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Abstract 

The dose dependent depletion of ovarian Ascorbic acid (AA) in rat ovaries, has been used as a 

bioassay for measurement of Luteinizing Hormone (LH). However, the mechanism of action of 

gonadotropin (LH, FSH) on ascorbic acid depletion is not completely clear in biochemical 

terms. To elucidate the mechanism, we looked for the pathways; one, where L-Gulonate 

Dehydrogenase (L-GuDH) catalyzes the conversion of L-Gulonic acid (L-GuA) to L-Xylulose, 

and, in the second the pathway  conversion of L-GuA to AA, in a cats, dogs and Rats. Kinetic 

analysis of the enzyme L-GuDH in vitro showed the inhibitory effect of AA on L-GuDH. 

Therefore, we hypothesized that gonadotropins (FSH and LH) may regulate the L-GuDH 

maintain level of AA in ovary. LH administration to super-ovulated immature female rats 

caused depletion of ovarian AA but did not result in any change in the specific activity of the 

ovarian L-GuDH. Further, we administrated a surrogate FSH like hormone (PMSG) to 

immature female rats which, resulted in increased specific activity of ovarian L-GuDH. 

However, microarray data on RNA from ovaries exposed to FSH like hormone such as 

Pregnant Mare serum Gonadotropin (PMSG) did not reveal any increased expression of L-

GuDH transcript. It is therefore concluded from the results obtained that; that neither LH, in 

decreasing the ovarian AA, nor FSH, in increasing the ovarian AA do so by regulating the 

activity of enzyme L-GuDH at transcriptional level. The results obtained have also been 

discussed by giving emphasis on the mechanism of ovarian ascorbic acid regulation of LH and 

FSH.  
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Introduction 

The gonadotropins, FSH (Follicle Stimulating Hormone) and LH (Luteinizing Hormone) 

secreted by anterior pituitary gland in response to intrinsic as well as extrinsic influences, 

stimulate a variety of ovarian functions including steroidogenesis, resumption of oocyte 

meiosis, ovulation, maintenance and formation of corpus luteum (Lindner et al. 1974). In 

males, the role of LH is mainly to control the synthesis and secretion of testosterone by Leydig 

cells. In females, it plays crucial role in ovulation and sustenance of the corpus luteum in the 

luteal phase of the female reproductive cycle (Dufau 1998). FSH is indispensable for both male 

and female gametogenesis. Pregnant Mare Serum Gonadotropins (PMSG) is a glycoprotein 

hormone secreted from endometrial cups of pregnant mare following 35 days of gestation 

(Papkoff 1974).PMSG exhibits both LH and FSH activities in heterologous animal species 

(Cole et al. 1940; Combarnous 1992) while being mostly LH like in equids (Urwin & Allen 

1982). In the immature male rat, PMSG increases testicular weight, the enlargement of seminal 

vesicles (Cole et al. 1932; Raacke et al. 1957) The dual function of this placental gonadotropin 

has generated extensive interest with regard to mechanism of action in vivo (Licht et al. 1979; 

Moudgal & Papkoff 1982). The function of gonadotropins, (LH and FSH) and thyrotropin has been 

found to be mediated through the second messenger cyclic AMP (Moudgal et al. 1971). 

Gonadotropins have also been shown to elicit some non-steroidogenic responses from the 

ovaries like incorporation of Uridine to RNA, and incorporation as well as transport of proteins 

into ovary or increasing the poly A length of ovarian transcripts (Ahren, K, Hamberger, L, 

Rubinstein 1969; Jarlstedt et al. 1973; Selstam & Nilsson 1974; Prasad et al. 1978). One of 

oldest and the most widely used bioassays for LH measurement by LH induced depletion of 

ovarian ascorbic acid in super-ovulated immature rats, first observed by Parlow (Parlow 1961). 

Some factors other than LH also influence ascorbic acid level in ovaries (Miszkiel 1999). 

Vasopressin also possesses appreciable activity like that of LH (Mccann & Taleisnik 1960). 
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Purified preparation of other anterior pituitary hormones failed to affect the levels of ascorbic 

acid in ovary (Mccann & Taleisnik 1960; Schmidt-Elmendorf & Loraine 1962). In animals like 

rat and mice it could be proposed that LH must be affecting, either biosynthesis or catabolism 

or both, of ascorbic acid in the ovary. Another possibility is that LH may be accelerating 

transfer of ascorbic acid from ovary to venous circulation. Ascorbic acid metabolism involves 

more than one metabolic pathway. In the biosynthetic pathway of ascorbic acid, L-

gulonolactone get converted to L-ascorbic acid via 2-keto-L-gulonolactone and the latter 

reaction is catalyzed by L-gulonolactone oxidase (gulo)(Chatterjee et al. 1960). In the animals 

such as mice and rats that are capable of synthesizing AA, therefore, two pathways are 

regulated through the intermediate L-Gulonate either towards ascorbic acid formation or 

towards the Xylulose formation. The question that arises is what external factors control this 

channeling of L-Gulonate into either of the two possible pathways? Alternatively, one can 

envisage a condition where L-Gulonate is not transferred to ascorbate under normal condition. 

Under special condition, it is possible that L-GuDH is blocked, thus formation of xylitol is 

blocked and hence ascorbic acid concentration is increased. Does such a scenario happen in 

reverse in ovary? (Figure 1). How is the depletion of ovarian AA by LH regulated?  Is there 

any role of L-GuDH in the regulation of AA depletion?. Vitamin C or ascorbic acid has been 

found to play an important role in reproductive process (Kramer et al. 1933). Parlow had 

shown the gonadotropin action of LH on ovarian ascorbic acid content in 1961, where he 

observed that there was marked decrease in ovarian ascorbic acid in the corpus luteum and 

possibly during lutenization itself (Parlow 1961). In order to explore the association between 

L-GuDH, ascorbic acid and hormonal action, we initiated the study by using rat model, in 

which we performed commonly used bioassay called Ovarian Ascorbic Acid Depletion Assay 

(OAAD) or Parlow bioassay. 
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Materials and Methods 

Animals  

     Animal experiments were carried out according to the guidelines of CPCSEA,’’ 

Government of India, with Institutional Animal Ethics Committee IAEC approval 

DUZOO/IAEC-R/2011/17. Rats were of the Holtzman strain, housed in our animal house 

under controlled temperature (21–23°C) and with the light period adjusted to 12 h light and 12 

h darkness. The animals had free access to standard pelleted laboratory animal food and tap 

water. 

 

Chemicals and Hormones 

       L-Gulonate-γ-lactone, NAD, PMSG, hCG, 2,6 dichloro phenol indophenol (monosodium 

salt)(DCPIP), theophylline and L-ascorbic acid were purchased from Sigma USA. All other 

chemicals used were of analytical grade 

 

Estimation of Protein  

       Protein estimation of the samples was performed at each step, according to the method 

given by Lowry(Lowry et al. 1951). 

 

Effect of hCG (LH like hormone) on ovaries  

        Super ovulated immature female rats of Holtzman strain 26-28 days old were used for the 

experiments. Rats were made super ovulated by injecting 50IU of PMSG (in 0.2ml of albumin 

phosphate buffer) subcutaneously twice 48 hours apart. 56 to 60 hours later the animals 

received 25IU of hCG in 0.2ml of albumin phosphate buffer again subcutaneously. On the 6th 

day after the injection of hCG the animals were used for the experiment.  On the day of 

experiment animals were divided into two groups control and experimental, 3 animals (n=3) in 
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each group. The control animals received only albumin phosphate buffer and experimental 

animals received 60IU hCG in 0.2ml of albumin phosphate buffer intraperitoneally. Four hours 

later, the animals were taken for autopsy. Left ovaries were used for AA estimation and right 

ovaries for L-GuDH assay. Placing the ovaries on an ice-chilled Petri dish containing 5% 

metaphosphoric acid to stop the metabolic activities did subsequent processing for left ovary. 

The ovary was freed of surrounding adipose tissue and quickly weighed to the nearest mg 

precision balance. Slightly minced ovarian tissue was then homogenized in 3ml of 5% 

metaphosphoric acid–citrate solution, using a Potter-Elvehjem Teflon tissue grinder. The 

homogenate was then centrifuged at 10000 rpm for 30min at 4⁰c using a cold centrifuge 

(SIGMA). An aliquot of 3mL from the clear supernatant was used for the estimation of AA 

according as follows. 

          A standard calibration curve was constructed using 0-80 µg of ascorbic acid in 2 mL of 

5% metaphosphoric acid–citrate solution. 2 mL of the dye solution DCPIP was delivered 

quickly into the tubes mixed well and absorbance was read at 540nm at 20th ± 2 seconds after 

mixing in the spectrocolorimeter. Ovarian ascorbic acid was estimated essentially as per the 

assay of Parlow (Parlow 1961). 

 

Effect of PMSG (FSH like hormone) on ovaries  

For the experiment, 25-26 day old immature female rats (Holtzman strain) were used. Two 

groups of animals were taken, 4 animals (n=4) in each group. The control animals received 

only albumin phosphate buffer subcutaneously while the experimental group of animals 

received a single injections of 50IU of PMSG. Two days later, animals were sacrificed. The 

left ovary was processed for the ascorbic acid estimation and RNA extraction while the right 

ovary was processed for the enzyme assay and protein estimation. After autopsy the right 

ovaries of the rats were immediately removed. Subsequent processing of right ovaries was 
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done by placing the ovaries on an ice-chilled Petri dish having 50mM PB, pH 7.5 which 

contained 1mM PMSF (Extraction buffer).  The ovary was freed of surrounding adipose tissue 

and quickly weighed to the nearest mg precision balance. Slightly minced ovarian tissue was 

then homogenized using a Potter-Elvehjem Teflon tissue grinder in 50mM PB, pH 7.5 

containing 1mM PMSF.  Finally the homogenate was centrifuged at 10000 rpm for 30 min at 

4⁰c using a cold centrifuge (SIGMA make). An aliquot of 1mL from the clear supernatant was 

used for the assay of GuDH and protein estimation.  

 

Measurement of L-GuDH Activity 

L-GuDH the dehydrogenase activities of each samples of the bioassay were assayed by 

measuring the rate of change in NADH absorbance at 340 nm as described above. The amount 

of NADH produced as a result of dehydrogenase activity was calculated from the slopes of the 

curves obtained by change in absorbance against time interval at 340 nm as dictated by the 

assay method. Considering 6.220 as the micro molar extinction coefficient of NADH 

quantitated the units of GuDH present in one mL.  

 

A340   ×  volume of enzyme solution ( mL)U/mL =
6.220    × T(min)  ×  volume of enzyme solution taken for assay (mL)

Δ

Δ
 

Specific activity or was calculated by dividing the value of U/mL by the concentration of 

protein. 

U/mLSpecific activity (U/mg) =
mg/mL  

Gene expression profiling following exposure to PMSG 

Slides used: Agilent-Custom: Rat 8X60K designed by Genotypic Technology Private Limited 

(AMADID: 28279). 
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RNA extraction and evaluation 

RNA isolation was performed using Qiagen RNeasy Mini Kit as per the manufacturer’s 

instructions. The concentration and purity of the RNA extracted were evaluated using the Nano 

drop Spectrophotometer (Thermo Scientific; 1000). The integrity of the extracted RNA were 

analysed on the Bio analyzer (Agilent; 2100). RNA quality was based on the 260/280 values 

(Nano drop), rRNA 28S/18S ratios and RNA integrity number (RIN) (Bio analyzer).  

RNA Labelling, Amplification and Hybridization 

The samples were labeled using Agilent Quick-Amp labeling kit (Part number: 5190-0424). 

500ng of total RNA was reverse transcribed using oligo dT based method. mRNA was primed 

with oligo dT primer tagged to T7 promoter sequence and converted into double stranded 

cDNA using MMLV-RT reverse transcriptase. Further, in the same reaction cDNA was in-

vitro transcribed to cRNA using T7 RNA  polymerase enzyme. During cRNA synthesis, Cy3 

labeled Cytosine nucleotide was incorporated into the newly synthesized strands. Labeled 

cRNA thus obtained was cleaned up using Qiagen RNeasy columns (Qiagen, Cat No: 74106). 

The concentration and amount of dye incorporated were determined using Nanodrop. 600ng of 

labeled cRNA were hybridized on the array (AMADID: 28279) using the Agilent Gene 

Expression Hybridization kit (Part Number 5190-0404) in Sure hybridization Chambers 

(Agilent) at 65ºC for 16 hours. Hybridized slides were washed using wash buffers (Part No: 

5188-5327; Agilent). The hybridized and washed microarray slides were then scanned on a 

G2505C scanner (Agilent Technologies). 

Feature Extraction 

Data extraction from Images was done using Feature Extraction software Version 11.5.1.1 of 

Agilent. 
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Microarray Data Analysis 

Images were quantified using Feature Extraction Software (Version-11.5, Agilent). Feature 

extracted raw data was analyzed using Gene Spring GX Version 12.0 software from Agilent. 

Normalization of the data was done in Gene Spring GX using the 75th percentile shift 

(Percentile shift normalization is a global normalization, where the locations of all the spot 

intensities in an array are adjusted. This normalization takes each column in an experiment 

independently, and computes the percentile of the expression values for this array, across 

all spots (where n has a range from 0-100 and n=75 is the median). It subtracts this value from 

the expression value of each entity) and normalized to Specific control Samples. Significant 

genes up and down regulated in test samples with respect to control sample were identified. 

Statistical t-test p-value was calculated based on volcano Plot. Differentially regulated genes 

were clustered using hierarchical clustering based on Pearson coefficient correlation algorithm 

to identify significant gene expression patterns. Genes were also classified based on functional 

category and pathways using DAVID (Database for Annotation, Visualization and Integrated 

Discovery) database tool (Huang et al. 2009). The microarray data are deposited at the Gene 

Expression Omnibus public repository (http://www.ncbi.nlm.nih.gov/geo) with accession 

number GSE 68676. 

 

Results and Discussion                                                  

The ovarian ascorbic acid depletion assay devised by Parlow (1961) is one of the most potent 

and reliable bioassays for LH. The calibration curve for ascorbic acid estimation showed that 

the method works well in the range of 0 to 80µg of ascorbic acid. (Figure 1) 

A significant depletion of ascorbic acid content was observed in experimental group as 

compared to control group (Table1). With respect to the control animal 60IU hCG 

administered animals had ascorbic acid content depleted up to 65.13%. One of the known 
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actions of pituitary Lutropin (Luteinizing hormone) is to cause depletion of ovarian ascorbate 

in the pseudo-pregnant rat (Parlow 1961). However, the actual role of AA in LH induced 

ovulation is not clearly known. The depletion of ovarian ascorbate by lutropin has been utilized 

as a sensitive bioassay of lutropin. This is reported to occur in corpora lutea within minutes of 

lutropin injection and exhibits a characteristic time sequence(Goldstein & Sturgis 1961).Role 

of vitamin C has been observed in steroidogenesis and peptide hormone production (Luck et al. 

1995).  

When the enzyme (L-GuDH) was assayed, it was observed that the rate of change in 

absorbance of NADH with respect to time at 340nm remained almost same in control and 

experimental groups in both the trials (Figure 2). NADH represents the activity of GuDH. 

Further, the difference in Nano moles of NADH formed per minute per 100mg of ovarian 

weight or per mg protein, in experimental and control groups, was not significant (data not 

shown). Hence it can be concluded that LH does not regulate the activity of L-GuDH in the 

ovary. It was also observed that this effect of LH was Cyclohexiimide insensitive (Arora et al. 

2012). Therefore induced or constitutive protein synthesis is not required for this depleting 

effect of LH on ovarian ascorbic acid. Earlier work had shown that the administration of LH to 

Parlow rats results in increase in ovarian content poly A rich RNA (Muralidhar et al. 1976; 

Prasad et al. 1978) and that this effect could be observed within 30 minutes of LH 

administration. Hence the effect of LH on rat ovary appears to be both metabolic (non-genetic) 

and developmental (genetic) depending on the animal model.. 

In the experiment on effect of PMSG on rat ovarian ascorbic acid content, however, results 

indicate that administration of PMSG (a long acting FSH-like hormone) resulted in increase in 

gonado-somatic index (Figure 3A) and increase in ascorbic acid content (Figure 3B). Further, 

the same treatment also resulted in increase in enzyme activity (Figure 4A), total protein 

content (Figure 4B) and in specific activity (Figure 4C). It is known that during follicular 
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growth ovulation and formation of corpora lutea ECM undergoes constant changes, so it 

requires high level of collagen and ascorbic acid fulfills this demand by promotion of 

biosynthesis of collagen (Kramer et al. 1933). The elevation in ascorbic acid levels can be 

explained by this mechanism. Growing corpus luteum requirement of collagen is fulfilled by 

ascorbate as it serves as a cofactor in collagen synthesis (Luck et al. 1995). So ascorbic acid is 

playing direct role in the function of corpus luteum. (Byrd et al. 1993).  

Ascorbic acid inhibits the L-Gulonate dehydrogenase in in vitro condition (Sharma et al. 2013). 

It was interpreted that the high levels of ascorbic acid inhibited the enzyme in vivo. However 

molecular docking studies also indicate that ascorbic acid can bind GuDH (unpublished work). 

It was also observed that there was no increase in specific activity of ovarian L-Gulonic acid 

dehydrogenase (L-GuDH) activity during the decrease in ascorbic acid under in vivo 

conditions. In the case of FSH action, however, simultaneous increase in both ascorbate levels 

and L-Gulonate dehydrogenase activity (Figure 3 and 4) was observed. 

To understand the regulatory mechanism of FSH and LH on Ascorbic acid and L-GuDH, it is 

imperative to explore different pathways and the genes involved in ovarian functions. Hence a 

microarray analysis was undertaken on ovaries exposed to PMSG in vivo. The quality of RNA 

preparation was assessed and found to be  good for further study . 

The global expression profile of rat ovaries challenged with PMSG was compared with 

controls (without PMSG). Probe sets whose intensities were normalized and filtered, then were 

subjected to identifying significantly differentially expressed genes using t-test analysis by 

comparing the log2 (normalized signal) of two different samples of ovary, and 1904 transcripts 

were identified to be differentially up regulated at the p ≤ 0.05 level. Taking a FC ≥ 1.5 or ≤ 

0.6 and the p ≤ 0.05 significance level as the criteria, 1904 transcripts showed differentially up 

regulated and 1414 showed down regulated expression.  

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted June 22, 2019. ; https://doi.org/10.1101/665752doi: bioRxiv preprint 

https://doi.org/10.1101/665752


	 12	

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway 

analyses of all annotated DE gene lists were carried out by using the Database for Annotation, 

Visualization and Integrated Discovery (DAVID). GO annotation mapping revealed that the 

genes assigned GO terms for reproductive cellular process,	biological regulation,	regulation of 

MAPK cascade; somatic stem cell division; organ development; embryonic morphogenesis; 

reproductive process in a multicellular organism; regulation of immune response; negative 

regulation of immune response; regulation of developmental process; regulation of cellular 

process; regulation of cell division; regulation of cell cycle; biological regulation; regulation of 

response to stress, developmental process, cell communication and signal transduction and so 

on (Table 2). DE transcripts were involved in some important pathways. Including the 

estrogen-signaling pathway, MAPK signaling pathway and ovarian steroidogenesis, and 

ascorbate and aldrate metabolism (figure 5)                                                                    

 

Differential Gene Expression Analysis 

The functions and pathway analysis was done for the differentially regulated genes using 

DAVID database. Pairwise analysis of overall gene expression profiles between the 8 samples 

of immature female rat ovary of 26 to 28 days old rat was done. We found that 1904 genes 

were up regulated more than 1.5 fold and 1414 genes were found to be down regulated below 

1.5 fold. Based on gene ontology study we have chosen some of the functionally important 

genes in oogenesis. It can be noticed that only the lactonase gene (Gulo) expression increased 

but not that of gene for L-GuDH (Figure 6). No increase in gene expression levels of the gene 

for L-GuDH was observed. From current observations, it appears that actions of PMSG (FSH 

like) on specific activity of L-Gulonate-3-dehydrogenase and ascorbic acid content are 

independent phenomena and L-Gulonate -3-dehydrogenase may not have a role in the 

regulation of ovarian ascorbic acid content. Stabilization of mRNA for the GuDH and/or post-
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translational modification/activation of the GuDH could also have a played a role in total 

increase in the GuDH specific activity. Indeed there are reports that an mRNA population not 

involved in translation could be reactivated by cytoplasmic poly A polymerase (Weill et al. 

2012). There is also a possibility that in the case of ovaries exposed to PMSG, without increase 

in expression level of L-GuDH gene, the dormant mRNA got activated and hence we observed 

the increase in specific activity of the enzyme.? In fact bioinformatics studies have revealed 

potential phosphorylation sites in L-GuDH protein structure (Shah Saddad Hussain-

unpublished results). More research work needs to be done to throw light on this problem. 

Hence it can be tentatively concluded that LH does not regulate this enzyme transcriptionally 

and FSH probably regulates this enzyme through post-transcriptional mechanisms. 
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Figure	Legends:	

	

Figure	1:	Metabolic	fates	of	L-Gulonate.	L-gulonate	gets	converted	to	L-ascorbic	

acid	via	2-keto	L-gulonolactone	and	this	reaction	is	catalyzed	by	L-gulonolactone	

oxidase	(gulo).	L-gulonate	gets	converted	to	D	Xylulose	via	L-GuDH.	

	

Figure	2:	L-GuDH	activity	curve	showing	change	in	NADH	absorbance	at	

wavelength	340	nm	in	control	and	60	IU	hCG	treated	group	when	equal	amount	

of	ovarian	extract	was	taken	for	assay.	

	

Figure	3:	Effect	of	PMSG	on	ovary.	A)	GSI	(Gonado	Somatic	Index)	per	100gm	

body	weight	48	hr	after	50	IU	of	PMSG	injections.		B)	The	effect	of	PMSG	on	

ovarian	ascorbic	acid	content	in	immature	rat.	

	

Figure	4:	Effect	of	50	IU	PMSG	on	ovary	A)	Total	L-GuDH		units	(μ	moles	of	

NADH	formed)	of	ovary	after	PMSG	(50IU)	injection.	B)	Total	Protein	content	of	

ovary	48	hrs	after	injection	of	PMSG	(50IU).	C)	Specific	activity	of	L-GuDH	in	

ovary	after	PMSG	(50IU)	injection.	

	

Figure	5:	Heat	map-showing	changes	in	expression	of	genes	related	to	different	

pathways.	A)	Ovarian	steroidogenesis.	B)	Ascorbate	aldrate	pathway.	C)	

Estrogen	signaling	Pathway.	D)	MAPK	signaling	Pathway.	Heat	maps	were	

constructed	using	average	of	raw	signals	for	each	gene	in	microarray	data.	

Expression	fold	values	are	provided	in	terms	of	log	base	2.	Differential	

expression	calculated	using	p	≤	0.05	levels	and	taking	a	FC	≥	1.5	or	≤	0.6	and	the	
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p	≤	0.05	significance	level	as	the	criteria.	

	

Figure	6:	Functional	pathway	analysis	of	Micro	array	data.	List	of	Genes	up-

regulated	and	down-regulated	in	Ascorbate	metabolism	pathway.	Expression	

fold	values	are	provided	in	terms	of	log	base	2.	Differential	expression	calculated	

using	p	≤	0.05	levels	and	taking	a	FC	≥	1.5	or	≤	0.6	and	the	p	≤	0.05	significance	

level	as	the	criteria.	

	

	

Table	Legends	

	

Table	1:	Ability	of	hCG	to	deplete	ovarian	ascorbic	acid	

Table	2:	Functional	category	enrichment	analysis	based	on	Gene	Ontology	

terms.	
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Table	1	

Group		 Treatment	 Ascorbic	acid	(µg/100gm	

body	wt)	

%	age	Depletion	of	

AA	

Control	(n=3)	

	

Only	buffer	 158.36±14.89		 0	

Experimental	(n=3)	 60	IU	hCG	 55.215±8.419	 65.13	

	

p	<	0.005;		df		=	6	,	Mean	(±	SE;	n	=	3)	

	

Table	2	
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Figure	1	
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Figure	3		

	

Figure	4		
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Figure	5	
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Figure	6	
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