISF flow in the brain remains
unknown.

All of the aforementioned in-vivo studies have used tracers or micro-spheres to track the move-
ment of fluid within the intracranial space. Injection of fluid at rates as low as 1 µL/min can cause
a significant increase of local intracranial pressure (ICP) [73], which may lead to pressure gradi-
ents driving bulk flow. On the other hand, non-invasive methods such as diffusion tensor imaging
may serve as a promising tool due to its sensitivity to dispersion and bulk flow. This method has
been applied successfully to demonstrate increased diffusivity with vascular pulsation compared
to diastole [32]. The diffusion coefficient was found to be anisotropic and highest parallel to PVS,
however a value of the bulk fluid velocity could not be reported from these measurements. In
addition to both invasive and non-invasive experiments, computational models have been used to
assess the possibility and plausibility of bulk flow within the parenchyma. Tracer movement in
the extracellular space has been found to be dominated by diffusion [36], a conclusion similar to
that of Smith et al. [68] in experimental studies with very low infusion rates.

Even though computational models can distinguish between diffusion and bulk flow, a major
challenge remains with regard to the unknown material parameters, boundary conditions and other
model configurations needed to accurately predict the movement of ISF in the brain parenchyma.
For instance, the permeability of brain tissue used in computational models varies from 10−10 to
10−17 m2 [28, 36]. Because the permeability is directly linked to the Darcy fluid velocity in these
models, this parameter choice could result in a difference of 7 orders of magnitude in predicted
ISF flow. In addition, CSF dynamics vary between subjects [13] and human CSF production has
been reported to increase in the sleeping state [52] which may alter ISF flow. Recently it has
been pointed out that there is an overarching need to reduce uncertainty when characterizing the
anatomy and fluid dynamics parameters in models considering the glymphatic circulation [66].

Replacing partial differential equation (PDE) parameters subject to uncertainty with spatially
correlated random fields is a common modelling choice in the uncertainty quantification (UQ)
literature [21, 19, 70] and Monte Carlo methods have been successfully used in biology to quantify
how uncertainty in model input propagates to uncertainty in model output. However, these
methods have mainly been applied to simulations of the cardiovascular system [57, 17] and, to our
knowledge, there has only been one study in which Monte Carlo methods have been used for UQ
in brain modelling [33]. To the authors’ knowledge, there has been no previous work on stochastic
forward uncertainty quantification for simulations of tracer transport with the brain parenchyma.

With this study, we aim to rigorously quantify how the aforementioned uncertainties in the
physiological parameters and in ISF flow affect the spread of a tracer from the SAS into the
brain parenchyma. We assume movement of tracer in the brain parenchyma to occur by diffusion
and/or convection. To account for uncertainty and variability, we circumvent the lack of precise
parameter values by modelling velocity and diffusivity as Matérn stochastic fields. We then set up
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a PDE model with these stochastic (random) fields as coefficients and quantify the uncertainty in
the model prediction via the Monte Carlo (MC) method.

More specifically, we model the contrast MRI study performed by Ringstad et al. [64] assessing
glymphatic function in the human brain and derive a baseline convection-diffusion-reaction PDE.
The model coefficients are designed to represent different hypotheses on CSF flow and clearance,
including diffusion, the glymphatic system and possible capillary absorption, and uncertainty
within each hypothesis. A total of five different models were investigated, each with stochastic
model coefficients. For each model, we compute the expected values and 99.73% confidence inter-
vals for different functionals of interest of the tracer concentration. The results reported in the
study by Ringstad et al. are compared with the range of uncertainty in our model. We find that
although the uncertainty associated with diffusion yields great variability in tracer distribution,
diffusion alone is not sufficient to explain transport of tracer deep into the white matter as seen in
experimental data. A glymphatic velocity field may increase tracer enhancement, but only when
adding a directional structure to the glymphatic circulation.

Methods

We model the MRI-study of Ringstad et al. [64]. In their experiments, 0.5 mL of 1.0 mmol/mL
of the radioactive tracer gadobutrol was injected intrathecally in 15 hydrocephalus patients and
eight reference subjects. The localization of the tracer was found with MRI at 4 different time
periods, at 1, 3, 4.5, and 24 hours following the injection. After 3 hours, tracer was localized in
the lower region of the cranial SAS, and had started to penetrate into the brain parenchyma of
the reference subjects. The following day it had spread throughout the brain tissue. Tracer was
found to penetrate along large leptomeningeal arteries in all study subjects, and a low proportion
of tracer was found at the upper convexities of the brain.

Gaussian and Matérn fields. Let (Ω,A,P) be a probability space, let D ⊂ R3 be an open
domain (representing the brain parenchyma) with coordinates x ∈ D, and let t ≥ 0 denote time.
A random field X = X(x, ω), ω ∈ Ω, x ∈ Rd is a function whose values are random variables
for each x ∈ Rd. The field is Gaussian if these random variables are all joint Gaussian [3]. A
Gaussian field is uniquely determined by providing a mean µ(x) and a symmetric positive definite
covariance function C(x, y).

A Matérn field is a Gaussian field with covariance of the Matérn class, i.e. of the form

C(x, y) = E[(X(x, ω)− µ(x))(X(y, ω)− µ(y))] =
σ2

2ν−1Γ(ν)
(κr)νKν(κr)(1)

for x, y ∈ D, where r = ‖x−y‖2, κ =
√

8ν
λ , Γ(x) is the Euler Gamma function, and σ2, ν, λ > 0 are

the variance, smoothness parameter and correlation length of the field respectively and Kν is the
modified Bessel function of the second kind. Matérn fields are extensively used in spatial statistics,
biology and oil reservoir modelling to represent uncertain or randomly-varying fields [55, 44]. The
smoothness parameter ν regulates the field’s spatial smoothness: field samples are almost surely
continuous and dνe− 1 times differentiable [3]. For the two cases ν = 1/2 and ν =∞, (1) reduces
to the exponential and Gaussian covariance kernels, respectively.

The correlation length λ roughly represents the distance past which point values of the field are
approximately uncorrelated. Informally, this means that in each realization of the Matérn field,
there are regions of length proportional to λ within which the values of the field are similar.

Stochastic models for tracer movement in the brain parenchyma. We consider the fol-
lowing partial differential equation with random coefficients to model transport of tracer in the
brain parenchyma under uncertainty: find the tracer concentration c = c(t, x, ω) for x ∈ D, ω ∈ Ω
and t ≥ 0 such that

(2) ċ(t, x, ω) +∇ · (v(x, ω)c(t, x, ω))−∇ · (D∗(x, ω)∇ c(t, x, ω)) + rc(t, x, ω) = 0.

Here, the superimposed dot represents the time derivative, D∗ is the effective diffusion coefficient
of the tracer in the tissue (depending on the tracer free diffusion coefficient and the tissue tortu-
osity) [51], v represents a convective fluid velocity and r ≤ 0 is a drainage coefficient potentially
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Model D∗ v r

D1 Random variable 0 0
D2 Random field 0 0
V1 Constant Random influx and outflux field 0
V2 Constant Model V1 + directional velocity field 0
V3 Constant Random influx field r < 0

Table 1. Summary of stochastic model variations with effective diffusion coeffi-
cient D∗, convective fluid velocity v, and drainage coefficient r in (2).

representing e.g. capillary absorption [53] or direct outflow to lymph nodes [64]. We assume that
the parenchymal domain contains no tracer initially: c(0, x, ω) = 0.

To investigate and compare different hypotheses for parenchymal ISF flow and tracer transport,
we consider 5 stochastic model variations of (2) including two models with stochastic (random)
diffusion properties (Model D1 and D2) and three models with stochastic velocity fields (Models
V1, V2, and V3). The diffusion-only Models D1 and D2 correspond to negligible ISF bulk flow in
the parenchyma and the absence of capillary absorption or other direct outflow pathways. For the
velocity models (V1, V2 and V3), we consider a fixed non-random diffusion coefficient in order
to isolate the effects of the stochastic velocity fields. A summary of the models are presented in
Table 1, while the mathematical modelling aspects are described in further detail in the following
sections.

Domain and geometry. We define the computational domain D as the union of white and gray
matter from the generic Colin27 human adult brain atlas FEM mesh [26] version 2 (Figure 1a).
This domain includes the cerebellum. The levels of the foramen magnum, the sylvian fissure and
the precentral sulcus are well represented by z-coordinates -0.1, 0 and 0.1 m, respectively. The
plane z = 0 corresponds approximately to the level of the lateral ventricles.

Boundary conditions modelling tracer movement in the SAS. Let ∂D be the boundary of D and
let ∂D = ∂DS ∪ ∂DV , with ∂DS representing the interface between the brain parenchyma and
the subarachnoid space (SAS), and ∂DV representing the interface between the brain parenchyma
and cerebral ventricles, respectively. We consider the following boundary conditions for (2):

c = g(c) on ∂DS ,(3)

D∗∇ c · n = 0 on ∂DV .(4)

In particular, we assume that a tracer concentration is given at the SAS interface (3) and no
ventricular outflux (4). The dependence of g on c in (3) is detailed below.

The boundary condition (3) models the movement of tracer starting from the lower cranial SAS
and traveling upward in the CSF surrounding the brain as observed in the study by Ringstad et
al [64]. In particular, we let

g(c)(t, x, ω) = cCSF(t, ω)h(t, x),

h(t, x) =

(
0.5 +

1

π
arctan(−a(x3 − z0 − uzt))

)
,

(5)

for x = (x1, x2, x3). Here, at time t, cCSF(t) is the average tracer concentration in the SAS, while
h(t, x) represents its spatial distribution.

The expression for h is based on the following considerations. We assume that the diffusive
and/or convective movement of tracer from the spinal to the cranial SAS over time is known, and
we thus model h(t, x) as a smooth step function upwards (in the x3- or z-direction). In (5), uz
represents the speed of tracer movement upwards in the SAS, and a reflects the gradient of tracer
concentration from the lower to the upper cranial SAS. Finally, we assume that at time t = 0, the
tracer has spread up to a relative distance of z0 from the lateral ventricles. This specific expression
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a) b)

c)

Figure 1. Computational domain and stochastic diffusion coefficient.
a) The computational domain representing the brain parenchyma including the
cerebellum. The interior lateral ventricles are marked (dark pink) in the central
region of the domain. Two smaller regions of interest Sg and Sw, in the gray and
white matter respectively, are marked in green (leftmost region: Sw, rightmost
region: Sg). b) Assumed probability distribution of the homogeneous effective
diffusion coefficient D∗ modelled as a random variable and used in Model D1.
The expected value E[D∗] is 1.2 × 10−10 m2/s. c) Sample of the heterogeneous
effective diffusion coefficient (sagittal, axial and coronal slices ordered from left
to right) modelled as a random field and used in Model D2.

for h(t, x) and the values of parameters a, z0 and uz are based on the spread of tracer seen in the
MR-images in the study by Ringstad et al. [64]. In particular, we use a = 20 m−1, uz = 1.5×10−5

m/sec and z0 = −0.2 m. These parameters were chosen to match time to peak in three different
regions in the CSF space in reference individuals [64].

To derive an expression for cCSF in (5), we consider the conservation of tracer mass. We model
the spread of n0 = 0.5 mmol tracer in the CSF, assuming a volume of VCSF = 140 mL CSF in
the human SAS and ventricles [74]. The average concentration in the SAS right after injection is
thus cCSF(0) = 0.5 mmol/140 mL = 3.57 mol/m3. At any given time, we assume that the total
amount of tracer in the brain and in the SAS plus or minus the tracer absorbed or produced stays
constant in time, and is equal to the initial amount n0 = 0.5 mmol (almost surely):

(6)

∫
D
c(t, x, ω) dx+ cCSF(t, ω)VCSF +

∫ t

0

∫
D
rc(τ, x, ω) dx dτ = n0.
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Solving for cCSF, we thus obtain

cCSF(t, ω) =
1

VCSF

(
n0 −

∫
D
c(t, x, ω) dx−

∫ t

0

∫
D
rc(τ, x, ω) dx dτ

)
.(7)

Quantities of interest. To evaluate the speed and characteristics of tracer movement into and in
the brain parenchyma, we consider a set of functionals describing different output quantities of
interest. To quantify the overall spread of tracer in the gray and white matter, we consider the
(integrated) amount of tracer in the gray matter Qg and in the white matter Qw at time points τ :

Qg(ω) =

∫
Dg

c(τ, x, ω) dx, Qw(ω) =

∫
Dw

c(τ, x, ω) dx.(8)

We pay particular attention to the times τ ∈ {3, 5, 8, 24}. To further differentiate, we also defined
two localized functionals at each time τ : the average tracer concentration qg in a small subregion
of the gray matter Sg and analogously qw for a small subregion of the white matter qw:

(9) qg =
1

Vg

∫
Sg

c(τ, x, ω) dx, qw =
1

Vw

∫
Sw

c(τ, x, ω) dx,

where Vg and Vw is the volume of the gray and white matter subregions, respectively. The size
and relative location of the subregions Sg and Sw within the computational domain are illustrated
in Figure 1a. To further quantify the speed of propagation, we define the white matter activation
time Fw:

(10) Fw(ω) = {min t |
∫

Ωw

c(t, x, ω) dx/n0 > X},

where n0 is the total amount of tracer injected into the SAS (0.5 mmol) andX is a given percentage.
We here chose X = 10%. Finally, we also define the analogous regional (white matter) activation
time

(11) fw(ω) = {min t | 1

Vw

∫
Sw

c(t, x, ω) dx > Y },

where Y = 10−3 mol/m3

For plotting the boundary tracer concentration over time, we define three axial planes along
the z-axis (z = −0.1, 0, 0.1 m) to represent the level of the foramen magnum, sylvian fissure and
precentral sulcus, respectively.

Stochastic diffusion modelling. The parenchymal effective diffusion coefficient of a solute,
such as e.g. gadobutrol, is heterogeneous [72] (varies in space) and individual-specific (varies from
individual to individual). To investigate the effect of uncertainty in the diffusion coefficient, we
consider two approaches: first, to model the diffusion coefficient as a random variable and second,
to model the diffusion coefficient as a random field, thus allowing for tissue heterogeneity. Both
approaches are described in further detail below.

Effective diffusion coefficient modelled as a random variable. First, we consider the simplifying but
common assumption that the effective diffusion coefficient is spatially homogeneous: D∗(ω) ∈ R.
We account for the uncertainty in its value by modelling it as a random variable:

(12) D∗(ω) = 0.25×D∗Gad +D∗γ(ω),

where D∗Gad = 1.2 × 10−10 m/s2 is a fixed parenchymal gadobutrol diffusivity [63] and where
D∗γ(ω) has a Gamma distribution with shape k = 3 and scale θ = 0.75 ×D∗Gad/k. The choice of
shape and scaling parameters ensures that (i) the diffusion coefficient is positive, (ii) its expected
value matches reported values of parenchymal gadobutrol diffusivity [63], and (iii) its variability
allows for values up to 2–3 times larger or smaller than the average with low probability. The
last modelling choice reflects diffusivity values in the range 1-10 × 10−10 m/s2 in agreement with
previous reports [51]. The probability distribution of D∗ is shown in Figure 1b-c.
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Effective diffusion coefficient modelled as a random field. In order to represent spatial hetero-
geneity in the diffusion coefficient, we next model D∗ as a continuous random field. Again, we
set

(13) D∗(x, ω) = 0.25×D∗Gad +D∗f (x, ω),

where D∗f now is a random field such that for each fixed x ∈ D, D∗f (x, ω) is a gamma-distributed

random variable with the same parameters as D∗(ω) in (12). To enforce continuity and to easily
sample the random field from its distribution, we draw samples of D∗γ by first sampling a Matérn
field X(x, ω) and then transforming it into a gamma random field by using a copula [50]. This con-
sists in setting D∗γ(x, ω) = F−1(Φ(X(x, ω))), where F−1 is the inverse cumulative density function
(CDF) of the target (gamma) distribution, Φ is the CDF of the standard normal distribution and
X(x, ω) is a standard (zero mean, unit variance) Matérn field with smoothness parameter ν = 2.5
and correlation length λ = 0.01 m, cf. (1). Note that spatial changes in the diffusivity occurs at a
length scale corresponding to the correlation length, here 0.01 m.

Stochastic velocity modelling. In what follows we introduce three different models for the
velocity field, each representing a different hypothesis regarding intraparenchymal ISF/CSF move-
ment. We emphasize that each model represent a homogenized velocity field averaged over physi-
ological structures.

Glymphatic velocity model: arterial influx and venous efflux. To define a stochastic homogenized
velocity model representing the glymphatic pathway, we assume that ISF follows separate inflow
and outflow routes: entering the brain along paraarterial spaces and exiting along paravenous
spaces [39]. We further suggest that

(1) Substantial changes within the velocity field happen after a distance proportional to the
mean distance between arterioles and venules.

(2) The blood vessel structure is random and independent from the position within the
parenchyma in the sense that the presence of paraarterial or paravenous spaces are equally
likely at any point in space. Mathematically, this assumption requires the expected value
of each of the velocity components to be zero.

(3) The velocity field varies continuously in space and is divergence-free (∇ · v = 0), i.e. no
CSF/ISF leaves the system e.g. through the bloodstream.

(4) We set the expected velocity magnitude ||v|| =
√
v2
x + v2

y + v2
z to be vavg = 0.17µm/s and

we allow for up to 2-3 times larger and up to 10 times smaller values with low probability
[51].

Although ISF/CSF velocities in paravascular regions may be higher [48] that what we propose,
the velocity field here models an averaged bulk flow over a larger area (comprised of e.g. PVS and
adjacent tissue). Bulk flow velocities in rats have been reported to be in the range of approximately
0.1-0.24 µm/s [1, 51].

To address these stipulations, we define the stochastic glymphatic circulation velocity field

v(x, ω) = vavg · η(λ) 10−E(ω)

∇×
 X(x, ω)
Y (x, ω)
Z(x, ω)

 ,(14)

where η(λ) = λ/
√

(5 + 2 log(10))/200 is a scaling constant chosen such that the magnitude of

v satisfies E[||v||2]1/2 = vavg (we omit the mathematical derivation of this constant), E(ω) is an
exponentially distributed random variable with mean 0.2 and X(x, ω), Y (x, ω) and Z(x, ω) are
standard independent identically distributed (i.i.d) Matérn fields with ν = 2.5 and correlation
length λ = 1020µm. A sample of the glymphatic circulation velocity field together with the
velocity magnitude distribution is shown in Figure 2a-b.

The factor 10−E(ω) is an ad-hoc random term to enforce the variability requirement defined
by point 4) above. The use of Matérn fields enforces spatial variability in a continuous manner
and taking the curl operator (∇×) ensures that the resulting velocity is divergence-free, hence
addressing point 3). It can be proven (although we omit the details here) that the field within the
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a) b)

c)
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Figure 2. Stochastic aspects of the glymphatic circulation velocity
fields (Models V1 and V2). a) Probability density of the glymphatic circula-
tion velocity magnitude ‖v‖ cf. (14). b) Streamlines of a corresponding velocity
field sample. c) Velocity magnitude and streamlines for the directional velocity
field vdir as given by (15). The flow field is assumed to follow cardiovascular pulses
upwards along the brain stem. After entering the deeper parts of the brain, the
bulk flow spreads out at reduced velocity. From left to right: sagittal, coronal
and transverse view.

brackets in (14) is still Gaussian, has zero mean (hence satisfies 2)) and has the same correlation
length as the original Matérn fields, albeit it presents a slightly different covariance structure.

The choice of correlation length was guided by the following considerations. The mean dis-
tance between arterioles and venules was reported to be 280 µm in rhesus monkeys [4], although
the value 250 µm has been used as a representative distance in humans in recent modeling pa-
pers [40, 59]. We estimated the mean distance in humans by considering differences in brain and
artery size between monkey and human (Table 2). We find a factor close to 2 between CCA and
arteriole diameter, while a similar ratio was found for the cube root of the brain mass. Thus, the
correlation length should be greater than 250−560µ m to address point 1) above. Combining these
physiological considerations with the corresponding requirements on the numerical resolution, we
let λ = 1020µm.

Glymphatic velocity model with additional directional velocity field. Above we assumed that the
blood vessel distribution was independent of the spatial position within the parenchyma and that
bulk flow from arterial to venous PVS occurs on a small length scale proportional to the mean
distance between arterioles and venules. However, transport of tracer might also happen on a larger
length scale along larger vascular structures present in given physical regions such as e.g. circle
of Willis). AS CSF is hypothesized to enter the brain along penetrating arteries, the direction of
cardiac pulse propagation may induce a directionality of the glymphatic circulation as well. The
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Species Brain mass [g] dCCA [mm] dA [µm] ∆AV [µm]

Mouse 0.3 [65] 0.47 [43] 25 [38] 40∗

Monkey 88 [65] 3.5[76] 35.5 [4] 280 [4]
Human 1350 [65] 6.3 [42] 40-250 [10] 1020∗

Table 2. Brain-related parameters of three species. ∗: Estimated values. dCCA:
diameter of the common carotid artery, dA: arteriole diameter ∆AV: distance
between arteriole and venule.

cardiac pulse follows the vessel paths of larger arteries entering the brain from below, and from
there spreads out almost uniformly [41, 58]. The pulses also seem to traverse deep gray matter
structures on the way up towards the ventricles.

To model such behavior, we introduce a directional velocity field vdir, with characteristics
qualitatively similar to what is described in the literature [41, 58]:,

(15) vdir(x) = −vf

 arctan(15x1)(|x1| − 0.1)
arctan(15x2)(|x2| − 0.1)

−0.9x3 + 0.06−
√
x2

1 + x2
2

 ,

where vf = 2 × 10−6 m/s. For a plot of vdir, see Figure 2c. The velocity field vdir induces a
net flow out of the parenchyma at the very low rate of 0.007 mL/min. We superimpose this
deterministic directional velocity field by the stochastic glymphatic circulation velocity field to
define the stochastic glymphatic directional velocity field:

(16) v(x, ω) = vV1(x, ω) + vdir(x),

where vV1 is given by (14). This velocity model thus takes into account both the ”randomness” of
small arteries, but also the ”deterministic” presence of large arteries and possibly other structures
of blood flow propagation [41, 58].

Capillary filtration model V3: arterial inflow with a homogeneous sink throughout the brain. Sev-
eral independent studies demonstrate that CSF may enter the brain parenchyma along spaces
surrounding penetrating arteries [48, 39, 5, 14]. However, the glymphatic efflux concept of a bulk
flow of CSF through the ECS and recirculation into the SAS through paravenous spaces has been
severely questioned [34, 36, 5, 67]. As a variation, we here therefore also consider a stochastic
velocity model representing paraarterial influx without a direct return route to the CSF. Instead,
we assume that ISF/CSF is drained inside the brain parenchyma along some alternative efflux
pathway. This pathway may include the capillaries or separate spaces along the PVS directly into
cervical lymph nodes.

In light of this, we consider the following alternative velocity assumptions. (1) There is a
net flow of CSF into the brain and (2) ISF is cleared within the parenchyma via some, here
unspecified, route. For instance, it has been proposed that production and absorption is present
all over the CSF system and that capillaries and ISF continuously exchanges water molecules
[54]. However, drainage of large molecules through this route is unlikely as capillaries and the
basement membranes are connected through tight junctions [34]. It has also been reported that
lymph vessels may be capable of also draining larger molecules from brain tissue into deep cervical
lymph nodes, possibly through paravenous spaces [9]. In addition, other outflow routes may exist,
including degradation clearance and meningeal lymphatic vessel clearance [69].

To address these assumptions, we define a stochastic arterial inflow velocity field as a radially
symmetric field pointing inwards from the SAS interface to the brain region around the lateral
ventricle. This central region is modelled in what follows as a sphere of radius R = 8 cm and
center given by xc in the lateral ventricles. Mathematical experimentation lead to the following
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10 MATTEO CROCI∗, VEGARD VINJE∗, AND MARIE E. ROGNES

Figure 3. Sample Model V3 velocity field. Velocity magnitude and stream-
lines for the velocity field as given by (17). Flow is assumed to occur from the
cortex towards the ventricles with reduced velocity along the way due to clearance.
From left to right: sagittal, coronal and transverse view.

ansatz for such velocity:

v(x, ω) = v̄(ω) exp

(
− 3(R− ||x− xc||)2

R2 − (R− ||x− xc||)2

)
(x− xc),(17)

where v̄(ω) is a gamma random variable chosen such that the probability distribution of the
velocity magnitude is comparable to that of the glymphatic circulation velocity defined by (14).
The shape parameter k = 2 and the scale parameter is set such that again E[||v||2]1/2 = vavg.
Note that in this case, the expected value of the velocity components are non-zero. To satisfy
(2), we model the drainage of tracer by setting r = −1× 10−5 s−1, which typically results in 40%
drainage of the injected tracer over 48 hours.

Random field sampling and uncertainty analysis. We considered six output functionals of
interest: the amounts of tracer in gray and white matter at given times (8), the average tracer
concentrations in subregions of gray and white matter (9), the white matter activation time (10),
and the white regional activation time (11). Each functional Q = Q(ω) depends on the random
parameter ω via c(·, ·, ω) as defined by (2). To sample the functional from its distribution, we
first compute a sample of each of the random coefficients in (2) from their distribution, second,
solve (2) with the given coefficient sample, and third, evaluate the functional with the computed
solution. For sampling the random diffusion and velocity coefficient fields, we adopted a white
noise sampling technique using an auxiliary extended domain [22]. We used the standard Monte
Carlo approximation to estimate the expected functional value E[Q]

E[Q] ≈ Q̂ =
1

N

N∑
n=1

Q(ωn),(18)

where N is the number of Monte Carlo samples. The statistical error introduced by approximating
E[Q] with Q̂ decreases with O(N−1/2). We let N = 3200 to ensure an that 3(V̂ /N)1/2 < 0.01Q̂,

where V̂ is the sample variance of Q̂.

Numerical methods and implementation. The diffusion-convection equation (2) was solved
numerically using a finite element method with continuous piecewise linear finite elements in space,
and a second-order (implicit midpoint) finite difference discretization time with time step ∆t = 15
min, combined with mass lumping [71]. The finite element mesh Th was an adaptively refined
version of the gray and white matter of the Colin27 human adult brain atlas mesh [26] version 2
with 1 875 249 vertices and 9 742 384 cells. An outer box of dimensions 0.16 × 0.21 × 0.17 (m3)
with mesh size 0.0023 m was used for the sampling of the Gaussian fields.
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For the models with non-zero velocity (Models V1, V2, V3), (2) was typically mildly convection-
dominated with an upper estimate of the Péclet number of

Pe ≈ 9Lvavg

D∗Gad

≈ O(103),(19)

where L ≈ 0.084 m is half the diameter of the computational domain, vavg = 0.17µm/s, and
D∗Gad = 1.2×10−10 m/s2. The boundary condition (7) was discretized explicitly in time using the
trapezoidal rule; i.e. we let for each n = 0, 1 . . . :

cCSF(tn+1, ω) =
1

VCSF

(
n0 −

∫
D
c(tn, x, ω) dx

−∆t

2

(
2
n−1∑
i=1

∫
D
rc(ti, x, ω) dx+

∫
D
rc(tn, x, ω) dx

))
,

(20)

where tn = n∆t and the term in the inner bracket results from the numerical integration of the

term
∫ tn

0

∫
D
rc(t, x, ω).

The numerical solver was verified using a convergence test comparing different mesh refinements,
time steps, and stabilization techniques, including SUPG [24], for a set of deterministic worst-case
models (with large velocities and small diffusion coefficients) (Additional file 1).

The numerical solver was implemented in Python using the FEniCS finite element software [7]
and previously verified in-house parallel Monte Carlo routines [22]. The extended box mesh was
created using the Gmsh software [27]. The linear system was solved using the PETSc [12] im-
plementation of the GMRES algorithm preconditioned with the BoomerAMG algebraic multigrid
algorithm from Hypre [25]. We used Matplotlib (version 2.1.1) and Paraview (version 5.4.1) for
visualization.

Results

Non-random diffusion as a baseline for parenchymal solute transport. To establish a
baseline for parenchymal solute transport, we first simulated the evolution of a tracer spreading
in the SAS and in the parenchyma via diffusion only, using a constant (i.e. non-random) effective
diffusion coefficient for gadobutrol (D∗ = 1.2 × 10−10 m2/s). The resulting parenchymal tracer
spread over 24 hours is shown in Figure 4. The tracer concentration increases first in inferior
regions and in the gray matter. Tracer does not penetrate deep into white matter regions within
this time frame. In the sagittal plane (top), tracer enhancement is more prominent than in the
other two plane as the sagittal plane shown is close to the CSF-filled longitudinal fissure.

Figure 5a shows the boundary tracer concentration (concentration in the SAS) over time at
the levels of the foramen magnum (z = −0.1 m), sylvian fissure (z = 0 m) and precentral sulcus
(z = 0.1 m). During the first few hours, boundary tracer concentration at the level of the foramen
magnum increases rapidly, and peaks at 3 hours reaching approximately 2.0 mol/m3. Boundary
tracer concentrations close to the sylvian fissure and precentral sulcus are lower, and the time
to reach peak concentrations is longer. For the sylvian fissure, peak concentration in the CSF is
1.4 mol/m3, at 5 hours, while the precentral sulcus concentration reaches 1.1 mol/m3 at 7 hours.
We note that as the boundary condition depends on the parenchymal tracer concentration itself
(cf. (7)), the boundary tracer concentration will differ slightly in subsequent simulation setups.

In Figure 5b, concentration profiles are shown for three interior points at different distances
from the brain surface. The points were chosen along a line from the brain surface towards the
ventricles at the height of the sylvian fissure (z = 0). The tracer concentration at these points
stays low for the first few hours before steadily increasing. For the point closest to the SAS
(x2), the concentration rises faster than for the other two points, and is almost equal to the SAS
concentration at 24 hours (0.4 vs 0.5 mol/m3). In the middle point (x1), tracer concentration
starts increasing after 6-7 hours and reaches approximately 0.15 mol/m3 after 24 hours. For the
most interior point (x0), tracer concentration starts and stays low throughout the 24 hour time
span. At 24 hours, the tracer concentration in all three points is still increasing.
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Figure 4. Baseline tracer evolution. Parenchymal tracer concentration after
(from left to right) 1, 3, 8 and 24 hours of diffusion in (from top to bottom)
sagittal, transverse and coronal planes. Initially, most of the tracer is found in
inferior regions. At 24 hours, tracer has penetrated substantially into the gray
matter, but not into the deep, central regions.

Quantifying the effect of uncertainty in effective diffusion magnitude. We first aimed
to quantify the effect of uncertainty in the magnitude of the effective diffusion coefficient on
the time evolution of tracer in the gray and white matter. In particular, we computed the tracer
concentration, together with auxiliary output quantities, evolving via diffusion only with a gamma-
distributed random variable diffusion coefficient (Model D1).

The amount of tracer found in the gray and white matter differ both in magnitude and variation
(Figure 6a-c). The expected amount of tracer in the gray matter increases rapidly, and doubles
from 1 to 2 hours (0.065 to 0.13 mmol), and again from 2 to 4 hours (0.13 mmol to 0.25 mmol).
The gray matter reaches a peak after approximately 15 hours, while the white matter did not reach
steady steady within 24 hours. There is substantial variation in the amount of tracer in gray matter
throughout the 24 hour time span. The variation is at its largest between 2 and 8 hours where the
length of the 99.73%-intervals range from 0.064 mmol to 0.11 mmol corresponding to 13-22% of
the total tracer injection of 0.5 mmol. Ultimately, the amount of tracer will reach a steady-state
solution, constant in space and time, independently of the diffusion coefficient. Therefore, after a
certain point in time, variation decreases as all solutions converge towards the same steady state.
The changes in variation of tracer found in the gray matter over the 24 hours are also illustrated
by the change in the estimated probability density function (PDF) of the total amount of tracer
at a given time (Figure 6c). After 3 and 5 hours (blue and orange curve) the PDFs are symmetric,
and with more spread for the later time point. As time evolves, the PDFs become more left skewed
(green and red curve), as in almost all cases, the concentration approaches but never surpasses
the steady state value.

The amount of tracer in the white matter changes slowly for the first two hours, before starting
to increase after 3-4 hours (Figure 6b). After 4 hours, the expected amount of tracer in the white
matter is only 0.0048 mmol, increasing to 0.022 mmol after 8 hours, and 0.056 mmol after 16
hours. The variation is substantial and increasing with time: the length of the 99.73%-interval is
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a) b)

Figure 5. Tracer concentrations (a) Tracer concentration in the SAS (cCSF)
used as boundary conditions at the brain surface at the level of the foramen
magnum (FM), sylvian fissure (SF) and the precentral sulcus (PS). At the lower
level of the SAS, tracer concentration peaks at around 3 hours, while at the upper
levels, peak concentration occurs later. Following peak values, the concentration
in the SAS decreases as tracer enters the parenchyma. The SAS concentration is
modeled by (5) (b) Tracer concentration over time in three different points at a
given distance from the brain surface. The points were chosen along a line directly
from the cortex towards the ventricles at the level of the sylvian fissure.

0.022 mmol at 4 hours, 0.065 mmol at 8 hours and 0.10 at 16 hours. At 24 hours, the uncertainty
in diffusion coefficient may explain a factor of approximately 5 in deviation from the lowest (0.027
mmol) to the highest (0.14 mmol) predicted amount of tracer in the white matter.

The estimated PDF and cumulative density function (CDF) for the white matter activation
time (i.e. time for 10% of tracer to reach the white matter) is shown in Figure 6d. We observe
that the most likely white matter activation time is approximately 14 hours. The white matter
activation time is less (than 10%) likely to be less than 9.5 hours, but (more than 90%) likely to
be less than 24.5 hours. The activation time may exceed 24 hours, but is highly unlikely to go
beyond 40 hours (CDF ¿ 0.998). The white matter activation threshold was reached in all samples
within the simulation time span.

Quantifying the effect of uncertainty in diffusion heterogeneity. Brain tissue is hetero-
geneous [72], varies from individual to individual, and is clearly not accurately represented by a
single diffusion constant. To further investigate the effect of uncertainty in the diffusion coefficient
and in particular to study the effect of spatial heterogeneity, we modelled the diffusion coefficient
as a spatially-varying random field (Model D2).

The amounts of tracer found in gray and white matter for Model D2 are nearly identical to
those resulting from Model D1 in terms of expected value (data shown later cf. Figure 9), but with
substantially less variability. The length of the 99.73% confidence interval for amount of tracer in
gray matter (Qg) is less than 0.0071 mmol for all times after the first half hour, corresponding to
a relative variability (compared to the expected value) of between 2.2 and 10.9% throughout the
24 hour time span. For white matter, the length of the 99.73% confidence interval is increasing
with time, with the relative variability at 24 hours at 7.9%.

When considering the average concentration of tracer in two smaller regions of interest (cf. (9)),
variability in model D2 increases drastically (Figure 7). In the gray matter region (Figure 7a), the
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a) b)

c) d)

Figure 6. Uncertainty quantification for Model D1. The integrated
amount of tracer in the (a) gray matter Qg and (b) white matter Qw over time;
Qg and Qw as defined by (8). The blue curves show the expected value. The
light blue vertical bars indicate the variability: 99.73% of the samples fall within
the plotted range (with 0.135% of the samples above and 0.135% below). (c) The
probability density functions (PDFs) corresponding to Qg at 3, 5, 8 and 24 hours
after tracer injection. (d) Histogram of white matter activation time Fw as defined
by (10) (bars), corresponding estimated PDF (orange curve), and corresponding
cumulative density function (CDF). Uncertainty in the magnitude of the effective
diffusion coefficients substantially impact the amount of tracer found in the gray
and white matter and the white matter activation time.

expected average tracer concentration increases steadily to 0.11 mol/m3 after 4 hours, 0.23 mol/m3

after 8 hours, 0.35 mol/m3 after 16 hours and is still increasing after 24 hours. The variability is
moderate after 3 hours (Figure 7c), but increases thereafter. The length of the 99.73% confidence
interval peaks at 0.39 mol/m3 after 11 hours before decreasing moderately for later times.

The expected average tracer concentration in the white matter is low, lower than in the gray
matter (Figure 7b) by a factor of at least 40, and starts increasing only after approximately 14
hours. For the samples in the lower range of the 99.73% interval (thus with the lower effective
diffusivity), the concentration in the white matter region remains close to zero after 24 hours. For
the white region activation time, we observe some variability (Figure 7d): the peak likelihood is
after 14-15 hours, less (than 10%) likely to be less than 12 hours, and (more than 90%) likely to
be less than 19 hours. The white subregion activation threshold was reached in all samples within
the simulation time span.

Quantifying the effect of glymphatic circulation. In light of the substantial uncertainty
surrounding ISF/CSF flow in paravascular/perivascular spaces and potential ISF flow in extracel-
lular spaces, we now turn to study the effect of uncertain velocity fields. To investigate the effect
of uncertainty in a glymphatic velocity model, we defined a random velocity field with correlation
length corresponding to the typical distance between parenchymal arterioles and venules (Model
V1).

The expected amounts of tracer found in the whole gray and whole white matter for Model V1
are nearly identical to those found for Model D2 and Model D1, while the variability is minimal
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Figure 7. Uncertainty quantification for Model D2. The average tracer
concentration in a subregion of (a) gray matter qg and (b) white matter qw as
defined by (9). The blue curves show the expected value. The light blue vertical
bars indicate the variability: 99.73% of the samples fall within the plotted range
(with 0.135% of the samples above and 0.135% below). The dashed orange lines
in (a) and (b) indicate the analogous expected value curve resulting from Model
D1 (constant diffusion only), for comparison. (c) The probability density func-
tions (PDFs) corresponding to qg at 3, 5, 8 and 24 hours after tracer injection.
(d) Histogram of white subregion activation time fw as defined by (11) (bars),
corresponding estimated PDF (orange curve), and corresponding cumulative den-
sity function (CDF). Uncertainty in the heterogeneity of the diffusion coefficient
leads to a wide range of likely average tracer concentrations in the white matter
throughout the time span.

(data shown later cf. Figure 9). Thus, on average, small random variations in fluid velocity did
not increase (or decrease) the tracer distribution into the parenchyma on a global scale. This
observation can be interpreted in the light of the small correlation length of the velocity field
compared to the size of the whole gray and white matter.

The expected average tracer concentration in the gray subregion qg reaches 0.2 mol/m3 in 7
hours (Figure 8a). This is a considerable amount of time, given that the initial average SAS
concentration is 3.57 mol/m3. The expected average tracer concentration in the white subregion
qw is lower, and only reaches 7.3 mmol/m3 in 24 hours (Figure 8b). We observe that the expected
qg increases marginally faster with the glymphatic velocity model than for pure diffusion: at 24
hours, qg is 2.5% higher for V1 (0.40 mol/m3) than for D1 (0.39 mol/m3). On the other hand,
the expected qw increases faster with pure diffusion than with the glymphatic velocity model: at
24 hours, qw is 34% lower for V1 (0.0073 mol/m3) than for D1 (0.011 mol/m3). The peak relative
difference between pure diffusion and the upper limit of the 99.73% interval of model V1 is high
after one hour, due to low tracer concentration overall. The next peak occurs after 8 hours where
the relative difference is 13 % between the two.

However, the variation in both gray and white local average tracer concentration is small.
For early time points (up to 3-4 hours), nearly no variation is evident in the average tracer
concentration of the local regions (Figure 8a-c). The peak length of the 99.73% interval for qg is
0.035 mol/m3 (at 9 hours), and the relative variability ranges from 6-19% in the 24 hour time span.
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c) d)

Figure 8. Uncertainty quantification for Model V1. The average tracer
concentration in a subregion of (a) gray matter qg and (b) white matter qw as
defined by (9). The blue curves show the expected value. The light blue vertical
bars indicate the variability: 99.73% of the samples fall within the plotted range
(with 0.135% of the samples above and 0.135% below). The dashed orange lines
in (a) and (b) indicate the analogous expected value curve resulting from Model
D1 (constant diffusion only), for comparison. Expected values for qg are nearly
identical as for Model D1 and D2, but variation is much lower. Expected values
for qw are lower than for Model D1 and variation is much lower (c) The proba-
bility density functions (PDFs) corresponding to qg at 3, 5, 8 and 24 hours after
tracer injection. The PDFs show very low variation. Variation increases slightly
over time. (d) Histogram of white subregion activation time fw as defined by (11)
(bars), corresponding estimated PDF (orange curve), and corresponding cumula-
tive density function (CDF).

Moreover, the activation time fw shows low variability: all simulations resulted in an activation
time of 15.5-16 hours (Figure 8d). The substantially reduced variability for V1 compared to e.g. D2
combined with the comparable expected values yields much larger likely sample ranges for D2 than
for V1.

Quantifying the effect of glymphatic directionality. The cardiovascular pulse propagates
along the larger arteries entering the brain from below before spreading outwards [41, 58]. To
assess whether and how such a directionality in the glymphatic system affects parenchymal tracer
distribution, we added a net flow field to the random velocity field representing the glymphatic
circulation (Model V2).

With more fluid entering the brain from below, as illustrated by the streamlines of Figure 2c, the
total parenchymal amount of tracer increases. For the expected amount of tracer in gray matter,
however, Model V2 was in very good agreement with Models D1 and V1 (Figure 9a). After 13
hours, the amount of tracer found in the gray matter is higher for Model D1 than for Model V2.
In Model V2, more of the tracer is found deeper in the gray matter and eventually moves to the
white matter. We note that the uncertainty associated with the velocity fields barely affects the
amount of tracer in the gray and white matter, as demonstrated by the nearly vanishing variation
associated with Qg and Qw for Model V2 (and V1) (Figure 9a-b).
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Figure 9. Uncertainty quantification for Model V2 Model V2 (red) in
comparison with Models D1 (orange) and V1 (blue). The integrated amount of
tracer in the (a) gray matter Qg and (b) white matter Qw, as defined by (8), over
time. The average tracer concentration in a subregion of (c) gray matter qg and
(d) white matter qw, as defined by (9), over time. The curves show the expected
values while vertical bars indicate the 99.73% confidence intervals of the different
models.

The expected amount of tracer in the white matter Qw increases substantially by the introduc-
tion of the directional velocity field (Figure 9b). The expected value curve starts deviating from
the other models after 4-5 hours, and the difference increases with time. At 24 hours, the expected
amount of tracer found in the white matter Qw is 50% larger for Model V1 (0.12 mmol) as for
Model D1 (0.08 mmol). However, in view of the large variability associated with Qw for Model
D1 and the nearly vanishing variability associated with Model V2, the expected amount of white
matter tracer for Model V2 falls well within the 99.73% confidence interval for Model D1.

The directional velocity field also induces an increase in the expected average tracer concen-
tration in the gray subregion qg (0.45 mol/m3 vs 0.40 for V1 and 0.39 mmol/m3 for D1 at 24
hours, Figure 9c). In contrast to for Qg and Qw, this functional also displays some variability,
with a peak variability (0.031 mol/m3 i.e. 10%) at 8-10 hours after injection. Notably, after 21-22
hours, the average tracer concentration in gray matter is larger than for pure diffusion (and for
no net flow) also in terms of 99.73% confidence intervals. For qw, Model V1 and V2 are in close
agreement, both with distinctly less variability than Model D1 (Figure 9d).

Quantifying the effect of paraarterial influx with drainage. A number of open questions
remain in the context of glymphatic and paravascular efflux routes. To further investigate potential
pathways, we also considered a model representing paraarterial influx combined with parenchymal
ISF drainage (Model V3).

Paraarterial inflow with drainage increases the amount of tracer found in the parenchyma for the
early time points (Figure 10). After 4 hours, with the lowest velocities, the amount of tracer in the
gray matter is equal to models with only diffusion (0.25 mmol). With higher velocities, however,
the amount of tracer found in the gray matter increases by 32% to reach 0.33 mmol. After a peak
at 6-8 hours, drainage and transport into white matter cause a decrease in the expected amount
of tracer in the gray matter, while its variation stays more or less constant (0.11-0.12 mmol). The
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a) b)

c) d)

Figure 10. Uncertainty quantification for Model V3. The integrated
amount of tracer in the (a) gray matter Qg and (b) white matter Qw over time;
Qg and Qw as defined by (8). The blue curves show the expected value. The light
blue vertical bars indicate the variability: 99.73% of the samples fall within the
plotted range (with 0.135% of the samples above and 0.135% below). The dashed
orange lines in (a) and (b) indicate the analogous expected value curve resulting
from Model D1 (constant diffusion only), for comparison. Large variations in
the white matter is found depending on the inflow velocity. (c) The probability
density functions (PDFs) corresponding to Qg at 3, 5, 8 and 24 hours after tracer
injection. (d) Histogram of white matter activation time Fw as defined by (10)
(bars), corresponding estimated PDF (orange curve), and corresponding cumula-
tive density function (CDF). We note that the CDF peaks at 0.96 (¡ 1.0) as some
samples never reached the white region activation threshold.

PDFs of the amount of tracer found in the gray matter thus have different characteristics than the
two previous models, in particular the red curve (24 hours) shows lower amounts of tracer than
at the two previous time points.

For the white matter, the expected amount of tracer increases with time, rapidly in comparison
with pure diffusion, and seems to peak at approximately 0.097 mmol (at 19-22 hours) before slowly
decreasing. Variation, on the other hand, is substantial and in some cases the amount of tracer
found in the white matter reaches 0.2 mmol, which higher than what is seen in any previous model.
This is visible by a peak of the maximum values within the 99.73% interval after 11-12 hours. In
Model V3, tracer is drained out of the system and the amount of tracer in the white matter is
similar as for the previous models at 24 hours.

The white matter activation time is likely lower for Model V3 compared to previous models,
and the variation is substantial (Figure 10d). The white matter activation time is less (than 10%)
likely to be less than 6 hours, but (more than 90%) likely to be less than 16.5 hours. Note that
the white matter activation threshold was not reached in 3% of the samples.

Discussion

In this study, we have investigated the variability in parenchymal tracer enhancement resulting
from uncertainty in diffusion and convection parameters. We designed five computational models
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representing different diffusion and convection regimes and used stochastic analysis to rigorously
evaluate the resulting probability distributions.

In all models, 10% of the tracer reached the white matter within 40 hours, with more variabil-
ity in activation time for diffusion models and less variability for models including a convective
velocity. Indeed, uncertainty in the diffusion parameters had a substantial impact on the amount
of tracer in gray and white matter, and on the average tracer concentration in gray and white
subregions. Overall, diffusion was not sufficient, with high likelihood, to transport tracer deep
into the parenchyma.

A stochastic velocity field representing the glymphatic theory did not increase transport into
any of the regions considered, unless augmented with an additional net flow with a prescribed
directionality. In the latter case, transport was increased with overwhelming likelihood: for model
V2, the entire 99.73% confidence interval for the gray subregion average tracer concentration
was higher than for model D1. Models including parenchymal drainage displayed substantial
variability, and reached peak values for the expected amount of tracer both in gray and white
matter within 24 hours.

Comparison with previous work. Our models mimic the experimental set-up of an MRI study
of parenchymal tracer distribution after intrathecal gadobutrol injection [64]. In our simulations,
as in the MRI study, the tracer first spreads to inferior regions of the parenchyma closer to the
(modelled) injection site. Modelling a healthy patient, we assumed that the tracer concentration
in the ventricular CSF was low [64, 63]. Thus, no tracer spreads to the parenchyma from the
ventricles directly. In models with diffusion only, the amount of tracer in the gray matter peaks
at approximately 15 hours. In the MRI study, the time to peak enhancement in selected regions
of interest was between 12 and 24 hours [64]. In a more recent study, time to peak values were
considerably longer, up to 48 hours, for some regions [63]. However, in the latter study, the time to
peak enhancement was shorter for the white matter than for the gray matter in healthy subjects.
This observation is not consistent with the results from either of our computational models.

Most of the reported time to peak values in the two human MRI-studies [64, 63] are within the
99.73% confidence interval of the random homogeneous diffusion model (Model D1). However, even
for the upper range of the confidence interval, the time to peak/steady state value for the white
matter exceeds 24 hours in our model. The uncertainty in the diffusion coefficient may explain a
four-fold difference in the amount of tracer found in the white matter at 24 hours. Despite this
large variation, the discrepancy between simulations and experiments in white matter could not
be explained by uncertainty in the diffusion parameter. This may suggest other mechanisms in
addition to diffusion for tracer transport into deeper regions of the brain. According to paraarterial
influx theories in general and the glymphatic theory in particular, tracer flows rapidly along and
into the parenchymal PVS [37] distributing tracer to the gray matter. Hence, one may expect
diffusion models to underestimate the amount of tracer in gray matter at a given time. However,
is worth noting that we do not observe such an underestimation in our diffusion model, when
compared to the experimental values [64]. In contrast, we do observe a delayed distribution of
tracer in white matter.

Brain tissue is known to be both anisotropic and heterogeneous [51, 62, 77]. We found the
variation due to spatial heterogeneity in the diffusion coefficient to be low. As the correlation length
was small compared to the size of the the gray and white matter, a lack to tracer concentration
in one local region was balanced by enhancement in a different local region. In addition, we note
that representing the diffusion coefficient as a random variable or a random field yields the same
expected value. Tracer distribution to large brain regions can thus be well approximated using an
average diffusion constant if the spatial heterogeneity is present on a shorter length scale.

In models with convection, given a homogenized velocity of average magnitude 0.17 µm/s,
tracer distribution depends on the characteristics of the velocity field. In the glymphatic theory,
CSF enters the brain along arteries and re-enters the SAS along a paravenous efflux pathway [39,
37]. In our glymphatic circulation model, the stochastic velocity field, representing homogenized
paraarterial and paravenous flow, did not increase tracer distribution to the brain. An increase in
the amount of tracer surrounding paraarterial spaces was balanced by a lower distribution around
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paravenous spaces. However, when local regions are addressed, tracer concentration may increase
by up to 13% compared to diffusion alone, depending on the surrounding velocity field and region
of interest. As we consider a homogenized representation of the PVS, this change reflects an
increase in regions surrounding arterial PVS (not only inside the PVS). Iliff et al. [38] reported a
2-fold increase in tracer intensity in PVS in normal mice compared to mice with internal carotid
artery ligation. The increase in the surrounding parenchyma was lower, approximately 30-40%,
which compares more naturally with our estimate of 13 %. It should be noted however, that our
region of interest was deeper into the parenchyma (extending from 0.6 to 4 mm depth) than the
region of interest (at 100 µm) used by Iliff et al. [38]. Moreover, our model parameters reflect a
different species (man versus mouse), and the tracer spread takes place at a longer time scale.

When modelling paraarterial influx combined with parenchymal drainage (Model V3), the time
to peak was reduced to 6-8 hours in the gray matter. Although lacking quantitative drainage
parameters, we observe that substantial clearance would reduce both the time to peak and relative
tracer enhancement in the brain compared to diffusion alone. In the glymphatic directionality
model (Model V2), guided by [58], the presence of a paravascular directional velocity also decreases
the expected time to peak tracer enhancement in gray matter, down to 11 hours (compared to
15 hours for pure diffusion). Thus, when experimental data suggests a time to peak enhancement
shorter than for diffusion alone, it is not clear whether this is due to increased glymphatic function
or increased clearance by parenchymal drainage.

In our models, the white matter (and subregions) is where the effect of a convective velocity
becomes most prominent. The only model modification causing an expected time to peak enhance-
ment in white matter of approximately 24 hours is with a paraarterial inflow and drainage (Model
V3). In this model, the upper limit of the 99.73% confidence interval peaks at approximately 12
hours, which is more comparable to the rapid tracer enhancement observed in the white matter
of healthy subjects [63].

Although diffusion may act as the main transport mechanism in the parenchyma [68, 36], we
here show that convective velocities of magnitude less than 1 µ m/s may play an important role
for transport. This result holds when there is a structure of the glymphatic circulation as used
in Model V2 or possibly a net inflow as in Model V3. It should be noted that this directional
velocity field, in which pulsations propagate upwards from the brain stem [41, 58], favors inflow
when tracer is injected in lower CSF regions such as e.g. in the spinal canal.

Limitations. In the present study, we have used a continuous model of the brain parenchyma
allowing only for an homogenized representation of paravascular spaces on the scale of micrometers.
To remedy this limitation, combined with restrictions placed by mesh resolution, we used lower
velocities acting over larger areas to model paravascular flows.

Further, we did not distinguish between white and gray matter in terms of the fluid velocity or
in the diffusivity, although white matter is assumed to be more permeable [56]. However, in the
absence of substantial drainage, net movement of fluid (in gray matter and PVS vs white matter)
should on average be equal in the two regions by conservation of mass. Therefore, we used maximal
velocity magnitudes of approximately 0.5 µm/s, which is similar to what has been reported in white
matter [1], but not as high as has been reported in local regions in the PVS [14, 48]. While we
used qualitative measurements [41, 58] to suggest a directionality in the glymphatic circulation, we
predict that more detailed measurements of glymphatic function in different brain regions would
be important for tracer enhancement and clearance.

The boundary concentration in our model was assumed to spread in a manner similar to what
was seen from the signal intensity in the MRI study by Ringstad et al. [64]. A more detailed
analysis of the spread of tracer in the CSF could be based on at least solving the Navier-Stokes
equations in the SAS. In addition, our model ignores other efflux pathways directly from the
SAS such as e.g. arachnoid granulations [29], dural lymphatics [46, 45], and nasal lymphatics [49],
although lymphatic drainage of CSF has recently been proposed to dominate glymphatic clearance
[47].

In the experiments by Ringstad et al. [64, 63], tracer distribution within the parenchyma varied
considerably from patient to patient. In our analysis, we did not consider patient-specific meshes,
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but rather one representative mesh. Patient-specific meshes would add additional dimensions to
the space of uncertainty, possibly giving different distributions in output in each of the patients.

The MRI-studies [64, 63] only provide quantitative values of tracer enhancement signal intensity,
and not tracer concentrations. As the relation between signal intensity and concentration is
nonlinear [20], we have not made a direct comparison between these two quantities. However, we
have assumed that a peak in signal intensity corresponds to a peak in tracer concentration, thus
allowing for a comparison of time-to-peak between the model results and experiments.

Conclusions

The results from this study show that uncertainty in the diffusion parameters substantially im-
pact the amount of tracer in gray and white matter, and the average tracer concentration in gray
and white subregions. However, even with an uncertainty in the diffusion coefficient of a factor
three, and a resulting four-fold variation in white matter tracer enhancement, discrepancies be-
tween simulations of diffusion and experimental data are too large to be attributed to uncertainties
in the diffusion coefficient alone.

A convective velocity field, representing the glymphatic circulation, increases tracer enhance-
ment in the brain as compared to pure diffusion. However, increased enhancement is reliant on a
directional structure of the velocity field allowing for efficient inflow from given regions.

Diffusion alone was able to mimic behaviour in MR-studies in specific regions. However, this
result does not imply lack of glymphatic circulation as the gray matter tracer enhancement was
equal for the glymphatic model with directionality and for diffusion alone. However, the white
matter concentration was greatly increased in the former model. Thus measuring glymphatic
function requires detailed experimental data and analysis of the whole brain.
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