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Abstract 

      
 Olfaction — an evolutionarily conserved chemosensory modality — guides navigation and 

decision-making in organisms from multiple phyla within the animal kingdom. However, using 

olfactory cues to guide navigation is a complicated problem. This is because the spread of odor 

molecules from the source is governed by turbulent and chaotic air currents, resulting in 

intermittent and spatiotemporally varying sensory cues as odor plumes. Precisely correlating 

olfactory information with behavior and neurophysiology from freely behaving animals has thus 

been a challenging avenue due to the dynamic nature of the odor plumes. Current technologies for 

chemical quantification are cumbersome and not feasible for monitoring the olfactory information 

at the temporal and spatial scales relevant for plume and odor tracking in animals. Here we present 

an alternate method for real-time monitoring of olfactory information using low-cost, lightweight 

sensors that robustly detect common solvent molecules, like alcohols. Paired recordings were 

made from these ethanol sensors with a Photoionization detector (PID) to precisely controlled 

ethanol stimuli. The ethanol sensor recordings were then deconvolved using a double exponential 

kernel, showing robust correlations with the PID recordings at behaviorally relevant time, 

frequency and spatial scales. Furthermore, the light weight of these sensors allows us to mount 

them on the heads of freely behaving rodents engaged in odor-guided navigation. Our preliminary 

experiments in mice show robust behavioral and neurophysiological responses correlated with 

ethanol plume contacts detected by these sensors.    
 
 

Introduction 
 

 Odor molecules emanating from a source spread due to turbulent air currents[1,2]. Currents 

of varying time scales and of different sizes exist in all fluids. Diffusive forces, resulting from 

Brownian motion, are the primary factors in creating a chemogradient within a layer of static fluid 

contact with the source. However, this diffusive layer is very narrow, limiting the spread of 

molecules to very short distances (<1 mm). Furthermore, spread via diffusion takes immensely 

long times to reach further distances. Above this very narrow diffusive layer, a velocity gradient 

exists within several layers. The size of currents, and their velocity profile within these layers 

depend on the characteristics of the bulk flow and atmospheric conditions. These dynamically 

varying currents result in a turbulent mixing of the odor molecules with the fluid molecules. The 

net result of these forces is a dynamically varying spread of odor molecules in time and space as 

odor plumes. Hence, time-averaged concentrations of the odorant in space are a poor measure of 

the odor profile that a non-stationary searcher, using odors to locate the source      will 
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experience[3]. An approach to overcome this problem is to use sensors that monitor the real-time 

concentration of the odorant molecules as the searcher navigates during plume tracking[4]. 
 

 Current technologies for chemical quantification are not feasible for mobile operations. 

Photoionization detection (PID) is a technology that is routinely used by olfactory researchers[5], 

but the sensor in this case is also relatively big and expensive. A technology that is used by the 

insect community is Electroantennography (EAG) [5]. However, EAG signals often degrade over 

the time scale of hours. We thus developed a method using metal oxide gas sensors that are 

routinely used in environmental monitoring systems as a feasible alternative for mobile monitoring 

of the environment. One limitation of using the metal oxide sensors has been the long decay time 

of the sensor recordings in response to transient activation with the chemical stimulus. Here we 

first conducted paired alcohol sensor and PID recordings to behaviorally relevant stimuli and      
developed a method to deconvolve the sensor recordings to match the PID recordings. 

Furthermore, we also present preliminary results correlating the deconvolved signals resulting 

from the alcohol sensors to neurophysiological responses in head-fixed, and behavioral responses 

in freely navigating mice. This method can serve as a cost-effective way to correlate real-time 

olfactory information with behavior and physiological responses and would thus greatly benefit 

olfactory research.  
 

Materials and Methods 
 

Paired PID and ethanol recordings 

  

 Figaro TGS 2620 Organic Solvent Vapor Sensor (powered by a 5V DC voltage from an 

Arduino) was used to monitor the relative concentration of the ethanol in air. To prevent extended 

contact of odor-laced air with the sensor, the head cap of the sensor was removed. Paired PID and 

alcohol sensor recordings were then conducted ~10-15 mm downstream of an odor port pushing 

ethanol vapors from a tube controlled by valve. The PID and sensor recordings were digitized by 

NI USB-6009 DAQ (National Instruments) at a sampling frequency of 500 Hz. The data 

acquisition and control of valve was carried out through LabView by custom-written scripts. For 

recordings in a dynamic plume, paired recordings were carried out downwind of an ethanol port 

in a custom-designed arena at multiple locations. Data from locations near the port, middle of the 

arena, and farthest downwind were pooled.  
 

Deconvolution of the ethanol sensor 
 

 The raw alcohol sensor recordings were low-pass filtered using a digital filter in MATLAB 

(cutoff frequency: 40 Hz). The frequency content in the filtered signal was then obtained by the fft 

routine. A kernel designed using a difference of two exponentials was then designed (see Results) 

using the equation:   

𝑓(𝑡) =𝑒𝑥𝑝  (−
𝑡

𝐷𝑒𝑐𝑎𝑦
)  − 𝑒𝑥𝑝 (−

𝑡

𝑅𝑖𝑠𝑒
) 

 The frequency content of the kernel, obtained by the fft routine, was then used to divide 

the filtered signal. The resulting spectrum was then converted back into the time domain by taking 

the inverse fft of the signal. The difference between the PID recordings and the deconvolved 

signals was calculated by normalizing both the PID and deconvolved signal. This allowed for the 
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comparison of the waveform of the two signals with no particular emphasis on the amplitude of 

the responses.  
 
 

Results 
 

Difference of two exponentials kernel to deconvolve the raw alcohol sensor responses 

  

To test the feasibility of the ethanol sensor to record behaviorally relevant odor stimuli, we 

conducted paired PID and ethanol sensor recordings in response to brief ethanol stimuli (Fig. 1A). 

As can be seen, the ethanol sensor recordings take a long time to decay compared to the PID 

responses. To improve our understanding of the rise time and time of decay of the ethanol sensor 

responses, the individual recordings were averaged to determine the mean time rise and tau decay. 

The mean rise and decay signal (Fig. 1B) were then exponentially fit to obtain the tau rise (0.06 s) 

and tau decay (3.5 s). Modeling the ethanol response as a difference of two exponentials [7], we 

deconvolved individual ethanol sensor recordings using a family of kernels with a range of tau rise 

and tau decay values. These deconvolved signals were then compared with the PID recordings, 

taken as the ground truth. The dependence of the mean error between the deconvolved sensor 

recordings and the PID recordings as a function of tau rise and tau decay values of the kernel is 

presented in Fig. 1C. The optimal tau rise values for the kernel were found to be less than 0.02 s 

and the tau decay values to be less than 0.5 s. Hence, we set the value of tau rise for the kernel to 

be 0.002 s and that of tau decay to be 0.5 s. Using this kernel, the raw ethanol recordings presented 

in Fig. 1A were deconvolved and are shown in Fig. 1D. For comparison, the PID response is also 

shown in red. The inset shows the normalized PID and deconvolved response to better compare 

the waveform of the two sensors. In order to test whether a major shift occurred due to the 

deconvolution procedure, we compared the threshold times (time to 5% of the max from the valve 

opening) of the deconvolved signal and the PID responses (Fig. 1E) for individual ethanol 

presentations. A linear relation (r = 0.9391, p<0.001) exists between the threshold time of the 

deconvolved signal and the PID responses.  
 

The summary data from all the durations equal to 0.3 s and less are presented in Fig. 2A 

as a heatmap where each row represents a single trial aligned with respect to the valve opening. 

The PID responses are presented in red, while the deconvolved ethanol sensor signals are presented 

in blue. Overlaying the two responses we can see coincident activity in magenta (right). 

Furthermore, the peak times (time of the maximum amplitude response with respect to the valve 

opening) of the deconvolved signal and the PID response (Fig. 2B) show a linear relationship (r = 

0.8903, p < 0.001) indicating the coincident activity of the two sensors.  
 

Frequency characteristics of the ethanol sensor 

  

We then tested the ranges of frequency at which the ethanol sensor can detect signals by 

conducting paired PID and alcohol sensor recordings to ethanol pulse stimuli of 5, 10 and 15 Hz 

frequencies. Fig. 3A shows the raw ethanol sensor and PID recordings for the frequencies tested. 

The raw sensor recordings were then deconvolved using the same kernel as used for the single 

pulses (see above). The deconvolved signal is shown in Fig. 3B. To better compare the 

deconvolved signal and the PID recordings, 1 s zoomed-in views of the signals are presented in 

Fig. 3C showing identical responses to the ethanol fluctuations.  
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To better compare the two signals, we carried out a cross-correlation of the stimulation 

window and baseline windows as shown in Fig. 4. The mean cross-correlation (n = 5 for each 

frequency) shows peaks near the cycle times (dashed lines). There is a consistent small difference 

in the peak times of the mean cross-correlation with respect to the cycle times (Mean: 3ms) across 

all the frequencies which might be explained by the delay in the opening of the valves (Clippard 

EV-2-12, response time: 5-10ms). 

      

Spatial characteristics of the ethanol sensor 

  

To test how distance from the ethanol source affected the alcohol sensor reading and 

responses to a more behaviorally relevant odor stimulus, we next conducted paired PID and alcohol 
sensor recordings in a custom-made arena designed to create dynamic odor plumes (Fig. 5A). The 

recordings were carried out near the source (1), middle of the arena (2), and farther downwind (3) 

locations indicated. Representative traces from the three locations are shown in Fig. 5B. As can 

be seen, the increasing distance results in a decrease of the amplitude of both the PID and sensor 

readings. The mean correlations (Mean+SD: 0.460+0.175 (1); 0.4708+0.1584 (2); 0.4343+0.0937 

(3)) between the PID and the deconvolved alcohol signal for the ethanol duration window are 

presented in Fig. 5C.  
 

Behavioral and neurophysiological responses correlated with ethanol contacts detected by the 

alcohol sensor 

  

To test if neural processing in the early olfactory pathways were correlated with sensor 

recordings, we conducted paired widefield calcium imaging over the dorsal surface of the olfactory 

bulb (OB) of head-fixed Thy1GCaMP6f (GP 5.11) mice [6] with ethanol sensor readings during 

ethanol plume presentations in a specially designed wind tunnel to create dynamic odor plumes. 

Fig. 6A shows the baseline image of the dorsal surface of the OB (left) with the standard deviation 

image (right) after ethanol plume presentation. Ethanol plume presentation resulted in glomerular 

activity patterns, obtained by cumulative non-negative matrix factorization (CNMF) [8], that were 

correlated with the deconvolved ethanol signal from the sensor. Fig. 6B shows the difference in 

fluorescence traces from 10 different glomeruli aligned with respect to the first peak of the 

deconvolved signal. As can be seen, the glomerular activity showed varied responses with some 

glomeruli following the fluctuations in the ethanol plume. Fig. 6C shows the mean activity of the 

glomeruli shown in Fig. 6B to 40 different presentations of the ethanol plume. The mean first peak 

of the ethanol signal detected by the sensor is also presented. As can be seen, the glomerular 

activity is consistent with the detection by the sensor. In order to better analyze how the population-

level activity in the OB changed with the plume presentation, we conducted a PCA on the 

population-level activity in the OB. Fig. 6D shows the trajectory of the activity in the first two PC 

(accounting for 48% of the variance) space after the plume detection. As can be seen, the trajectory 

after the plume detection (blue line with red dots) moves away from the resting state (blue lines 

alone). The PCA was then carried out on the glomerular dynamics data from individual sessions 

and the Euclidean distance between all the PCs during the resting and post-plume detection was 

calculated. Fig. 6E shows that the distance between the PCs post-plume detection increases during 

5 individual recording sessions. These results confirm that the plume detection by the alcohol 

sensor is correlated with neural processing in the OB.       
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To study how plume detection shapes behavior in plume-tracking mice, we trained water-

deprived mice to associate ethanol with water. Next they were tasked to find the ethanol source in 

a large wind tunnel (0.9*2*0.9 x*y*z m3). The mice were equipped with head-mounted sensors 

and their behavior and ethanol plume contact were recorded. Two instances of a mouse engaged 

in this task are shown slowed about 3x the real time (see supplemental videos). In the video, the 

red marks the animal while the trail represents the positions of the animal in the last half second 

and the plus sign denotes the location of the ethanol source in the arena. The white trace is 

a moving median of the speed of the mouse, while the blue trace is the deconvolved 

ethanol signal. Plume detection (defined as points where the deconvolved signal exceeds 

2 SD from the baseline marked as points where the red marker turns black) is associated with an 

increase in running speed and orientation toward the plume source.      

Discussion 

Correlating real-time olfactory information with behavior and physiological recordings 

has been a challenging avenue due to the dynamic nature of the olfactory stimulus. Vickers and 

Baker (1994) first conducted EAG recordings from antennae mounted on freely behaving 

moths to correlate odor stimuli with behavior [9]. While EAG is an effective measure to 

monitor odor information, EAG suffers from degradation of signals over time. Another 

technology routinely used is the PID [5]. However, the PID sensor is bulky and not feasible for 

mobile monitoring. We therefore propose using metal oxide gas sensors, specifically alcohol 

sensors, to monitor the environment during behavioral and physiological recordings. These 

sensors are inexpensive and can be easily acquired.  

One limitation of using metal oxide gas sensors is their long decay time to 

transient activation. We, therefore, designed kernels resulting from the difference of two 

exponentials to deconvolve the signal. The deconvolved signals showed a good correlation with 

the PID responses over time, frequency and spatial scales. We also show good correlation 

between neural responses in the OB of mice and the deconvolved signals from the sensor. In 

addition, behavioral changes from freely behaving animals in response to odor contacts 

detected by the sensor are presented. We, therefore, propose this method to be a robust and 

cost-effective method to study the odor-dependent changes in neural processing and behaviors 

in rodents, and can thus be of great value to olfactory neuroscientists.     
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Figure 1. Ethanol sensor response can be deconvolved using a difference of two exponential 

kernel. A) Representative traces of the PID (red) and the ethanol sensor (blue) response to brief 

ethanol presentations. The duration of the ethanol pulse is indicated at the top of each column. B) 

Ethanol sensor responses from individual presentations (gray) were averaged to get an estimate 

of the rise time (Rise) to be around 0.06 s (magenta) and the decay time (Decay) to be around 3.5 s 

(cyan). C) Optimization of the deconvolution kernel by minimizing the mean error between the 

deconvolved ethanol responses and the PID responses (see Materials and Methods) using a 

family of kernels with varying Rise and Decay values. For later figures, the Rise of the kernel was 

set at 0.002 s and the Decay was set at 0.5 s. D) The deconvolved ethanol signal (blue) from the 

raw recordings of the ethanol sensor shown in A compared with the PID recordings. The inset 

shows the zoomed-in view of the normalized deconvolved ethanol response and the PID 

response to compare the waveforms of the PID response and the deconvolved ethanol signal. The 

black bar in the inset shows the duration of ethanol presentation. E) A linear relation between the 

threshold time (time from the valve opening to 5% of the max) between the deconvolved ethanol 

signals and the PID responses exists. Inset shows the zoomed-in view of the cluster of points in 

the ranges shown. 
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Figure 2. Peak times of the deconvolved ethanol signals coincide with the peak times of the 

PID responses for brief pulses of ethanol. A) Summary data of PID responses (red; left) and 

the deconvolved ethanol signals (blue; center) to brief durations of ethanol pulses (shown in 

gray) presented as a heatmap where each row is a single trial aligned with respect to the valve 

opening (arrow). Overlaying the deconvolved ethanol signals over the PID responses (right) 

shows coincidence of the peaks from the two signals (magenta). B) Linear relation between the 

peak times of the PID responses and the peak times of the deconvolved ethanol signals.   
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Figure 3. Frequency responses of the ethanol sensor show that the sensor can pick up 

frequencies of ethanol fluctuations up to 15Hz. A) PID (red) and ethanol sensor (blue) 

responses to ethanol fluctuations of 5 Hz (left), 10 Hz (center) and 15 Hz (right) frequencies. B) 

Deconvolved signals of the raw ethanol sensor recordings presented in A. C) A 1s zoomed-in 

view of the PID responses (red) and deconvolved ethanol signal (blue) showing near identical 

responses in the deconvolved signals and the PID recordings. 
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Figure 4. Deconvolved ethanol signals are correlated with the PID signals at multiple 

frequencies. Mean cross-correlation of the deconvolved ethanol signal with the PID signal 

during stimulation (black) at 5 Hz (A), 10 Hz (B) and 15 Hz (C) frequencies shows robust 

correlation as compared to during the baseline (gray). The dashed lines represent the cycle time 

for each frequency.  
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Figure 5. Deconvolved ethanol signals are correlated with the PID responses in turbulent 

airflow. A) An overhead image of a custom-designed arena (0.9*2*0.9 x*y*z m3) to create 

dynamic odor plumes. The dashed circle represents the location of the source of ethanol port 

while the arrow points out the wind direction. Also indicated are the approximate locations near 

the port (1), middle of the arena (2) and farthest downwind (3) where paired PID and ethanol 

sensor recordings were carried out. B) Representative traces of the PID (red) and deconvolved 

ethanol (blue) signals at the locations indicated in A. The black bars represent the ethanol 

stimuli. Notice the changing scales for the amplitude at farther distances from the ethanol port. 

C) Mean+SD correlations (bars) at locations near the port (1), middle of the arena (2), and 

farthest downwind (3) from the ethanol port. Circles are the correlations of individual trials. 
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Figure 6. Ethanol plume detected by the ethanol sensor correlates with neural processing in 

the olfactory bulb. A) A representative cranial window over the dorsal surface of the olfactory 

bulb of a Thy1-GCaMP6f GP5.11 mouse. Left is at rest while right is the standard deviation 

image after ethanol plume exposure. B) Calcium traces from 10 different glomeruli aligned to 

the first peak of the ethanol plume (dashed line). C) Mean +/- SEM traces from the 10 glomeruli 

averaged over 40 different ethanol plume exposures zoomed in to focus the moment of plume 

contact. D) Movement in the first 2 PC (accounting 48% of the variance) space post ethanol 

plume exposure from the data presented in B and C. E) Sum of the Euclidean distance from rest 

across all the PCs aligned to plume detection from 5 different imaging sessions. Each trace is the 

mean +/- SEM across 40 ethanol plume presentations during each session.  
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