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ABSTRACT 

Using public proteomics datasets, mostly available through the PRIDE database, we 
assembled a proteomics resource for 191 cancer cell lines and 246 clinical tumour 
samples, across 13 cancer lineages. We found that baseline protein abundance in cell 
lines was generally representative of tumours. However, when considering differences 
in protein expression between tumour subtypes, as exemplified in the breast lineage, 
many of these changes were no longer recapitulated in the cell line models. Integration 
of proteomics and transcriptomics data suggested that the level of transcriptional 
control in cell lines changed significantly depending on their lineage. Additionally, in 
agreement with previous studies, variation in mRNA levels was often a poor predictor 
of changes in protein abundance. To our knowledge, this work constitutes the first 
meta-analysis study including cancer-related proteomics datasets. We anticipate this 
aggregated dataset will be of significant aid to future studies requiring a reference to 
baseline protein expression in cancer. 
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Abbreviations 
 
CCLE  Cancer Cell Line Encyclopedia 

CPTAC Clinical Proteomic Tumour Analysis Consortium 

CV  Coefficient of Variation 

EA   Expression Atlas 

ER  Estrogen Receptor positive (breast cancer subtype) 

ERPR  Estrogen/ Progesterone Receptor Positive (breast cancer subtype) 

FDR   False Discovery Rate 

FPKM  Fragments Per Kilobase of exon model per Million reads mapped 

GDSC  Genomics of Drug Sensitivity in Cancer 

GO  Gene Ontology 

GSEA  Gene Set Enrichment Analysis  

HER2  Receptor tyrosine-protein kinase erbB-2 amplified (breast cancer 

subtype) 

iBAQ  Intensity Based Absolute Quantification 

LFQ   Label Free Quantification  

MS   Mass Spectrometry 

NES  Normalised Enrichment Score  

NGS  Next-generation sequencing 

ppb  parts per billion normalisation  

PSM  Peptide Spectrum Match 

RPPA  Reverse-Phase Protein Arrays 

SDRF  Sample and Data Relationship Format  

TCGA  The Cancer Genome Atlas  

TN  Triple Negative (breast cancer subtype)  
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INTRODUCTION 

Cancer cell lines are powerful models often used in place of primary cells to study for 
instance the molecular mechanisms of the disease. Cell lines derived from patients 
provide an inexpensive source of pure cell populations and are easy to manipulate 
and characterize. Although they usually retain driver mutations, cell lines often contain 
‘additional’ genomic aberrations not present in tumours. They also lack the tumour 
microenvironment interactions and can undergo divergent evolution during long-term 
cell culture1–3. Hence, in order to capture the patient’s tumour biology, it is therefore 
often more desirable to study primary cells or tissue biopsies. 
 
Thanks to a number of International initiatives and large-scale studies, a variety of 
omics approaches have been employed to characterise both tumour samples and cell 
lines at the molecular level. Among them, The Cancer Genome Atlas (TCGA) used 
next-generation sequencing (NGS) and reverse-phase protein arrays (RPPAs) to 
generate genome and expression landscapes in approximately 10,000 tumour 
specimens4. The Cancer Cell Line Encyclopedia (CCLE) consortium measured DNA 
copy-number, mutations and gene expression in 1,072 human cancer cell lines5. Also 
in this context, the Genomics of Drug Sensitivity in Cancer (GDSC) project provided 
genomic and gene expression data for over 1,000 cell lines combined with cell line 
sensitivity measurements related to a wide range of anti-cancer therapeutics6.  
 
While the majority of the available data is based on NGS technologies measuring DNA 
and RNA-level alterations in cancer, proteins are however most often the functional 
molecules, providing a link between genotype and the phenotype. Proteins are also 
the targets of many drugs and can be a source of novel biomarkers. Mass 
spectrometry (MS) is the main proteomics technology, capable of providing system-
wide measurements of protein expression, post-translational modifications and/or 
protein-protein interactions, among other pieces of information7,8. Accordingly, cancer 
cell lines proteomes have been characterised in a number of MS-based studies9–17. 
However, due to technological limitations, these and other currently publicly available 
proteomics datasets are usually smaller in scope in comparison to analogous 
genomics and transcriptomics studies. Therefore, although they can routinely cover 
thousands of gene products, the datasets are usually limited to tens of samples. MS-
based protein expression information in tumour specimens has also been obtained, 
for example through the work of the Clinical Proteomic Tumour Analysis Consortium 
(CPTAC)18,19 or by other independent groups20–22. Additionally, RPPA approaches can 
be used to characterise a usually much smaller number of proteins5,23. 
 
Importantly, the MS data underpinning these efforts is now routinely made freely 
available in the public domain, an opposite situation to the state-of-the-art just a few 
years ago. Particularly, the PRIDE database24 is the world-leading resource as part of 
the ProteomeXchange Consortium, storing raw files, processed results and the related 
metadata coming from thousands of original datasets. Public datasets stored in 
PRIDE, together with existing ones in other open proteomics repositories (e.g. the 
CPTAC portal25 or MassIVE26) present an opportunity to be systematically reanalysed 
and integrated, in order to confirm the original results, potentially obtain new insights 
and be able to answer biologically relevant questions orthogonal to those posed in the 
original studies. Such integrative meta-analyses have already been successfully 
employed in different omics data types, especially in genomics and transcriptomics27. 
For example, Lukk et al.28 integrated thousands of microarray files to compile a map 
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of human gene expression. In metabolomics, Reznik et al.29 used MS data from eleven 
studies to measure the extent of metabolic variation across tumours. A similar trend is 
starting to be observed in proteomics, where reuse of public datasets is becoming 
increasingly popular, with multiple applications30,31. Some examples where joint 
reanalysis of large public datasets has been performed involved the creation of 
comprehensive maps of the human proteome32 and of human protein complexes33, or 
the characterisation of the functional human phosphoproteome34. 
 
However, to our knowledge no previous studies have attempted to reanalyse and 
integrate quantitative proteomics datasets in order to provide a global reference map 
of protein expression in cancer. Here, we provide a reference resource of protein 
expression across different types of primary tumours and the corresponding cell line 
models (246 clinical tumour samples and 191 cancer cell lines), using public 
proteomics datasets as the base.  
  

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 10, 2019. ; https://doi.org/10.1101/665968doi: bioRxiv preprint 

https://doi.org/10.1101/665968
http://creativecommons.org/licenses/by-nc-nd/4.0/


 6 

RESULTS 

A catalogue of cancer cell lines and primary tumour proteomes 

We selected, manually curated and re-annotated 7,171 MS runs coming from 11 large-
scale quantitative cancer related proteomics studies (Table 1) (Figure 1A). The 
combined analysis yielded an aggregated dataset of protein expression in 191 cancer 
cell lines and 246 clinical tumour samples (Figure 1B). In addition, 35 non-malignant 
tissues, present in the original publications, were also included in the combined 
dataset. Cell line samples originating from 13 different tissue-origins were included: 
blood, bone, brain, breast, cervix, colorectal/large intestine, kidney, liver, lung, lymph 
node, ovarian, prostate and skin. The patient-derived samples came from breast, 
colorectal, ovarian and prostate tumours, and from breast to lymph node metastases. 
Lineage annotation of the cell lines and tumour samples is included in Supplementary 
Table 1. Overall, over 173 M spectra were reanalysed using MaxQuant (MQ)35. The 
resulting aggregated dataset covered 15,443 gene products with at least one unique 
(unambiguous) peptide evidence, which corresponded to a 67.8% coverage of the 
entire UniProt reference human proteome (Figure 1C). Since quantitative proteomics 
data originating from different studies can be heterogeneous and likely to contain 
batch effects, we developed and benchmarked a procedure to integrate appropriately 
the quantification data (Methods section, see Supplementary Methods for detailed 
description). Based on that, we obtained quantification values for an average of 6,593 
proteins per cancer cell line and 5,371 proteins per tumour type. 
 
From the information available in the raw files we inferred that it would take over 538 
days of mass spectrometer time to repeat all of the original experiments (Figure 1D), 
ascertaining the potentially huge benefit to performing the in silico data reanalysis. In 
addition, the aggregation of individual datasets increased the global proteome 
coverage. In this study, each dataset contributed was quite heterogeneous and ranged 
between 1,600 and 250,000 unique peptide identifications to the aggregated dataset 
(Figure 1D inset), in parallel increasing the confidence and robustness in the protein 
identification and quantification analyses. This was particularly true for low abundance 
proteins, where the average protein sequence coverage in the aggregated dataset 
was typically higher than the sequence coverage found in individual datasets (Figure 
1E). 
 
The overall results of the study have been made publicly available in two EMBL-EBI 
resources: Expression Atlas (EA)36 and the PRIDE database24. Expression Atlas 
provides the expression values for each dataset in a separate track (E-PROT-18 to E-
PROT-28, Table 1, Supplementary Figure 1). PRIDE dataset identifier PXD013455 
contains all the raw data, MQ intermediate files and the combined proteomics analysis 
results. 
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Figure 1. A) Overview of the study design and the data reanalysis pipeline. B) 
Summary of the total number of MS/MS spectra, number of unique peptides and 
protein groups identified in the cell line and tumour datasets. C) Overlap between 
Ensembl protein-coding genes identified and all theoretical genes annotated in 
UniProt. Only protein groups identified by at least one unique peptide were included. 
D) Plot showing the cumulative MS analysis time versus the cumulative number of 
unique peptide identifications obtained. Inset: barplot showing the proportion of 
peptides uniquely identified in each individual dataset. E) Distribution of protein 
sequence coverage in the cell line data, stratified into bins of increasing protein 
intensity, in the combined dataset (brown boxplots) and an average calculated across 
7 individual datasets (orange boxplots).
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Dataset name and reference 
 

Original Dataset 
identifier 
 

Sample types 
 

No of MS/MS 
spectra 
 

No of unique 
peptides 
contributed in the 
aggregated 
dataset 

Expression Atlas 
Accession 
Number (protein 
expression data) 

Bekker-Jensen_CellSystems_2017 
(ref17) 

PXD004452 Cell lines, 5 
common cell lines  

1.53 E+07 2.54 E+05 E-PROT-19 

Coscia_NComms_2016 (ref12) PXD003668 
 

Cell lines, ovarian 
cancer 

1.03 E+07 1.65 E+04 E-PROT-28 

Frejno_MolSysBiol_2017 (ref13) PXD005354, PXD005355 
 

Cell lines, colorectal 
cancer 

2.14 E+07 1.59 E+04 E-PROT-24 

Geiger_MCP_2012 (ref14) PXD002395 Cell lines, 11 
common cell lines 

6.38 E+06 5.51 E+03 E-PROT-20 

Gholami_CellReports_2013 (ref15) PXD005940, PXD005942, 
PXD005946 

Cell lines, NCI-60 
panel 

1.52 E+07 1.12 E+04 E-PROT-25 

Iglesias-Gato_EurUrology_2016 
(ref20) 

PXD003636, PXD003430, 
PXD003452, PXD003515, 
PXD004132, PXD003615, 
PXD004159 

Tumours, prostate 1.38 E+07 6.26 E+03 E-PROT-21 

Lawrence_CellReports_2015 (ref10) PXD008222  Cell lines, triple-
negative breast 
cancer 

1.95 E+07 4.65 E+04 E-PROT-22 

Pozniak_CellSystems_2016 (ref21) PXD000815 Tumours, breast 
cancer 

3.43 E+07 5.34 E+03 E-PROT-26 

Tyanova_NComms_2016 (ref22) PXD002619 Tumours, breast 
cancer 

1.84 E+07 9.62 E+03 E-PROT-27 

Wang_Gastroenterology_2017 
(ref9) 

MSV000080374 
(MassIVE) 

Cell lines, colorectal 
cancer 

5.50 E+06 1.60 E+03 E-PROT-18 

Zhang_Nature_2014 (ref18) https://cptac-data-
portal.georgetown.edu/cpt
ac/s/S022  

Tumours, colorectal 
cancer 

1.29 E+07 2.80 E+03 E-PROT-23 

 
Table 1. List of the public datasets used in this study. Most of the datasets were obtained from the PRIDE database24. The remaining 
two datasets were obtained from MassIVE26 and the CPTAC data portal. The mapping between sample names and their 
lineage/cancer type and study of origin are listed in Supplementary Table 1.
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Tumour-specific peptide signatures are enriched in receptor activity regulators 

Our first objective was to use the peptides identified in the aggregated dataset to 
determine whether any clear differences, independent of the tissue of origin and/or the 
lineage, existed between the tumour and the cell line proteomes. On average, 6,208 
proteins were detected in the majority of tumours of any given type (meaning in ≥ 50% 
of samples of that group) and 7,401 proteins in cell line data (Supplementary Figure 
2). 
 
When we compared the peptides identified across all cancer cell lines versus all the 
tumours, we observed that only a small fraction was identified exclusively in tumour 
data. Out of 711,352 peptides, 33,045 (4.6%) were present only in tumours, 
constituting a tumour-specific peptide set. In contrast, a much larger proportion of 
peptides was identified only in cell lines (66.0%). This was expected as some of the 
cell line studies employed extensive fractionation protocols or used multiple digestion 
enzymes (for example, in dataset from ref17 the authors used four enzymes to obtain 
a deep proteome of HeLa, Table 1). From the tumour-specific peptide set, only 
peptides that uniquely matched to a protein sequence were retained, therefore 
enabling the unambiguous identification of the corresponding proteins. These 9,907 
peptides mapped to 330 proteins for which no identification evidence was found in 
any of the cell lines. This is in our view an interesting finding given that the sequence 
coverage of the cell line datasets was much larger. Next, gene ontology (GO) 
enrichment analysis of this protein set was performed using GOrilla37 and REVIGO38 
(Methods section), revealing that the tu mour-specific proteins were most 
significantly enriched for biological processes associated with regulation of signalling 
receptor activity (GO:0010469). Other terms, significantly enriched at a FDR (False 
Discovery Rate) p-value < 0.05 level, included keratinization (GO:0031424), G 
protein-coupled receptor signalling pathway (GO:0007186), positive regulation of 
leukocyte chemotaxis (GO:0002690), humoral immune response (GO:0006959) and 
response to bacterium (GO:0009617) ( 
Figure 2) (Supplementary Table 2). In addition, this protein set was enriched in 
extracellular space related cellular component GO terms (Supplementary Table 3), 
suggesting that tumour-specific proteins could be involved in secretion. No tumour-
specific proteins were consistently detected across all the tumour samples. However, 
ovarian, colorectal and prostate tumours showed lineage specific expression, as 
highlighted in  
Figure 2B. After performing a pathway enrichment analysis using Reactome39 
(Methods section) we found that the 10 proteins specific to the ovarian tumour samples 
were immunoglobulins enriched in elements of the CD22 mediated BCR regulation 
pathway (Reactome pathway identifier R-HSA-5690714, FDR p-value= 2.89 E-15). 
 
Taken together, the analysis highlights biological processes specific to tumour 
samples, which would be difficult to detect and study in cell lines, since expression of 
proteins associated with those pathways does not seem to be detectable in the cell 
lines considered here. 
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Figure 2. A) Scatterplot summarising the enrichment analysis of biological process 
GO terms for the 300 proteins detected only in tumour samples. The x-axis represents 
the enrichment score, the y-axis represents the enrichment p-value corrected for 
multiple testing using the Benjamini and Hochberg method. The size of the circles 
corresponds to the number of proteins associated within a given category. B) Counts 
out of the 330 tumour-specific proteins detected in the majority of samples (i.e. ≥ 50% 
of samples) across different tumour types. Colour coded horizontal bars show the total 
number of proteins detected in the majority of samples in each tumour type. Black 
circles indicate the intersections. Horizontal bars in the histogram show the number of 
proteins in the corresponding intersection. Proteins specific (as UniProt protein 
identifiers) to each tumour type are listed in the text boxes. 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 10, 2019. ; https://doi.org/10.1101/665968doi: bioRxiv preprint 

https://doi.org/10.1101/665968
http://creativecommons.org/licenses/by-nc-nd/4.0/


 11 

Evaluating cell lines as tumour models based on protein expression 

In order to go beyond simple presence/absence qualitative measurements, we 
generated two matrices containing normalised protein expression measurements 
across cell lines and tumour samples (Methods and Supplementary Methods).  
We merged the two by cross-referencing the leading razor protein identifiers, which 
resulted in a complete matrix containing profiles for 4,476 proteins. We used these 
quantitative values to investigate the similarity between the samples. 
 
Compared with the tumour tissues, cell lines showed similar levels of variability in 
protein expression. This was established using a coefficient of variation (CV) 
calculated between different cell lines and tumours within a given tumour type (i.e. 
reflecting cancer lineage sample-to-sample variability) (Supplementary Figure 3A). 
The median CV was below 56% in all cases and in general, the majority of proteins 
had CV values below 70% in both cell lines and tumours. Unsurprisingly, the variability 
between biological replicates (assessed in cell lines only) was lower than between 
samples from a different biological origin (median CV = 43%, Supplementary Figure 
3B). 
 
To investigate the level of concordance in protein expression between endogenous 
tumour cells and their corresponding cell line models, Pearson correlation coefficient 
(rp) values were calculated between each tumour sample and all available cell lines 
matching that lineage. This was done for three lineages: colorectal (Figure 3A), breast 
(Figure 3B), and ovarian samples (Figure 3C). Overall, molecular profiles appeared 
similar between samples, as reflected by relatively high rp, ranging from 0.58 to 0.83 
(p-values < 2.2 E-16) (Figure 3A-C) and the median rp of 0.73, indicating that cell lines 
can generally represent the baseline protein expression present in tumours. 
Interestingly, in case of colorectal (Figure 3A) and breast cancers (Figure 3B), the 
clustering of the tumours based on their expression correlation to cell lines did not 
yield an apparent trend: samples did not group by cancer subtype, stage or grading. 
Furthermore, even cell lines representing different cancer subtypes displayed a high 
correlation to all other samples (Figure 3A-C). We observed that a small number of 
tumours displayed consistently lower correlations to all available cell lines. For 
example, as can be seen in Figure 3B for breast samples, one cluster contained six 
tumours that showed below-median correlations (the median rp was 0.66) to all the cell 
lines. This indicates in our view that additional models would need to be established 
for these samples in order to fully capture the cancer proteome heterogeneity. Equally, 
it was evident that certain cell lines were proteomic ‘outliers’. For example, three 
colorectal lines: COCM1, COLO.320DM and RKO, displayed a poorer than average 
correlation to all tumour samples, with a median rp of 0.66 (Figure 3A). 
 

Cell line-tumour similarity between breast cancer subtypes 

Protein expression landscapes appeared to be generally stable and well conserved 
between the analysed samples. However, despite baseline similarities, it would be 
possible that specific differences detected between tumour subtypes were not found 
in cell lines. To assess this, we restricted the following analysis only to breast cancer. 
This is because this lineage included samples from multiple subtypes in the combined 
dataset: receptor tyrosine-protein kinase erbB-2 amplified (HER2; 15 tumour and 6 
cell line samples), estrogen/ progesterone receptor positive (ERPR; 39 tumour and 10 
cell line samples), triple negative (TN, 15 tumour and 31 cell line samples), estrogen 
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receptor positive (ER, 22 tumour samples) and ER/ERPR lymph node metastases (25 
tumour samples). Using limma’s linear model40, protein expression changes and their 
statistical significance were calculated between the representative HER2, ERPR and 
TN cell lines and compared those to changes in tumour tissues (Figure 4). In cell lines, 
337 differentially expressed gene products were identified in the HER2-TN, 204 in 
ERPR-TN and 10 in ERPR-HER2 comparison, with a cut-off FDR adjusted p-value of 
5%. In tumours, there were 8 differentially expressed gene products in the HER2-TN 
comparison, 63 in ERPR-TN and 82 proteins in ERPR-HER2. As an example, ERBB2 
(UniProt accession number P04626), a tyrosine kinase that is a known marker of 
HER2 amplified tumours, was overexpressed in both HER2 positive cell lines and 
tumours (Figure 4). However, only five proteins, highlighted as red points in Figure 4, 
had significant protein expression changes in both cell lines and tumours. Whereas 
statistical significance depends in part on the number of replicates available in each 
category, a relatively poor agreement in the calculated fold changes between the three 
subgroups was also apparent. As shown in Figure 4, only a small number of proteins 
displayed similar expression changes in both cell lines and tumours. For example, 38 
gene products were overexpressed fourfold (log2 fold change > 2) in ERPR as 
compared to TN tumours, whereas in the matching cell line comparison, 218 proteins 
were upregulated fourfold. Interestingly, after performing gene set enrichment analysis 
(GSEA)41,42 (Methods section) and using the calculated fold changes to pre-rank the 
proteins, we found that different processes appear to be activated in cell lines and 
tumours of the same subtype. In case of the ERPR-TN comparison, at a FDR q-value 
< 0.01 cut-off, only the “hallmark epithelial mesenchymal transition” gene set was 
enriched among the upregulated proteins in tumours. In cell lines, the enriched sets 
were "hallmark estrogen response early" and "hallmark estrogen response late". Five 
gene sets were enriched among the downregulated proteins in tumours, and15 sets 
in cell lines, but only two sets were overlapping between the two (“hallmark interferon 
gamma response”, “hallmark interferon alpha response”). Similar trends were also 
visible in the two other comparisons (Supplementary Table 4 contains the summary 
of all the GSEA results). 
 
Overall, this analysis suggests that cell lines provide a good model of baseline protein 
expression in tumours, as reflected by the high positive correlation found between 
lineage matching samples. However, specific differences in protein expression, in this 
case determined only between breast tumour types, appeared to be poorly 
recapitulated in cell lines.  
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Figure 3. Heatmaps representing correlation matrices between tumour samples (in 
columns) and cell lines (in rows) for three cancer types: A) colorectal, B) breast and 
C) ovarian cancer. The protein expression profile of each tumour sample was 
compared to all cell lines from the corresponding lineage by calculating the Pearson 
correlation coefficient. This was done across 4,058 proteins overlapping between 
tumour and cell line samples. Hierarchical clustering was then applied to group the 
samples. Each cell in the heatmap shows a pairwise comparison and is color-coded 
according to the calculated correlation value. The small panels on top of a heatmap 
provide information about the membership of each tumour sample to various 
categories. A) The top colour bar indicates colorectal tumour type: colon cancer (red) 
or rectal cancer (purple). The second colour bar is the disease staging used to 
describe how deeply the primary tumour had grown into the bowel lining. B) The top 
colour bar shows the breast cancer immunoprofile, and the bottom colour bar indicates 
the tumour grade, as reported in the original publications. C) In the case of ovarian 
samples, they were all classified as high-grade serous ovarian cancer and stage 3. 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 10, 2019. ; https://doi.org/10.1101/665968doi: bioRxiv preprint 

https://doi.org/10.1101/665968
http://creativecommons.org/licenses/by-nc-nd/4.0/


 14 

 
Figure 4. Scatter plots showing the comparison of protein expression changes 
between breast cancer subtypes (ERPR, HER2 and TN) in cell lines and tumour 
samples. The x-axis shows the expression changes in tumours and the y-axis the 
corresponding changes in cell lines. Points are coloured based on the statistical 
significance of the calculated fold change. Red points represent gene products with 
statistically significant fold changes in both cell line and tumour comparisons. Blue 
points represent proteins only statistically significant in tumours and green points only 
those proteins statistically significant in cell lines. 
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Correlation between mRNA and protein expression in cancer cell lines 

The correspondence between RNA and protein expression has been previously 
characterised in cell lines, tumour samples and tissues43. In most studies performed 
in tumour samples so far, the analysis was focused on single cancer types or 
otherwise, it was limited to a handful of samples for which both mRNA and protein 
measurements were available. By integrating the aggregated dataset with RNA-seq 
measurements publicly available already in EA (Methods section), the correlation 
between mRNA and protein abundance was calculated for 134 cancer cell lines across 
13 lineages, including 6,674 gene products that were overlapping between proteomics 
and transcriptomics data. 
 

Within sample mRNA-protein expression correlation  

To investigate the extent in which mRNA abundances are reflected at the protein level 
at steady state, the Spearman's rank correlation coefficient (rs) was calculated for an 
average of 6,542 mRNA–protein pairs (some cell lines contained a higher number of 
mRNA-protein pairs than others), for each of the 134 cell lines. Despite that the original 
omics measurements were performed in independent studies, all the cell lines 
displayed a statistically significant (p-value< 2.2 E-16) positive correlation. The median 
rs was 0.60 and the values ranged between 0.46 and 0.68 (Figure 5A). Box-and-
whisker plots were used to show the rs distributions grouped by lineage (Figure 5B). 
The colorectal (median rs= 0.61), breast (median rs= 0.60) and ovarian  (median rs = 
0.60) cell lines displayed on average the highest level of correlation, whereas the 
kidney (median rs = 0.55), lung (median rs= 0.56) and blood (median rs= 0.57) cell lines 
showed the lowest level of correlation (Figure 5B). 
 
Albeit small, these differences could have arisen due to random effects or to intrinsic 
biological factors between the lineage groups. To assess which was the case, a 
Kruskal–Wallis statistical test was applied, followed by a pairwise Wilcoxon rank-sum 
post-hoc analysis (Figure 5B, Supplementary Table 5). We found that there was a 
statistically significant difference across lineage groups (Kruskal–Wallis p-value= 4.5 
E-05). In addition, four pairwise differences between various cancer types were 
detected. The most significant one was found between breast-kidney (Benjamini-
Hochberg adjusted Wilcoxon p-value= 0.004) and colorectal-kidney (p-value= 0.008) 
(Supplementary Table 5). Bone, cervix, liver, lymph node and prostate lineages had rs 
values close to the overall median (0.60) but were not included in the post-hoc analysis 
as there were not enough rs values to calculate a p-value. 
 
Taken together, these results reinforce previous findings where a variable level of 
agreement between steady state transcript and protein abundance was detected, 
highlighting the importance of obtaining protein-level measurements in order to gain 
further insights into a broad range of biological processes.  
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Figure 5. Correlation between mRNA and protein expression levels within the different 
cell lines. A) Distribution of mRNA-protein correlation using the Spearman correlation 
in 134 cancer cell lines originating from 13 lineages. The 134 cell lines were those 
common to this analysis and the existing RNA-seq data, which was obtained from EA. 
B) Boxplots showing the differences in distribution of mRNA-protein correlations 
between groups of cell lines originating from various lineages. The box plots show the 
median (horizontal line), interquartile range (box) and minimum to maximum values of 
the data. Only lineages with more than three cell lines were included. 

Across sample mRNA-protein expression correlation 

We investigated the extent of the overall RNA-protein expression correlation across 
samples. Such analysis consisted on studying how the variation of each transcript and 
protein originating from the same gene is correlated across all the cell lines. This 
provided information about whether changes in mRNA levels resulted in abundance 
changes of the corresponding proteins. An across-sample correlation for a total of 
6,667 genes was calculated, of which 4,460 had statistically significant rs values 
(Benjamini-Hochberg adjusted p-value < 0.01). The median gene-wise rs was 0.31 and 
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the values ranged from -0.40 to 0.82 (Figure A).  Interestingly, negative correlation 
values were found only for 2% (160) of the mRNA-protein pairs. However, none of 
those were significant at a 1% FDR level (Benjamini-Hochberg adjusted p-value). In 
contrast, 16% (1,065) of genes had a statistically significant correlation that was above 
0.5.  
 
Next, the amount of protein variation across cell lines was estimated, by calculating 
the median abundance and the coefficient of variation for each individual protein. We 
found that proteins with either high or low variation levels were equally likely to display 
high correlation between mRNA and protein levels (Supplementary Figure 4A). 
However, the most abundant proteins tended to display higher correlations 
(Supplementary Figure 4B). A possible explanation is that MS experiments are usually 
biased towards the most abundant proteins, and therefore more accurate 
measurements of these proteins are obtained.  
 
Additionally, we studied the level of concordance between mRNA and protein variation 
considering the biological function. GSEA41,42 performed on the list of genes ranked 
by rs, revealed that 65 diverse GO terms were significantly overrepresented among 
the most correlated mRNA-protein pairs (FDR q-value < 0.01) (Supplementary Table 
6). A similar result, where multiple processes were enriched at the top of the ranked 
list, was also reported for colorectal cancer18. The GO terms sets with a largest NES 
included protein homotetramerization (GO:0051289), alpha-amino acid metabolic 
process (GO:1901605), and response to xenobiotic stimulus (GO:0009410) (Figure 
B). In contrast, only eight GO term sets, related to the ribosome complex, were 
overrepresented among the least correlated mRNA-protein pairs. The three sets with 
lowest NES were: translational termination (GO:0006415), ribosomal small subunit 
biogenesis (GO:0042274) and ribosomal small subunit assembly (GO:0000028) 
(Figure B, Supplementary Table 6). 
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Figure 6. Gene-wise correlation between mRNA and protein levels across all cell 
lines. A) Histogram of correlation for 6,667 gene-protein pairs across 134 cell lines. B) 
GSEA showing the top three sets of GO terms significantly represented among those 
mRNA-protein pairs with a highest (red) and lowest correlation (blue) across the 134 
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cell lines. Vertical lines indicate the position of the gene set members in the rank 
ordered list. FDR: False Discovery Rate-corrected p-value.  
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DISCUSSION 

Recent large-scale genomics and transcriptomics studies have characterized the 
molecular diversity of cancer to a great depth. However, in order to understand the 
relationship between genome and diseased phenotypes, information on protein 
expression is increasingly relevant. As it is difficult for a single study to cover all 
proteins of interest or to capture diverse biological conditions (such as different tumour 
types or disease stages), meta-analysis studies enable the computational integration 
of multiple studies to provide a combined wide-ranging view.  
 
This study provides a rich resource including an aggregated view of protein expression 
in cell line and tumour samples, provided to the scientific community through two 
popular resources: the PRIDE database and EA. Cell lines have indeed provided 
valuable insights into molecular mechanisms involved in cancer and are generally 
well-accepted as models of tumour biology. This is possible in part due to the high 
concordance between molecular signatures, such as RNA expression or single-
nucleotide polymorphism (SNP) patterns, which are present both in cell lines and in 
the tumours of the corresponding lineage44. Available studies show different levels of 
agreement over this statement, and in fact only partial concordance has been found 
for some of the features45–47. Nevertheless, few previous studies have been performed 
to explore the level of similarity between cell lines and tumours at a proteome-wide 
level. We have found that the entire proteomes of breast, colorectal and ovarian cell 
lines generally mirror these coming from the tumours. This was indicated by the 
relatively high correlations of baseline protein expression profiles. In fact, only a few 
cell lines displayed low expression correlations. However, the comparison between 
breast cancer subtypes revealed that specific differences between tumour types are 
not well represented in the corresponding cell line models and only a small number of 
proteins showed comparable up or down-regulation in both cases. Furthermore, GSEA 
showed some biological processes altered between breast cancer subtypes that are 
different in cell lines and tumours.  
 
It should be pointed out that there are some inherent technical limitations when 
performing meta-analysis studies like this one. First, although we have used similar 
quantitative proteomics datasets (only MS1-based quantification approaches 
performed in Thermo Fischer Scientific Orbitrap instruments), the original data was 
acquired in different labs in different experimental environments. This inevitably results 
in the presence of batch effects. We have attempted to remove these and to validate 
the overall methodology, as described in the Supplementary Methods. Additionally, it 
has been shown that different batches from the same cell line type can have a higher 
degree of heterogeneity than what has been generally assumed, as demonstrated 
recently for HeLa cells48. Furthermore, it is known that tumours and cancer cell lines 
harbour multiple genomic alterations, such as gene fusions or splice variants, which 
could produce alternative protein sequences. Mutations (e.g. SNPs) can also be 
acquired as the result of consecutive cell culturing2,48. The MS/MS search strategy 
used in this study focused only on detecting known coding protein sequences, using 
the UniProt reference proteome, in the same way as performed in all the original 
studies. Indeed, cell line-specific genome or transcriptome sequences were not 
available. Therefore, it was not possible to detect any DNA/RNA sequence changes 
that could manifest at the protein level. However, the effect of this limitation in the 
analysis should be small. For instance, in a recent comprehensive study comprising 
different human tissues49, the number of variant peptide sequences detected using 
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matching exome data in the analysis was only a 2.4% (238 out of 9,848 possible amino 
acid variants). 
 
When examining peptides detected in tumours that were not present in any of the cell 
lines, we detected signatures enriched in receptor activity regulators as well as in 
keratinization. Cell lines are purer than tumour samples, which tend to be 
contaminated with stromal cells. Although, we made every effort to remove common 
contaminants from the analysis (keratin and others), the ‘tumour-specific’ proteins 
detected might not necessary reflect endogenous tumour biology. These proteins 
might have been detected due to tumour immune infiltration50, contamination from 
sample processing and/or contamination from surrounding tissues. Altogether, this 
highlights some limitations of using in vitro cultured cells. While many aspects of 
protein expression in cancer can be studied using cell lines alone, others (for example, 
as suggested by our analysis, related to regulation of signalling receptor activity) will 
likely require better models that are able to model tissue architecture and cell-cell 
interactions, such as organoid tecnology51. 
 
We expect that analogous meta-analysis studies of proteomics datasets will become 
increasingly popular, due to the unprecedented growth rate of proteomics datasets in 
the public domain24. The availability of these results in widely-used resources such as 
PRIDE and especially Expression Atlas represent, in our view, the right route for 
proteomics data to be more accessed and consumed by scientists who are non-expert 
in proteomics. 
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METHODS 

Data sources and curation 

Proteomics data from 11 studies (Table 1) was collected from public repositories: 
PRIDE (https://www.ebi.ac.uk/pride/archive/), MassIVE (https://massive.ucsd.edu/), 
and CPTAC data portal (https://cptac-data-portal.georgetown.edu/cptacPublic/). 
Transcriptomics data was obtained from EA (https://www.ebi.ac.uk/gxa/home). The 
following three RNA-seq experiments, designated as ‘baseline’ in EA, were used in 
this study: E-MTAB-2706, E-MTAB-2770 and E-MTAB-3983. 
 
Raw proteomics data was manually curated to extract processing parameters, 
experimental design and sample characteristics. The biological metadata was 
captured in a Sample and Data Relationship Format (SDRF)52 before it was loaded 
into EA as 11 separate tracks, one for each study. Transcriptomics data have been 
previously curated in EA, and the biological metadata captured in SDRF format, in a 
consistent manner with the proteomics data. 
 

Proteomics data processing 

Raw LC-MS data was processed using the MaxQuant software. The MS/MS data was 
searched in two batches (cell line and tumour data separately) against the UniProt 
human reference proteome (containing canonical and isoform sequences, download 
date 31.08.2017, 71,591 sequences) appended with sequences of common 
contaminants provided by MaxQuant. Search parameters were chosen to reflect those 
used in the original publications. In all cases, carbamidomethylation of cysteine was 
set as fixed modification and oxidation of methionine and N-terminal acetylation were 
set as variable modifications. For studies that used SILAC labelling, appropriate SILAC 
settings were selected. Enzyme specificity was set to trypsin, LysC, chymotrypsin or 
GluC (according to the enzymes used in the original study), allowing a maximum of 
two missed cleavages. MS1 tolerance was set to 10 ppm and MS2 tolerance to 20 
ppm for FTMS data and 0.4 Da for ITMS data. PSM (Peptide Spectrum Match), peptide 
and protein identification FDR was set at 1% at each level. All of the processing 
parameters are available in the mqpar-celllines.xml and mqpar-tumours.xml files 
included in the PRIDE PXD013455 dataset.  
 

Transcriptomics data processing 

Transcriptomics data stored in EA was previously processed using a standardized 
pipeline36. Briefly, the sequencing reads were quality filtered, which involved the 
removal of adaptor sequences (adaptor trimming), low-quality reads, uncalled bases 
(e.g. N) and reads arising from bacterial contamination. TopHat253 was used to 
perform genomics alignment using the reference Ensembl genome (Ensembl release 
79). Default TopHat2 parameters were used. The number of reads that mapped to a 
particular gene (raw counts) were obtained with HTSeq54 and normalised gene 
abundance was calculated as FPKM (fragments per kilobase of exon model per million 
reads mapped) values55. EA data matrices can be downloaded in a tab-delimited 
format from the corresponding dataset entry. Importantly, for each dataset, technical 
and biological replicates were averaged and quantile normalised within each set of 
biological replicates using the limma package40. Finally, in cases where a cell line had 
replicate measurements across datasets, the average FPKM abundance was used. 
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Data analysis and integration 

All data analyses were performed using custom R scripts. The scripts to generate final 
quantification file (and selected intermediate files) are available at: 
https://github.com/J-Andy/Protein-expression-in-human-cancer. MaxQuant outputs 
various protein quantification metrics such as the summed MS1 intensity, LFQ values, 
or Intensity Based Absolute Quantification (iBAQ). Here, we have used iBAQ 
intensities56 as a starting point. These were normalised to “parts per billion” (ppb) 
values. In order to remove batch effects, a procedure to integrate the quantification 
results was developed and benchmarked as part of this study. The normalisation 
procedure and various validation results are described in detail in the Supplementary 
Material in the “Data Processing” section.  
 

Functional enrichment analysis 

GSEA41,42 was carried out using the javaGSEA tool available at 
http://software.broadinstitute.org/gsea/downloads.jsp. Gene over-representation 
analysis was performed with online tools GOrilla37 and REVIGO38. Reactome pathway 
analysis was performed using the online analysis tool 
(https://reactome.org/PathwayBrowser/#TOOL=AT) against Reactome version 67. In 
all cases, p-values were corrected for multiple testing using the Benjamini–Hochberg 
procedure and the results were considered significant for p-values< 0.01 (unless 
otherwise stated). 
 

Data availability 
All the results of the study have been made available via the PRIDE database (dataset 
PXD013455) and in Expression Atlas (E-PROT-19, E-PROT-28, E-PROT-24, E-
PROT-20, E-PROT-25, E-PROT-21, E-PROT-22, E-PROT-26, E-PROT-27, E-PROT-
18, and E-PROT-23) (Table 1).  
 
The reanalysed public proteomics datasets are indicated in Table 1. The re-used gene 
expression information coming from cell lines is available in Expression Atlas 
(accession numbers E-MTAB-2706, E-MTAB-2770 and E-MTAB-3983). 
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SUPPLEMENTARY MATERIAL 
 

SUPPLEMENTARY FIGURES 
 

Supplementary Figure 1 – Baseline protein expression view in Expression 

Atlas 

 

 
 
 
Screenshot containing an example of the baseline expression view for dataset E-
PROT-26 (“Deep proteomic profiling of luminal breast cancer progression”, 
https://www.ebi.ac.uk/gxa/experiments/E-PROT-26/Results) within Expression Atlas. 
Protein expression levels are displayed in a heatmap. 
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Supplementary Figure 2 – Upset plot summarising proteins detected across 

cancer types 

 
Counts of proteins detected in the majority (meaning ≥ 50% of samples) of A) tumour 
samples; and B) cell lines. Black dots indicate the individual sample or combinations 
of samples for which the number of proteins unique to that combination is displayed. 
This plot was created with the ‘UpSetR’ R package1.  
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Supplementary Figure 3 – Variability of protein expression in cell lines and 

tumours 

 

 
 
Variation in protein expression across cancer samples. A) Boxplots show the 
distribution of the Coefficient of Variation (CV) metric for all proteins, stratified by 
cancer lineage (different colours) and separated into cell line (.cl) or tumour (.tm) 
samples. The number of samples per type (n) is also indicated. B) Boxplots show the 
distribution of the CV metric across biological replicates in cell lines. Only cell lines 
with at least 3 replicates were included. 
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Supplementary Figure 4 – Dependence of mRNA-protein correlation on 

protein variation and abundance 

 
 
Scatter plots show the extent in which mRNA-protein correlation is associated with A) 
the variation in protein abundance across cell lines; and B) the average protein 
abundance, expressed as parts per billion-normalised iBAQ (Intensity Based Absolute 
Quantification) values across cell lines. In panel A, it can be observed that an increase 
in protein abundance variation is not correlated with mRNA-protein covariation across 
the cell lines. In panel B, mRNA-protein covariation tends to increase in parallel with 
protein abundance. 
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SUPPLEMENTARY METHODS 

1. Data Processing 
Overall, 7,171 MS (Mass Spectrometry) proteomics runs coming from 11 large-scale 
quantitative cancer related proteomics studies were selected, manually curated and 
re-annotated after performing a comprehensive review of the current literature and the 
public availability of the corresponding datasets. These studies were selected since 
they all employed a similar MS platform (Thermo Fisher Scientific Orbitrap) and the 
resulting protein quantification could be based on the intensity of the peptide precursor 
ions (MS-1 based quantification2). The final set of samples was assembled in 
September 2018 and is summarised in Table 1 in the main text. The original raw data 
files were reanalysed using MaxQuant3 (MQ) as indicated in the main text (see also 
Figure 1A there). For data processing, the minimum peptide length was set to seven 
amino acids. Unique and razor peptides, as well as peptides containing Oxidation (in 
M) and Acetyl (in the protein N-term) modifications were used for quantification 
purposes. All of the used processing parameters are available in the mqpar-
celllines.xml and mqpar-tumours.xml files included in the PRIDE dataset identifier 
PXD013455.  
 
Since quantitative proteomics data originating from different studies is heterogeneous 
and likely to contain batch effects, we developed and benchmarked a procedure to 
integrate the quantification results. The procedure is described below. 
 

i. Selection of protein quantification values  

iBAQ protein quantification values were obtained from the corresponding MQ 
proteinGroups.txt files. In some studies, multiple digestion enzymes were employed 
to characterize the same sample, for example in the dataset from ref4 (see Table 1 in 
the main text), where all cell line samples were digested with both trypsin and LysC. 
Because iBAQ quantification takes into account all theoretically observable peptides 
in a given protein, and these will differ depending on the proteolytic enzyme used, the 
quantitative analysis was limited to tryptic-digested samples only. 
 

ii. Data normalisation  

Cell line-derived quantitative data was used to develop and benchmark a 
normalisation procedure. This was possible because six cell lines (A549, HCT116, 
HT29, MCF7, RKO and SW620) in the aggregated dataset were acquired in at least 
three independent studies. It was then assumed that the highest amount of variability 
in protein expression in those cell lines, and indeed in any other sample type, should 
arise due to biological differences (i.e. different sample origin), rather than due to 
technical artefacts, such as the study of origin. 
 
First, the presence of batch effects in the reprocessed data was evaluated by plotting 
density distributions of log2 transformed iBAQ intensities (Supplementary Figure 5A). 
Upon visual examination of the plots, it was evident that global biases were present 
between different studies. To correct for these, a two-step normalisation process was 
applied. As a first step, the individual iBAQ intensities were transformed to “parts per 
billion” (ppb) for each of the MS runs. Each protein iBAQ intensity value was scaled to 
the total amount of signal in a given MS run and transformed to ppb, as expressed in 
the following equation: 
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𝑝𝑝𝑏_𝑖𝐵𝐴𝑄𝑖 =  (
𝑖𝐵𝐴𝑄𝑖

∑ 𝑖𝐵𝐴𝑄𝑖
𝑛
𝑖=1

⁄ ) × 100,000,000 

 
As seen in Supplementary Figure 5B this procedure mostly removed global differences 
in the distribution of protein abundances between the studies, which can occur due to 
different amounts of protein loaded on the chromatographic column, or simply because 
different MS instruments record data on different numerical scales, among other 
reasons. However, examination of a principal component analysis (PCA) plot, based 
on 2,914 proteins quantified in all of the six cell lines, suggested that this simple scaling 
procedure did not remove the main batch effects due to study of origin (Supplementary 
Figure 6A). 
 
The cell line and tumour datasets were then filtered to include only proteins that were 
present in at least 50% of all assays (MS runs). This resulted in the cell line dataset 
containing 6,514 proteins and a 14% of missing values, and the tumour dataset 
containing 5,363 proteins and a 16% of missing values. Missing values were then 
imputed using the conventional Singular Value Decomposition method implemented 
in the pcaMethods R package (“SVDimpute” function5). Finally, the main batch effects 
were removed separately for each dataset (“cell lines” and “tumours”) using the limma 
R package6 including the study of origin as a covariate (“removeBatchEffect” function). 
Post-normalisation PCA analysis (Supplementary Figure 6B) and inspection of density 
distribution plots (Supplementary Figure 5C) confirmed that the large batch effects 
among studies of different origin were removed. In the last step, the two datasets were 
merged by cross-referencing the leading razor protein identifiers. 
 
It must be emphasised that it was only possible to correct for batch effects within each 
individual “cell lines” or “tumours” protein expression matrix. That is because in many 
cases, measurements from the same biological sample (i.e. distinct cell line or same 
tumour type) were acquired in multiple batches (i.e. studies). However, very few 
overlapping samples were acquired among the “cell lines” and “tumours” datasets. 
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Supplementary Figure 5 – Density plots showing the distributions of log2 transformed 

iBAQ intensities in six cell lines acquired in at least three studies. 

 
 
Density distribution plots of protein expression values in six cell lines for which 
biological replicates (in a minimum of three independent studies) were available. Panel 
A) shows the un-normalised iBAQ values. Panel B) shows the ‘ppb’ normalised iBAQ 
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values. Panel C) shows the final quantification values after applying missing data 
imputation and batch effects removal with limma. Different colours indicate the study 
of origin. The plots reveal that strong global effects are present due to the study of 
origin. 
 

Supplementary Figure 6 – Principal component analysis 

 
 

  
A complete matrix across six cell lines (A549, HCT116, HT29, MCF7, RKO and 
SW620) was used for PCA analysis. This included 2,914 protein expression values. 
The first two principal components explaining 35% and 30% of the variance are 
displayed. The colour of the points indicates the sample types whereas the shape of 
the point indicates the corresponding study. Panel A) shows the PCA space after “ppb” 
normalisation. It can be observed that points (individual samples) cluster according to 
the study of origin. Panel B) shows the PCA space after limma batch effects removal. 
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It can be observed that cell lines cluster together based on the lineage rather than 
based on the study of origin. 
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Abbreviations 

 
iBAQ Intensity Based Absolute Quantification 
CV Coefficient of Variation  
MS Mass Spectrometry 
MQ  MaxQuant 
PCA Principal Component Analysis 
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