Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

High-throughput single-cell proteomics quantifies the emergence of macrophage heterogeneity

View ORCID ProfileHarrison Specht, View ORCID ProfileEdward Emmott, David H. Perlman, Antonius Koller, View ORCID ProfileNikolai Slavov
doi: https://doi.org/10.1101/665307
Harrison Specht
1Department of Bioengineering, Northeastern University, Boston, MA 02115, USA
2Barnett Institute, Northeastern University, Boston, MA 02115, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Harrison Specht
Edward Emmott
1Department of Bioengineering, Northeastern University, Boston, MA 02115, USA
2Barnett Institute, Northeastern University, Boston, MA 02115, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Edward Emmott
David H. Perlman
1Department of Bioengineering, Northeastern University, Boston, MA 02115, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Antonius Koller
1Department of Bioengineering, Northeastern University, Boston, MA 02115, USA
2Barnett Institute, Northeastern University, Boston, MA 02115, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Nikolai Slavov
1Department of Bioengineering, Northeastern University, Boston, MA 02115, USA
2Barnett Institute, Northeastern University, Boston, MA 02115, USA
3Department of Biology, Northeastern University, Boston, MA 02115, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Nikolai Slavov
  • For correspondence: nslavov@alum.mit.edu
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Data/Code
  • Preview PDF
Loading

Article usage

Article usage: June 2019 to March 2023

AbstractFullPdf
Jun 201954112351434
Jul 2019141178477
Aug 20191202110351
Oct 20191030182332
Nov 2019706193247
Dec 201934722271258
Jan 20201500229426
Feb 20201357335470
Mar 20201334175342
May 2020921174333
Jun 2020688131196
Jul 2020784137227
Aug 2020827160283
Sep 2020891180305
Oct 20201785223565
Nov 2020722190275
Dec 20201769255496
Jan 20211787341975
Feb 2021799155234
Mar 2021662140185
Apr 2021434127133
May 2021501104110
Jun 20212777190
Jul 202130473101
Aug 202126962118
Sep 20212596588
Oct 20212365776
Nov 20211913771
Dec 20211983855
Jan 20222414549
Feb 20221802537
Mar 20222745282
Apr 20223864561
May 20221705457
Jun 20221766736
Jul 20221782338
Aug 20221833027
Sep 20221442620
Oct 20221893334
Nov 20223113335
Dec 20221175325
Jan 20231392634
Feb 20231452826
Mar 20231231616
Back to top
PreviousNext
Posted July 09, 2019.
Download PDF
Data/Code
Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
High-throughput single-cell proteomics quantifies the emergence of macrophage heterogeneity
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
High-throughput single-cell proteomics quantifies the emergence of macrophage heterogeneity
Harrison Specht, Edward Emmott, David H. Perlman, Antonius Koller, Nikolai Slavov
bioRxiv 665307; doi: https://doi.org/10.1101/665307
Reddit logo Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
High-throughput single-cell proteomics quantifies the emergence of macrophage heterogeneity
Harrison Specht, Edward Emmott, David H. Perlman, Antonius Koller, Nikolai Slavov
bioRxiv 665307; doi: https://doi.org/10.1101/665307

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Immunology
  • Systems Biology
  • Genomics
  • Bioengineering
Subject Areas
All Articles
  • Animal Behavior and Cognition (4230)
  • Biochemistry (9123)
  • Bioengineering (6766)
  • Bioinformatics (23969)
  • Biophysics (12109)
  • Cancer Biology (9510)
  • Cell Biology (13753)
  • Clinical Trials (138)
  • Developmental Biology (7623)
  • Ecology (11674)
  • Epidemiology (2066)
  • Evolutionary Biology (15492)
  • Genetics (10631)
  • Genomics (14310)
  • Immunology (9473)
  • Microbiology (22822)
  • Molecular Biology (9086)
  • Neuroscience (48920)
  • Paleontology (355)
  • Pathology (1480)
  • Pharmacology and Toxicology (2566)
  • Physiology (3841)
  • Plant Biology (8322)
  • Scientific Communication and Education (1468)
  • Synthetic Biology (2295)
  • Systems Biology (6180)
  • Zoology (1299)