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Abstract 

In Deep Brain Stimulation (DBS) of the subthalamic nucleus (STN) for treatment of 

Parkinson’s Disease (PD), there is a paradigm shift away from focal stimulation of target 

structures toward effects of stimulation on distributed brain networks. While the relationship 

between modulated networks and motor outcomes has received much attention, network impact 

of non-motor DBS effects has been less well characterized. In the affective domain, STN-DBS 

improves depressive symptoms in some patients, while it leads to no change or even symptom-

worsening in others. Here, we systematically investigate the impact of electrode placement and 

associated structural connectivity on changes in depressive symptoms following STN-DBS. 

Depressive symptoms before and 6-12 months after STN-DBS surgery were documented in 

116 PD patients from three DBS centers (Berlin, Queensland, Cologne). Individual electrode 

placements were reconstructed based on pre- and postoperative imaging using Lead-DBS 

software. Applying a finite element approach the volumes of tissue activated (VTA) were 

estimated and combined with normative connectome data to identify structural connections 

passing through VTAs. Berlin and Queensland data (N=80) were used for training and cross-

validation to identify a structural connectivity profile that could explain improvement or 

worsening of depressive symptoms. The Cologne dataset (n=36) served as test-set for which 

depressive symptom change was predicted. 

We identified a robust pattern linking structural connectivity to depressive symptoms under 

STN-DBS. An optimal connectivity map trained on the Berlin cohort could predict changes in 

depressive symptoms in Queensland patients (R =0.52, p<0.0001) and vice versa (R=0.57, 

p<0.0001). Furthermore, the joint training-set map predicted changes in depressive symptoms 

in the independent test-set from Cologne (R=0.36, p=0.012). Crucially, worsening of depressive 

symptoms was consistently associated with connectivity to left dorsolateral prefrontal areas, 

the prime target for non-invasive stimulation in depression. In contrast, depressive symptoms 

improved in patients with less connectivity to the left PFC. Results remained significant when 

controlling for motor improvement and dopaminergic medication withdrawal. 

A specific structural connectivity profile implicating a left-lateralized prefrontal–STN network 

predicts depressive symptoms following STN-DBS: fibers linking the STN electrode with left 

prefrontal areas predicted worsening of depressive symptoms across DBS centers, cohorts and 

surgeons. Our results suggest that for the left STN-DBS lead, placement impacting fibers to left 

prefrontal areas should be avoided to maximise improvement of depressive symptoms. These 

findings pave the way toward personalized brain stimulation in which individual connectivity 

profiles and symptom constellations may determine optimal DBS targeting. 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted June 10, 2019. ; https://doi.org/10.1101/665976doi: bioRxiv preprint 

https://doi.org/10.1101/665976


Introduction 

 

For a long time, it was assumed that deep brain stimulation (DBS) exerts its function via local 

modulation of target structures such as the subthalamic nucleus (STN), providing relief of motor 

symptoms in movement disorders such as Parkinson’s disease (PD). Today, we experience a 

paradigm shift away from focal stimulation toward studying effects of DBS on distributed brain 

networks (Accolla et al., 2016; Lozano & Lipsman, 2013). For example, a strong and robust 

relationship between connectivity profiles of DBS electrodes and clinical improvement has 

been shown in PD (Horn et al., 2017a) and recently in patients with obsessive compulsive 

disorder (Baldermann et al., 2019). A currently accepted theoretical framework postulates that 

DBS stimulation of basal ganglia targets may lead to changes in non-motor symptoms by 

modulating overlapping cortex-basal ganglia motor and non-motor loops (Haynes & Haber, 

2013; Krack et al., 2010). In PD, variable effects of DBS on non-motor traits have been 

described in various domains including autonomic function, sleep, cognition and mood 

(Chaudhuri & Schapira, 2009; Dafsari et al., 2018a;2019; Fasano et al., 2012; Kurtis et al., 

2017; Witt et al., 2008;2012). In the affective domain, in addition to postoperative hypomania 

(Volkmann et al., 2010), acute depression can also be a side effect of STN-DBS in PD patients 

(Funkiewiez et al., 2006, 2003; Voon et al., 2008) with a prevalence of about 20-25% (Witt et 

al., 2012) despite slight improvement after 6 months (Weaver et al., 2009; Witt et al., 2008). 

Interestingly, STN-DBS has been reported to improve (Campbell et al., 2012; Daniele et al., 

2003), worsen (Follett et al., 2010; Temel et al., 2006) or to have no effect (Deuschl et al., 2006; 

Weaver et al., 2009) on symptoms of depression or anxiety. However, unlike mania, 

postoperative depressive symptoms have rarely been associated with sensorimotor STN 

stimulation itself but rather with too fast tapering of dopaminergic medication (Thobois et al., 

2010) and stimulation of more ventral STN territory or even zona incerta stimulation (Bejjani 

et al., 1999; Okun et al., 2009; Witt et al., 2012). Indeed, the precise local placement of DBS 

electrodes has an effect on non-motor DBS effects (Dafsari et al., 2018b; Irmen et al., 2019; 

Mallet et al., 2007; Mosley et al., 2018; Witt et al., 2013) and modulation of distant brain 

regions involved in affective processing might play a crucial role on how affective symptoms 

develop after surgery.  

In this study, we investigate the impact of electrode placement and associated structural 

connectivity on changes in depressive symptoms following STN-DBS. To this end, we 

reconstructed electrode placement in 80 PD patients from two international DBS centres and 

estimated their structural connectivity profiles. Based on these connectivity profiles, we 
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calculated models that could explain and cross-predict worsening or improvement in depressive 

symptoms as measured with the Beck Depression Inventory- 2nd Edition (BDI-II; Beck et al., 

1996). Finally, we validated these models using a testing set of 36 PD patients form a third DBS 

centre.  

 

Materials and methods 

 

Patient cohorts and imaging 

A total of 121 patients from three DBS centers (Berlin [BER]: n = 32; Queensland [QU]: n = 

49; Cologne [CGN]: n = 40) were included in this retrospective study (age 62 ± 0.84 years, 43 

women). Data from Charité Universitätsmedizin Berlin and University of Queensland were 

used to form the training and cross-validation datasets to identify structural connectivity 

predicting mood changes after DBS surgery. Data from the University Hospital Cologne was 

used as a test dataset to validate the established model. Five patients were excluded from the 

analyses for the following reasons: One patient (QU) due to incomplete data, two patients 

(CGN) due to unilateral VIM (instead of STN) stimulation, and two patients (CGN) due to 

clinically relevant psychiatric symptoms before surgery that were pharmacologically treated. 

The sample characteristics of the final cohort (n = 116) are presented in Table 1. Detailed 

descriptions of all patients are listed in Supplementary Table 1.  

All patients underwent stereotactic DBS surgery for treatment of PD and received bilateral DBS 

electrodes (n = 42 model 3389 Medtronic, Minneapolis, MN; n = 31 Boston Scientific Vercise; 

n = 36 Boston Scientific Vercise Cartesia Directional; n = 7 St Jude Infinity Directional model 

6172). Structural abnormalities were excluded using preoperative MRI. Clinically-significant 

psychiatric symptomatology and cognitive deficits (defined as deficient performance in Mini-

Mental State Examination score or multidomain deficits in neuropsychological tests such as 

features of PD dementia; Emre et al., 2007) were excluded prior to DBS by psychiatric 

evaluation and neuropsychological testing. Lead placement was validated using microelectrode 

recordings during surgery (BER, QU, CGN), intraoperative macrostimulation (BER, QU, 

CGN) and postoperative imaging (BER, QU, CGN). Depressive symptoms were recorded pre- 

and postoperatively (after 7.56 ± 2.9 months, when DBS settings had already been titrated 

intensively and stable settings have been reached) using BDI-II (cut-off values 0-13: minimal 

depression; 14-19: mild depression; 20-28: moderate depression; >29: severe depression).  

Furthermore, levodopa equivalent daily dosage (LEDD) and Unified Parkinson’s Disease 

Rating Scale Part III (UPDRS-III) ON medication were recorded preoperatively and 
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postoperatively ON DBS in all patients and included in the analysis as covariates. Clinical data 

were compared pre- and postoperatively using randomized permutation tests (5000 

permutations) to test for significance (p<0.05 considered significant). The study was approved 

by the local ethics committee at each site and carried out in accordance with the Declaration of 

Helsinki. 

 

Localization of DBS electrodes 

DBS electrodes were localized using the Lead-DBS toolbox (www.lead-dbs.org; Horn & Kühn, 

2015). Specifically, the advanced processing pipeline illustrated in Horn et al. (2019) was 

applied (Horn et al., 2019a). In short, postoperative CT or MRI were linearly coregistered to 

preoperative MRI using advanced normalization tools (ANTs; stnava.github.io/ANTs/; Avants 

et al., 2008). Coregistrations were visually inspected and refined if needed. A brainshift 

correction step was applied as implemented in Lead-DBS. All preoperative volumes were used 

to estimate a precise multispectral normalization to ICBM 2009b NLIN asymmetric (“MNI”) 

space applying the ANTs SyN Diffeomorphic Mapping method (Avants et al., 2008) using the 

preset “effective: low variance default + subcortical refinement” implemented in Lead-DBS. In 

some patients where this strategy failed, a multispectral implementation of the Unified 

Segmentation approach (Ashburner & Friston, 2005) implemented in Statistical Parametric 

Mapping software (SPM12; http://www.fil.ion.ucl.ac.uk/spm) was applied. These two methods 

are available as presets in Lead-DBS and were top-performers to segment the STN with 

precision comparable to manual expert segmentations in a recent comparative study (Ewert et 

al., 2019). DBS contacts were automatically pre-reconstructed using PaCER (Husch et al., 

2018) or the TRAC/CORE approach (Horn & Kühn, 2015) and manually refined if needed. For 

segmented leads, the orientation of electrode segments was reconstructed using the Directional 

Orientation Detection (DiODe) algorithm (Hellerbach et al., 2018; Sitz et al., 2017).  

 

Volume of Tissue Activated and connectivity estimation 

The volume of tissue activated (VTA) was calculated using default settings in Lead-DBS 

applying a Finite Element Method (FEM) -based model (Horn et al., 2017a). This model 

estimates the E-field (i.e. the gradient distribution of the electrical charge in space measured in 

volt per millimeter) on a tetrahedral mesh that differentiates four compartments (grey and white 

matter, electrode contacts and insulation). Grey matter was defined by key structures (STN, 

internal and external pallidum, red nucleus) of the DISTAL atlas (Ewert et al. 2017). The 
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resulting gradient vector magnitude was thresholded at a heuristic value of 0.2 V/mm to 

generate the VTA.  

Recently, it has been shown that using binarized VTAs (that would model all-or-nothing 

activations) could predict slightly less variance in clinical outcomes in comparison to using 

weighted VTAs such as the E-field gradient vector magnitudes (Horn et al., 2019). Binary 

VTAs are based on specific thresholds that assume a certain type of axon diameter and 

orientation and do not grasp the anatomical complexity of the subcortex (e.g. Forstmann et al., 

2016). To account for this general limitation of the VTA concept, we repeated all analyses using 

the unthresholded E-field magnitude instead of the VTAs surrounding the active electrode 

contacts for the connectivity analysis (see Horn et al., 2019 for details).  

Whole-brain structural connectivity profiles seeding from bilateral VTAs or E-Fields were 

estimated using a Parkinson’s Disease group connectome that is based on publicly available 

data (Marek et al., 2011; Parkinson’s Progression Markers Initiative; www.ppmi-info.org). This 

PPMI normative connectome of PD patients (age n = 90; age 61.38 ± 10.42, 28 female) was 

priorly computed (Ewert et al., 2017) and has been used in context of DBS multiple times before 

(Horn et al., 2017a, 2017b, 2019; Neumann et al., 2018). For each patient, fibers that passed 

through the VTA or a non-zero voxel of the E-Field were selected from this normative 

connectome and projected onto a voxelized volume in standard space (1mm isotropic 

resolution) while keeping count of the fibers traversing each voxel. In the binary (VTA) 

analyses, the number of fibres traversing each voxel were denoted (resulting in classical fibre-

density map), in the E-Field based analyses, each fibre received the weight of the maximal E-

Field magnitude of its passage and fibre densities were weighted by these values. Figure 1 

provides an overview over the methodology applied.  
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Figure 1: Overview of applied methods. A) In each patient, electrodes were localized and VTAs were calculated in standard 

stereotactic space using Lead-DBS software. From a normative Parkinson's Disease connectome (N = 90 PPMI datasets), tracts 

that traversed through each patient's VTA were selected and projected to the brain as fiber density maps. These maps represent 

the structural connectivity “fingerprint” seeding from each VTA. B) Varying electrode placement leads to different connectivity 

“fingerprints” in each patient. Across the group of patients, these fingerprints are used to generate a model of connectivity that 

is associated with maximal BDI-II improvement by voxel-wise correlation (“R-Map”). C) The R-Map represents a model that 

denotes how electrodes should be connected to result in maximal BDI-II improvement. When comparing each novel patient's 

“fingerprint” with this model (by means of spatial correlation), individual BDI-II improvement can be predicted. Crucially, this 

is done to predict improvement in out-of-sample data, i.e. across cohorts or in a leave-one-out fashion throughout the 

manuscript. This means that the R-map is never informed by the predicted patient's structural connectivity “fingerprint”. 

 

Modelling connectivity-driven mood changes 

Structural connectivity strength, i.e. the number of fibers between VTA and each voxel was 

Spearman rank-correlated with BDI-II change (preoperative - postoperative), which resulted in 

a connectivity map that shows positive or negative associations with BDI-II improvement. In 

the following, these types of maps are referred to as R-maps (since they denote Spearman’s 

correlation coefficients for each voxel). Spearman’s correlation was used since tractography 

results are highly non-Gaussian distributed and rather follow an exponential distribution (e.g. 

Horn et al., 2014). All analyses were carried out in Matlab (The Mathworks, Natwick, MA). 

We used randomized permutation tests (5000 permutations) to test for significance (at a 5% 

significance level) and used Spearman’s correlation coefficients throughout all analyses. 
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Validation of the training dataset. One R-map for each subset (BER, QU) was calculated. R-

maps were then used to predict BDI-II changes in out-of-sample data (i.e. cross-predicting 

between QU ⬌ BER cohorts) by spatial correlation between the R-map (model) and the 

connectivity profile seeding from the VTAs in each patient. This was done across voxels with 

an absolute Spearman’s R-value of > 0.1 on each R-map. For example, the R-map (model) was 

calculated across the BER sample and voxels with an absolute R > 0.1 were spatially correlated 

with connectivity maps in the QU sample. For each patient in the QU cohort, this led to one R-

value that coded for spatial similarity to the model. These R-values were then correlated with 

empirical BDI-II changes. An additional leave-one-out cross-validation (i.e. data from patients 

1-79 was used to predict patient 80 and so on) across the training sample (BER/QU combined) 

was run to test whether similarity to the specific structural connectivity profile of the training 

set (which is denoted by the R-map) could significantly predict absolute BDI-II change. 

Furthermore, we validated the results by running the analyses again based on the E-field instead 

of VTA; using the percentage BDI-II change relative to baseline instead of the absolute BDi 

change. Moreover, to test for potential lateralization of connectivity profile, we reran analyses 

for left and right VTAs separately.  

Prediction of the test dataset. In the same fashion as the cross-prediction between the subcohort 

of the training dataset, a joint R-map for the entire training/cross-validation set (BER+QU) was 

generated, which was used to predict data BDI-II change in patients of the test dataset (CGN).  

Testing robustness of the model across the entire sample. We applied the leave-one-out cross-

validation across the whole dataset, i.e. data from patients 1-115 was used to predict patient 116 

and so on. Finally, to control for the effect of postoperative LEDD and UPDRS-III reduction, 

those variables were included in the prediction models as covariates. 

 

Isolation of fibertracts that are discriminative for mood changes 

In an additional analysis, we sought to identify tracts that could discriminate patients with 

positive from negative BDI-II change. For each fibertract in the normative connectome (PPMI 

90, see above), its accumulative E-Field vector magnitude while passing by each patient’s 

electrode was denoted. This value was then Spearman rank-correlated with each patient’s 

clinical change in depressive symptoms. Thus, a fibertract that passed close to active contacts 

of patients that had BDI-II improvement but far from active contacts in patients that had BDI-

II worsening would receive a high Spearman’s R value (and tracts exhibiting the inverse 

property received a highly negative R value). These R values were used to color-code fibertracts 

that were positively and negatively predictive of BDI-II improvement. This analysis was 
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expected to show identical (or highly similar results) as the “R-map” method explained above 

but with the advantage of working on a tract-by-tract basis (instead of a voxel-wise fashion). 

Thus, it is ideal to visualize the actual fibertracts that were predictive of change in depressive 

symptoms. Given the similarity of the methodology, this analysis was only performed once on 

the complete set of patients to further characterize the tracts that are likely responsible for BDI-

II changes under STN-DBS. The fibertract analysis was validated across the whole data set with 

a leave-one-cohort-out cross-prediction, which predicted data of any one of the three DBS 

centres by data of the two other centers following the procedure of Li et al., 2019. 

 

Results 

 

Clinical data  

Disease duration in the entire sample (n = 116; Table 1; Supplementary Table 1 for more details) 

was 9.55 ±4.45 years. DBS lead placement was similar across all three cohorts (Figure 2A,3C). 

Motor improvement with DBS was significant although we measured it ON medication 

reaching an average DBS response of 27.56 ±8.37 % (i.e. M ±SEM throughout the paper) as 

measured by the UPDRS-III. Preoperative LEDD was 1142.46mg ±52.69 as compared to 

postoperative 464.45mg ±27.05 (56.55 ±2.77 % reduction) with a contribution of dopamine 

agonists (DA) of 191.06mg ±16.62 pre- and 107.51mg ±10.73 postoperatively. Total LEDD, 

LEDD of DA, and UPDRS-III reduction were not significantly different in training and test 

datasets (p > 0.05 for all three variables, see table 1 for mean values). On average, BDI-II scores 

decreased from 9.94 ±0.50 to 8.96 ±0.60 (on average by 0.97 ±0.54 points = absolute BDI-II 

change) postoperatively, i.e. there was an overall reduction in BDI-II of 3.34 ± 8.12% but the 

difference was not significant. Importantly, scores in some patients improved while others 

worsened (with an absolute BDI-II change in single patients – of up to 19, Supplement 1). In 

the test dataset (Supplementary Table 1 – Cologne), some specific features were noted: patient 

#10 and #19 were diagnosed with comorbid depression and anxiety disorder at baseline; patient 

#13 reported pain and relatedly negative mood. Those three patients are marked with asterisk 

in Figure 3B.  
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COHORT N AGE 

 (YRS) 

SEX DISEASE 

DURATION 

(YRS) 

MONTHS 

POST 

SURGERY 

BDI-II 

(BASELINE) 

BDI-II 

(POSTOP) 

UPDRS-III 

(BASELINE, 

MED ON) 

UPDRS-III 

(ON DBS,  

MED ON) 

LEDD-

REDUCTION 

(%) 

  M SEM f m M SEM M M SEM M SEM M SEM M SEM M SEM 

BERLIN 32 61  2 10 22 10 1 

 

12 11.56 1.11 11.56 1.32 20.78 1.82 19.26 2.47 46.06* 7.32 

QUEENSLAND 48 62  1 15 33 8 1 6 11.06 0.68 8.45* 0.82 37.46 2.23 33.95 1.89 68.98* 3.32 

COLOGNE 36 62  8 18 18 10 1 6 7.00 0.71 7.00 0.97 18.00 1.65 17.00 1.53 48.27* 3.15 

TOTAL 116 62 1 43 73 9 0 7 9.94 0.50 8.96 0.60 26.75 1.43 24.85 1.35 56.32* 2.77 

Table 1: Sample characteristics. BDI-II – Delta change in Beck’s depression inventory (Baseline = pre; Postop = post DBS 

surgery); UPDRS-III –Unified Parkinson’s disease rating scale III (Baseline = pre; Postop = post DBS surgery ON Medication); 

LEDD – Levodopa-equivalent daily dosage; M – mean; SEM – Standard error of the mean; *significant change compared to 

baseline 

 

Connectivity related to DBS-induced mood changes 

We identified a VTA-based structural connectivity map (R-map) predictive of postoperative 

BDI-II change in the training dataset (Figure 3A). The more fibers connected a patient’s VTA 

to the positive areas (warm colors) of this map, the more their depressive symptoms improved 

postoperatively. On the contrary, the more a patient’s VTA was structurally connected to the 

negative areas (cold colors) of this map, the more their depressive symptoms worsened 

postoperatively.  

Validation of the training dataset. The R-maps of the two subcohorts in the training dataset 

were similar: On the right hemisphere of the R-map, connectivity to motor and prefrontal 

regions is universally associated with depressive symptom improvement. On the left 

hemisphere however, connectivity to the prefrontal cortex (PFC), including the dorsolateral 

PFC is strongly associated with worsening of depressive symptoms, whereas connectivity to 

sensorimotor and superior parietal areas is associated with symptom improvement (Figure 2). 

Cross-predictions were significant, i.e. the R-map based on BER-data could predict BDI-II 

change in relation to structural connectivity in the QU dataset (Figure 2C, R = 0.52, p < 0.0001) 

and vice versa (R = 0.57, p < 0.0001). In a leave-one-out cross-validation across the training 

sample (BER/QU combined), similarity to this specific structural connectivity profile (which is 

denoted by the R-map) could significantly predict absolute BDI-II change (R = 0.26, p = 0.01) 

even when basing structural connectivity profiles on the E-field instead of VTA (R = 0.24, p = 

0.015) or when using the percentage BDI-II change relative to baseline (R = 0.20, p = 0.04). To 

test whether the effect was lateralized to either hemisphere, we reran analyses for left and right 

VTAs separately and found that connectivity on either hemisphere alone was predictive for 

BDI-II change as well (right: R = 0.347, p = 0.002; left: R = 0.359, p = 0.001). 

Prediction of the test dataset. The R-map based on the whole training set (BER/QU combined) 

was used to predict BDI-II change in the independent test dataset (CGN) by calculating spatial 
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similarity between each CGN-patient’s electrode connectivity profile with the BER/QU R-map. 

This could again validate our results and a significant correlation was observed (Figure 3B, R 

= 0.36, p = 0.012).  

Testing robustness of the model across the entire sample. Although the CGN cohort was kept 

isolated from data-analysis until this very last step, we opted to create one final R-map across 

all available data to calculate a final connectivity profile that codes for BDI-II change based on 

all information present. This final connectivity map predictive for BDI-II change in all three 

cohorts (n = 116) is displayed in Figure 4A. To further validate robustness of this final R-map, 

we performed one last leave-one-out cross validation analysis (Figure 4B, R = 0.33, p < 0.001). 

Moreover, this prediction model remained significant when including postoperative LEDD 

reduction, reduction of dopamine agonists and percentage UPDRS-III change (postoperative – 

preoperative) as additional covariates and correcting for cohort in a joint general linear model 

(R2 = 0.21, F(112,105) = 4.78,  p = 0.0002). Thus, this final model was able to explain 21% of 

variance in BDI-II change based on clinical covariates and structural connectivity profiles 

across the whole group of subjects.  

 

Fibertracts related to mood changes 

An additional analysis was run to identify the actual tracts (instead of their cortical projection 

sites) that were correlated with BDI-II improvement when modulated. This was done on a tract-

by-tract instead of voxel-wise basis but further confirmed our results using a different analysis 

pathway. Crucially, this data-driven analysis revealed largely more tracts on the left hemisphere 

than on the right hemisphere, again suggesting an impact of left DBS stimulation on change of 

depressive symptoms (Figure 5A). Using lower thresholds, the pattern was similar between the 

two hemispheres but left hemispheric tracts were more predictive of BDI-II change and 

predictive tracts were found in larger quantities. The analysis revealed that the positively and 

negatively associated tracts seemed to differ in their anatomical course in that the negatively 

associated tract passed by the STN medial and at level of its limbic/associative functional zone, 

while the positively correlated tract passed through and slightly lateral to the motor STN (Figure 

5B). Moreover, as can be seen in Figure 5C, the negatively associated tract traverses more 

laterally when ascending to the PFC. Robustness of this tract was validated using leave-one-

cohort-out crossvalidations which supported the results from our R-map model: any of the 

cohorts could be predicted by the other two cohorts (BER/QU predicting CGN; QU/CGN 

predicting BER; BER/CGN predicting QU) R = 0.24, p = 0.001.  
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Figure 2: Structural connectivity predicting change in depressive symptoms in the training dataset (N = 80). A) Electrode 

position for the two cohorts from Berlin and Queensland.  B) Each cohort’s R-Map represents the association with change in 

depressive symptoms under STN-DBS. Negative (blue) areas of the left hemisphere shown here relate to worsening of 

depressive symptoms. R-Maps revealed a significant association between worsening of depressive symptoms after STN-DBS 

and connectivity to left dorsolateral PFC. C1) Based on the R-Map from the Berlin cohort, depressive symptoms in the 

Queensland Cohort could be significantly predicted and vice versa (C2). R-Maps are presented smoothed with a 3mm full-

width half-maximum Gaussian kernel to increase signal-to-noise ratio. 
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Figure 3: R-map of the training-dataset and prediction of the test-dataset.  A) R-Map of the training dataset. Negative 

(blue) areas represent association with worsening of depressive symptoms while positive (red) areas represent association with 

improvement of depressive symptoms under STN-DBS. The R-Map is presented smoothed with a 3mm full-width half-

maximum Gaussian kernel to increase signal-to-noise ratio. B) The R-Map of the training dataset (Berlin-Queensland model) 

significantly predicted change in depressive symptoms in the test-dataset (Cologne). Patients marked with asterisks showed 

moderate worsening in depressive symptoms with comorbidities and pain, which remained stable over the period of assessment; 

hence patients were not excluded from the test dataset. C) Electrode positions of the test dataset within the STN. 
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Figure 4: Final R-Map validation across all patients and proximity to TMS targets.  A) R-Map associated with change of 

depressive symptoms over all patients (n = 116). B) Validation of the model using the approach of leaving-one-out design. C) 

rTMS targets for treatment of depression superimposed on final R-Map. R-Maps are presented smoothed with a 3mm full-

width half-maximum Gaussian kernel to increase signal-to-noise ratio. 

 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted June 10, 2019. ; https://doi.org/10.1101/665976doi: bioRxiv preprint 

https://doi.org/10.1101/665976


CONNECTIVITY LINKS STN-DBS WITH DEPRESSION 

 
Figure 5: Fibertracts discriminative of BDI-II improvement when modulated. Red tracts are positively, blue tracts 

negatively correlated with clinical improvement. STN shown in orange. A) Coronal view from posterior with both hemispheres. 

At this threshold level, no fibers on the right hemisphere were associated with clinical improvement but a strong set of both 

positive and negative fibers were found on the left hemisphere. B) View from the left and C) view parallel to the longitudinal 

axis of the left STN. Positively and negatively correlated fibertracts seem to be distinct tracts, the positive one passing through 

the STN and lateral to it, the negative one medial and anteriorly. D) Superimposed on a section of the BigBrain ultrahigh 

resolution human brain model (Amunts et al., 2013), at the level of the brainstem, the negative tract seems to traverse around 

the red nucleus and may connect to (or originate from) brainstem nuclei such as the left dorsal raphe nucleus (shown in dark 

blue as defined by the Harvard Ascending Arousal Network Atlas; (Edlow et al., 2012)). 
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Discussion 

 

In this study, we modelled structural connectivity predictive for changes in depressive 

symptoms following STN-DBS. We identified a robust connectivity pattern linking worsening 

of depressive symptoms to left prefrontal impact. Three main conclusions can be drawn from 

these results. First, a distinct VTA-based structural connectivity profile can predict long-term 

change in depressive symptoms associated with STN-DBS in PD patients. Second, the 

connectivity profile is robust and able to predict data across cohorts and in an independent test 

sample. Third, left-hemispheric negative connectivity to the PFC predicting less benefit of DBS 

on depressive symptoms in our cohort may suggest that anteromedial fibers to left prefrontal 

areas should be avoided for left STN-DBS lead placement to maximise improvement of 

depressive symptoms.  

A common assumption in clinical research on affective changes associated with STN-DBS is 

that they result from rapid withdrawal of dopaminergic replacement therapy after surgery 

(Thobois et al., 2010) increasing anhedonia induced through dysregulation in affective 

networks (Belujon & Grace, 2017; Dunlop & Nemeroff, 2007). While this is an important factor 

explaining acute and subacute postoperative affective changes, in our large multi-center sample 

using long-term data, LEDD reduction did not explain BDI-II change. Perhaps this relates to 

clinicians addressing this potential risk-factor for depression during long-term follow up. 

Others have also reported a lack of correlation between LEDD reduction and non-motor PD 

symptoms like apathy and mood (Dafsari et al., 2018; Dafsari et al., 2018b). Yet, the general 

notion is that STN-DBS mimics the action of dopaminergic agents (Volkmann et al., 2010) and 

acute stimulation more likely leads to hypomania as depression (Appleby et al., 2007; Castrioto 

et al., 2014; Funkiewiez et al., 2003; Krack et al., 2010; Romito et al., 2002; Volkmann et al., 

2010; Witt et al., 2008) potentially relating to stimulation of contacts in the anterior, ventral 

and medial planes (Chopra et al., 2011). Interestingly, long-term improvement in motor 

symptoms as measured with UPDRS-III did not add to the explanation of BDI-II change by 

connectivity in our sample, suggesting that stimulation may influence affective processing more 

directly, i.e. via connectivity to limbic/prefrontal areas.   

The association of depressive symptoms and connectivity to the left PFC is not surprising given 

the vast amount of evidence linking depression to left frontal lesions. Specifically, hypoactivity 

and dysfunction of the left PFC is commonly found in patients with depression (Chang et al., 

2011; Grimm et al., 2007; Hamilton et al., 2012; Koenigs et al., 2008; Mayberg et al., 2005; 

Thomas et al., 2003) and there is an increase of depressive symptoms after left dlPFC traumatic 
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brain injury (Fedorof et al., 1992; Jorge et al., 2004; Leung et al., 2018) and stroke (Egorova et 

al., 2017; Grajny et al., 2016; Hama et al., 2007; Shi et al., 2017). In particular, Grainy et al. 

(2016) found that severity of depression is directly related to the extent of dlPFC damage 

suggesting gradual impact of frontal damage on networks underlying depressive symptoms. 

Indeed, large-scale network effects, hemispheric asymmetries and connectivity play an 

important role in the development of depressive symptoms; e.g. post-stroke depression has been 

linked to altered functional connectivity of dlPFC to the frontoparietal cognitive control 

network (Egorova et al., 2017) and dlPFC connectivity in general plays a major role in 

depression (Hwang et al., 2015; Kaiser et al., 2015; Sheline et al., 2010). In particular, the left 

dlPFC seems to be regulating negative affect through reappraisal and voluntary suppression 

(Koenigs et al., 2010; Lévesque et al., 2003; Ochsner et al., 2004; Phan et al., 2005) via the 

frontoparietal cognitive control network (Pan et al., 2018). In patients suffering from major 

depression, excitability of the hypoactive dlPFC tissue (Chang et al., 2011; Grimm et al., 2007; 

Hamilton et al., 2012; Koenigs et al., 2008; Mayberg et al., 2005; Thomas et al., 2003) has 

been augmented with non-invasive brain stimulation using high-frequency repetitive 

transcranial magnet stimulation (rTMS) leading to symptom amelioration (Pascual-Leone et 

al., 1996). Although the precise mechanism of dlPFC rTMS in improving depressive symptoms 

is not yet fully understood, a role of local and remote network changes and altered connectivity 

of prefrontal structures is evident (Fox et al., 2012, 2013; Philip et al., 2018). Interestingly, the 

common targets of rTMS in depression that have been summarized by Fox et al. (2013) 

precisely lie within the clusters we find negatively associated with BDI-II improvement under 

STN-DBS; Figure 4C). Thus, when depressive symptoms worsen under long-term STN-DBS, 

the VTAs are tempering fibers linked to the left dlPFC.  

When asking why structural connectivity from VTAs to the left dlPFC explains depressive 

symptom change, several aspects should be considered. First, a correlation of fibertracts with 

BDI-II change clearly shows that worsening of depressive symptoms under STN-DBS is 

associated with fibers connecting prefrontal areas via zona incerta to the dorsal mesencephalon 

and brainstem (Figure 5). We presume that STN-DBS may disrupt information flow along these 

connecting fibers between prefrontal areas and the brainstem. One candidate brainstem region 

whose link to the PFC might be disturbed by DBS leading to depression is the dorsal raphe 

nucleus (DRN), which is part of the serotonergic system that is known to impact mood states 

(Michelsen et al. , 2008; Politis et al., 2010; Wei et al., 2018) and which is hypoactive in 

depression (Michelsen et al., 2007). Indeed, unbalanced connectivity of the DRN and prefrontal 

areas is related to depression (Ikuta et al., 2017) and abnormal serotonergic neurotransmission 
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has been – albeit inconsistently – linked with depression in PD (Politis et al., 2010; Qamhawi 

et al., 2015). Moreover, rodent studies have shown that STN-DBS may inhibit serotonergic 

output from the DRN (Hartung et al., 2011) and that this induces depressive-like behavior (Tan 

et al., 2011; Temel et al., 2007). Since there are no direct connections between the STN and the 

DRN (Peyron et al., 1997), one of the candidate neural pathways underlying the serotonergic 

suppression effect of STN-DBS is prefrontal-DRN connectivity (Tan et al., 2011). Indeed, 

excitatory input from (medial) prefrontal areas directly modulates activity of serotonergic 

neurons in the DRN (Hajós et al., 1998; Varga et al., 2001;2003). Thus, accidental disruption 

of the serotonergic communication between left PFC and DRN may be a likely 

pathophysiological candidate to foster depressive states after STN-DBS. Another candidate 

neural substrate for the reported change in depressive symptoms is the ventral tegmental area, 

which as the origin of the meso-cortico-limbic dopamine projections is pivotal for reward-

processing but also plays a role in depression (Wei et al., 2018; Wohlschläger et al., 2018). Yet, 

this neural substrate is less likely given the exact anatomical course of the tract. 

Second, it is worth mentioning that like the striatum, the STN is a node of convergence of 

affective, cognitive and motor input (Accolla et al., 2016; Alexander & Crutcher, 1990; Aron 

et al., 2016; Haynes & Haber, 2013; Péron et al., 2013; Sieger et al., 2015). Its activity is 

modulated through coupling with PFC activity (Cavanagh et al., 2011; Frank et al., 2007; Herz, 

Zavala, Bogacz, & Brown, 2016) and, crucially, STN-DBS impacts affective processing (e.g. 

Irmen et al., 2017; Péron et al., 2010). Therefore, although here we see activation of fibertracts 

associated with BDI-II change passing medially by the STN, a role of the structure in affective 

processing and emotion regulation is undisputed (Campbell et al., 2008; Mallet et al., 2007; 

Péron et al., 2015). Importantly, in our data, depressive symptoms improved if predominantly 

fibers connecting the dorsolateral (motor) STN to the motor cortex were stimulated as has been 

reported before (Eisenstein et al., 2014). This implicates the overlapping presence of neurons 

involved in affective/associative processing and motor processing in the STN motor segment 

(Accolla et al., 2017; Haynes & Haber, 2013; Irmen et al., 2019). In turn, as a secondary effect, 

STN-DBS may impact subcortical-cortical structural connections by changing integration of 

balanced input from cognitive, affective and motor loops in the basal ganglia and related 

networks (Accolla et al., 2014, 2016; Haynes & Haber, 2013; Irmen et al., 2019; Rodriguez-

Oroz et al., 2011). The left-hemispheric laterality of the observed effect might however be 

specific to depression since other studies stressed the role of the right STN in the processing of 

positive emotional voices (Eitan et al., 2013) and stimulation of the right STN is associated 

with neuropsychiatric symptoms such as disinhibition (Mosley et al., 2018). These results are 
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not mutually exclusive with our findings since they differ in their approach (network vs. local 

target anatomy and physiology). Effects of STN-DBS on cognition and affect are complex and 

we are only starting to understand the associated local, network, and physiological changes.  

Taken together, in the left hemisphere, high-frequency stimulation of fibers anteromedial to the 

STN is associated with worsening of depressive symptoms while stimulation of dorsolateral 

STN leads to improvement of depressive symptoms in PD patients. The connectivity profile 

described in this study may be used to inform surgeons and clinicians in the placement and 

settings of STN-DBS, depending on the patient’s individual connectivity that could be studied 

before surgery. Certainly, more work is needed to refine our understanding of the functionality 

of prefrontal to STN connectivity and the left-lateralized hemispheric impact; but this study 

introduces a new direction of avoiding harmful side effects of STN-DBS in PD patients by 

considering connectivity to networks guiding these side effects.  

As a final consideration, it is important to stress that we believe depression is a system-level 

disorder: no single brain region or neurotransmitter is the sole driving force but instead, 

integrated networks of cortical and subcortical regions seem to be key (Mayberg et al., 2005). 

This means the impact of STN-DBS on affective networks based on patients’ connectivity 

profiles is surely not the only factor contributing to changes in depressive symptoms. 

Importantly, our patients had minor to moderate depressive symptoms that were partially 

modulated by DBS but none of them had a severe depression. Yet, this research may contribute 

to better understand, avoid and treat affective side effects like depressive symptoms in patients 

with STN-DBS. 

There are several limitations that should be considered when interpreting our findings. First, 

there might be differences in the assessment of depressive symptoms across DBS centres, that 

is e.g. whether patients reported their mood state at the first or the last day of their follow-up 

stay when clinical interventions taken might already have improved their mood state. We do 

believe though that with our large sample size slight variances in the timepoint of BDI-II 

assessment did not systematically bias our results. Secondly, there is a variation in electrode 

type in the patients included in this study. This could have effects on the VTA model, e.g. by 

the respective consideration of constant voltage versus constant current default settings in DBS 

systems by Medtronic vs. Boston Scientific. To circumvent a bias of this factor, we reran 

analyses using the unthresholded E-field that surrounded electrodes and found the similar 

results. Third, we used a Parkinson-specific normative connectome for our analysis purposes, 

which assumes structural connectivity to be approximately the same in all patients of our 

sample. While this assumption might not hold true in all cases, the method has been used and 
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validated in several recent studies with DBS context (Baldermann et al., 2019; Horn et al., 

2017a; Neumann et al., 2018). Beyond practical advantages (where patient-specific 

connectivity data is often not available and cannot be acquired postoperatively), normative 

connectomes have often been acquired on specialized MRI hardware and comprise of a high N 

of subjects (such in this sample of patients from the PPMI project). Thus, the use of normative 

connectomes has the advantage of high signal-to-noise levels and state-of-the-art data quality. 

Finally, we only had UPDRS-III scores ON medication (preoperative vs. ON stim) in our 

sample. Thus, the pre- to postoperative comparison might not reflect the full impact of STN-

DBS on motor symptoms. However, since the BDI-II maps we calculated are very robustly 

predictive in out-of-sample data (cross-predicting between BER and QU, predicting CGN from 

BER/QU and predicting each patient’s BDI-II improvement of the whole sample in a leave-

one-out fashion), the effects of UPDRS-III improvement do not seem to have a strong impact 

on BDI-II either way. 

 

In conclusion, the present results have a potential therapeutic value for the refinement of brain 

stimulation targets. In personalized brain stimulation, identifying proximity to fibres connecting 

the electrode with the left dlPFC might have a prognostic utility in predicting change in 

depressive symptoms under STN-DBS. Prospectively, connectivity maps as the one presented 

here as well as isolated fibertracts can be used in surgical planning to optimize positioning of 

DBS leads in PD patients. Furthermore, with the use of directional leads, the electrical field 

could be guided away from fibertracts anteromedial to the left STN, the stimulation of which 

was associated with depressive symptoms in our study. Importantly, this study specifically 

shows that the STN connectivity profiles might have to be treated differently for the right and 

left hemisphere. However, more work is needed to validate this presumption based on patient-

specific connectivity. Altogether, our findings lead to a better understanding of how negative 

mood effects may originate following STN-DBS and pave the way toward personalized brain 

stimulation in which individual connectivity profiles and symptom constellations determine 

optimal DBS targets.  
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Supplementary Tables: 
I. Berlin 

 
 

II. 
Queensland 
 

PATIENT AGE/ 
GENDER 

DISEASE 
DURATION 

 (yrs.) 

TYPE OF IPS MONTHS 
BETWEEN 

ASSESSMENTS 

LEDD 
REDUCTION 

(%) 

DOPAMIN 
AGONIST 

REDUCTION 
(%) 

ΔBDI-II 
(abs.) 

ΔBDI-II (%) ΔUPDRS III 
(%  DBS ON VS. OFF – 

ON MEDICATION) 

ELECTRODE TYPE CONTACTS USED FOR STN DBS 

L R 

 

#1 63/m 15 trem.-dominant 12 70.4 0 10 66.7 14.3 Medtronic Activa PC 3389 10- 2-, 3- 

#2 56/m 3 equivalent 

12 

36.1 100 6 66.7 46.7 Boston Scientific Vercise 

octopolar 

12- 4- 

#3 72/f 20 equivalent 12 69.1 85.9 -8 -400 88.9 Medtronic Activa PC 3389 9- 1- 

#4 70/m 7 akin.-rigid rigid 12 70.7 100 0 0 70.8 Medtronic Activa PC 3389 9-/10- 1-/2- 

#5 73/m 3 equivalent 12 67.8 -25 7 43.8 106.25 Medtronic Activa PC3389 8- 1- 

#6 69/m 11 akin.-rigid 12 31.6 - 11 73.3 76.9 Medtronic Activa PC 3389 10-/11+ 2-, 3- 

#7 58/m 13 equivalent 12 88.4 - 0 0 68.2 Medtronic Activa PC 3389 11- 3- 

#8 73/m 9 equivalent 12 39.1 100 3 30 33.3 Medtronic Activa PC 3389 11- 3- 

#9 72/f 5 brady.-rigid 12 -26 -185.5 -7 -38.9 0 Medtronic Activa PC 3389 10- 0- 

#10 65/m 14 akin.-rigid 12 44.4 46.7 4 66.7 77.1 Medtronic Activa PC 3389 8-/9+ 0-/1+ 

#11 63/f 8 trem.-dominant 12 68.9 100 7 50 6.3 Medtronic Activa PC 3389 9- 1- 

#12 63/f 8 equivalent 12 56.4 100 -1 -12.5 107.5 Medtronic Activa PC 3389 8- 0- 

#13 58/f 8 trem.-dominant 12 18.4 8.9 14 51.8 20 Medtronic Activa PC 3389 9-, 10- 2- 

#14 63/m 15 akin.-rigid 12 85.4 100 -5 -62.5 72.7 Medtronic Activa PC 3389 10-/11- 2-/3- 

#15 52/m 5 akin.-rigid 

12 

100 100 -1 -6.7 -22.2 Boston Scientific Vercise 

Directed 

13-/14-/15- 5-/6-/7- 

#16 69/f 4 trem.-dominant 

12 

100 100 -7 -28 -66.7 Boston Scientific Vercise 

Directed 

11-/14- 5-/6-/7- 

#17 64/m 9 akin.-rigid 12 40.5 63.4 2 40 82.6 Medtronic Activa PC 3389 9- 1- 

#18 50/m 6 akin.-rigid 12 16.3 0 1 8.3 -30 Medtronic Activa PC 3389 9- 1- 

#19 61/f - equivalent 12 0 0 -3 -20 100 Medtronic Activa PC 3389 11- 3- 

#20 63/m 16 akin.-rigid 12 45.6 40 -7 -100 69.2 Medtronic Activa PC 3389 9- 1- 

#21 70/m 6 akin.-rigid 12 62.5 83.3 -6 -66.7 172.7 Medtronic Activa PC 3389 9- 1- 

#22 61/m 6 akin.-rigid 

12 

- - -2 -66.7 - Boston Scientific Vercise 

Directed 

2(17%), 

3(17%), 

4(33%) 

10(17%), 

11(66%), 

12(17%) 

#23 41/f 14 trem.-dominant 

12 

64.3 -50 8 36.4 77.8 Boston Scientific Vercise 

Directed 

3- 13- 

#24 52/m 4 akin.-rigid 

12 

100 - -7 -46.7 100 Boston Scientific Vercise 

Directed 

3-/4- 11-/12- 

#25 54/m 18 akin.-rigid 

12 

11.6 100 -6 -66.7 0 Boston Scientific Vercise 

Directed 

4- 12- 

#26 73/f 8 trem.-dominant 

12 

39.9 - -1 -9.1 35 Boston Scientific Vercise 

Directed 

5-/6-/7- 13- /14- /15- 

#27 55/m 19 equivalent 

12 

61.2 100 

 

10 47.6 - Boston Scientific Vercise 

Directed 

2- (53%), 

3- (38%), 

4- (9%) 

10-(23%), 

11-(54%), 

12- (23%) 

#28 77/m 7 akin.-rigid 

12 

13.7 100 -2 -25 -34.8 Boston Scientific Vercise 

Directed 

14- (85%), 

9- (15%) 

1- (15%), 

6- (85%) 

#29 52/f 12 akin.-rigid 

12 

45 100 -19 -172.7 80.6 Boston Scientific Vercise 

Directed 

2- (8%), 

3- (6%), 

4- (6%), 

5- (28%), 

6- (26%), 

7- (26%) 

10-(34%), 

11-(33%), 

12-(33%) 

#30 60/m 14 equivalent 12 77.1 69.2 1 14.3 70 Medtronic Activa 3389 10- 2- 

#31 61/m 15 equivalent 

12 

-100 - -3 -100 67.6 Boston Scientific Vercise 

Directed 

2- (33%), 

3- (33%), 

4- (34%) 

13-(33%), 

14-(33%), 

15-(33%) 

#32 32/m 15 akin.-rigid 

12 

29.7 36.8 1 20 64.3 Boston Scientific Vercise 

Directed 

6- 11-/12-/13- 

IPS – IDIOPATHIC PARKINSON’S SYNDROME; LEDD – LEVODOPA EQUIVALENT DAILY DOSIS; BDI-II – BECK’S DEPRESSION INVENTORY; UPDRS – UNIFIED PARKINSON’S DISEASE RATING SCALE; TREM.-DOMINANT – TREMORDOMINANT; AKIN.-RIGID – AKINETIC-RIGID 
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PATIENT AGE/ 
GENDER 

DISEASE 
DURATION 

 (yrs.) 

TYPE OF IPS MONTHS 
BETWEEN 

ASSESSMENTS 

LEDD 
REDUCTION 

(%) 

DOPAMIN 
AGONIST 

REDUCTION 
(%) 

ΔBDI-II 
(abs.) 

ΔBDI-II (%) ΔUPDRS III 
(%  DBS ON VS. OFF 
– ON MEDICATION) 

ELECTRODE TYPE CONTACTS USED FOR STN DBS 

L R 

#1 71/m 6 akin.-rigid 6 65.2 0 0 0 28.3 Medtronic Activa PC 3389 1- 9- 

#2 49/m 6 trem.-dominant 6 61.5 0 1 14.3 9.1 Medtronic Activa PC 3390 1+/2- 9+/10- 

#3 69/f 4 akin.-rigid 6 66.2 0 8 80 -81.9 Medtronic Activa PC 3391 1- 9- 

#4 76/f 15 akin.-rigid 6 59.7 50 7 36.8 28 Medtronic Activa PC 3393 0- 9- 

#5 58/m 6 trem.-dominant 6 80.6 0 4 40 -155 Medtronic Activa PC 3394 1- 10- 

#6 62/m 12 akin.-rigid 6 67.3 0 8 38 0 Medtronic Activa PC 3395 1- 9- 

#7 47/m 7 akin.-rigid 6 71.9 0 3 33.3 -30 Medtronic Activa PC 3396 1- 9- 

#8 66/m 6 trem.-dominant 6 78.4 33,33 -15 -125 72.3 Medtronic Activa PC 3397 2- 9- 

#9 63/m 3 trem.-dominant 6 100 100 4 100 -12.5 Medtronic Activa PC 3398 1- 9- 

#10 56/m 7 akin.-rigid 6 80.5 0 7 43.8 -97 Medtronic Activa PC 3399 1- 9- 

#11 67/m 16 trem.-dominant 6 77.8 0 0 0 0 Medtronic Activa PC 3400 2-/3- 10- 

#12 35/m 5 trem.-dominant 

6 

48.6 

100 

1 12.5 55.3 Boston Scientific Vercise 

octopolar 

2-/5- 10+/11-/12+ 

#13 68/m 8 akin.-rigid 6 68.1 33,33 -2 -18.2 24.2 Medtronic Activa PC 3389 1- 9- 

#14 66/m 16 trem.-dominant 6 59 0 -3 -27.3 -320 Medtronic Activa PC 3389 2-/3- 10- 

#15 66/f 9 trem.-dominant 6 70.9 0 8 57.1 -14.3 Medtronic Activa PC 3389 1-/2- 9- 

#16 65/m 10 akin.-rigid 6 71 0 -2 -33.3 -17.6 Medtronic Activa PC 3389 0- 10+/9- 

#17 69/m 5 akin.-rigid 6 54.1 0 5 50 -26.9 Medtronic Activa PC 3389 1- 9- 

#18 65/m 14 trem.-dominant 

6 

81.4 

0 

2 50 -21.4 Boston Scientific Vercise 

octopolar 

3- 10+/11- 

#19 69/m 12 akin.-rigid 

6 

49.9 

0 

12 92.3 -68.8 Boston Scientific Vercise 

octopolar 

2- 10- 

#20 72/f 20 trem.-dominant 

6 

55 

0 

-4 -44.4 -30.8 Boston Scientific Vercise 

octopolar 

3-/5- 11- 

#21 55/f 5 trem.-dominant 

6 

100 

100 

-1 -12.5 -69.2 Boston Scientific Vercise 

octopolar 

3- 9- 

#22 70/m 5 trem.-dominant 

6 

63.6 

0 

4 28.6 29.5 Boston Scientific Vercise 

octopolar 

4-/5- 10+/11- 

#23 57/f 2 trem.-dominant 

6 

100 

0 

-7 -100 -7.1 Boston Scientific Vercise 

octopolar 

4- 12- 

#24 64/m 8 trem.-dominant 

6 

74.4 

-150 

8 61.5 26.1 Boston Scientific Vercise 

octopolar 

0+/1- 10- 

#25 53/m 5 akin.-rigid 6 72.9 -193,33 12 75 -105.3 Medtronic Activa PC 3389 1+/2- 10+/11- 

#26 65/m 6 trem.-dominant 

6 

0 

0 

1 6.7 7.4 Boston Scientific Vercise 

octopolar 

3- 10+/11-/13- 

#27 60/f 5 trem.-dominant 

6 

73.9 

100 

2 14.3 37.5 Boston Scientific Vercise 

octopolar 

5- 12- 

#28 61/m 21 akin.-rigid 6 55.8 -50 8 57.1 34.3 Medtronic Activa PC 3389 0- 9- 

#29 42/m 3 akin.-rigid 

6 

85.7 

0 

7 77.8 -16.7 Boston Scientific Vercise 

octopolar 

2- 10+/11- 

#30 60/f 5 akin.-rigid 

6 

76.2 

61,54 

-4 -80 34.6 Boston Scientific Vercise 

octopolar 

2- 11+/12- 

#31 70/f 6 trem.-dominant 

6 

76.8 

0 

-3 -100 7.4 Boston Scientific Vercise 

octopolar 

2-/3- 11- 

#32 58/m 8 trem.-dominant 6 47.6 16,67 -9 -75 -34.3 Medtronic Activa PC 3389 2- 10- 

#33 71/m 10 trem.-dominant 6 85.8 0 6 35.3 -30.2 Medtronic Activa PC 3389 1- 9- 

#34 73/m 5 akin.-rigid 

6 

73.3 

0 

7 36.8 14.7 Boston Scientific Vercise 

octopolar 

2- 10+/9- 

#35 61/f 9 trem.-dominant 

6 

70.4 

0 

2 50 -3.7 Boston Scientific Vercise 

octopolar 

4- 10- 

#36 54/f 7 akin.-rigid 

6 

91 

0 

10 100 -70.8 Boston Scientific Vercise 

octopolar 

3- 11- 

#37 70/f 4 akin.-rigid 6 92 90 4 40 -19.6 Medtronic Activa PC 3389 1- 9- 

#38 54/m 9 trem.-dominant 6 85.7 0 10 58.8 24.3 Medtronic Activa PC 3389 1- 9- 

#39 54/m 8 akin.-rigid 

6 

79.5 

0 

5 41.7 42.9 Boston Scientific Vercise 

octopolar 

2- 10-/11- 

#40 69/f 6 akin.-rigid 6 -15 0 2 22.2 23.5 St Jude Directional 3- 11-, 12- 
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#41 71/m 8 akin.-rigid 6 78.6 25 -3 -75 25.7 St Jude Directional 2- 11- 

#42 51/m 17 akin.-rigid 6 89.5 0 8 57.1 -10.5 St Jude Directional 2- 10- 

#43 73/m 10 trem.-dominant 6 53.3 25 -2 -18.2 -129.6 St Jude Directional 3- 11- 

#44 52/m 9 trem.-dominant 6 63.4 0 2 33.3 -125 St Jude Directional 1- 10- 

#45 51/f 7 trem.-dominant 6 18.3 0 3 14.3 14.8 St Jude Directional 3- 11- 

#46 77/m 7 trem.-dominant 6 100 0 0 0 -61 St Jude Directional 2- 10- 

#47 76/f 11 akin.-rigid 

6 

96.2 

0 

5 71.4 -45.8 Boston Scientific Vercise 

octopolar 

3-/4- 12- 

#48 70/m 8 mixed 

6 

54.6 

-20 

4 57.1 28 Boston Scientific Vercise 

octopolar 

2- 9+/10- 

IPS – IDIOPATHIC PARKINSON’S SYNDROME; LEDD – LEVODOPA EQUIVALENT DAILY DOSIS; BDI-II – BECK’S DEPRESSION INVENTORY; UPDRS – UNIFIED PARKINSON’S DISEASE RATING SCALE; TREM.-DOMINANT – TREMORDOMINANT; AKIN.-RIGID – AKINETIC-RIGID; 
 

 
 
III. Cologne 
 

PATIENT AGE/ 
GENDER 

DISEASE 
DURATION 

 (yrs.) 

TYPE OF IPS MONTHS 
BETWEEN 

ASSESSMENTS 

LEDD 
REDUCTION 

(%) 

DOPAMIN 
AGONIST 

REDUCTION 
(%) 

ΔBDI-II 
(abs.) 

ΔBDI-II (%) ΔUPDRS III 
(%  DBS ON VS. OFF – 

ON MEDICATION) 

ELECTRODE TYPE CONTACTS USED FOR STN DBS 

L R 

#1 53/f 11 equivalent 11 44 54,72 3 100 - Medtronic Activa 3389 P1: 0-; P2: 1- P1: 8-; P2: 9- 

#2 50/m 10 akin.-rigid 6 27.5 0 7 100 38.5 Boston Scientific Vercise 

Directed 

5- 13- 

#3 61/f 6 akin.-rigid 12 83.3 50 3 30 80 Boston Scientific Vercise 

Directed 

2- (34%), 3- (33%), 4- 

(33%) 

10- (33%), 11- (34%), 

12- (33%) 

#4 51/f 15 akin.-rigid 5 88.5 66,67 3 50 -100 Boston Scientific Vercise 

Directed 

5- (33%), 6- (33%), 7- 

(34%) 

10- (50%), 11- (50%) 

#5 63/f 4 akin.-rigid 6 55 25 -1 -8.3 36.4 Boston Scientific Vercise 

Directed 

5- (33%), 6-(33%), 7- 

(34%) 

10- (33%), 11-(33%), 

12-(34%) 

#6 54/m 8 akin.-rigid 2 36.9 -33,33 -2 -50 - Boston Scientific Vercise 

Directed 

1- 15- 

#7 71/m 14 akin.-rigid 6 18.8 0 0 0 -155.6 Boston Scientific Vercise 

Directed 

2- (14%), 3-(13%), 4- 

(13%), 5- (20%), 6- 

(20%), 7- (20%) 

10- (14%), 11- (13%), 

12-(13%), 13-(20%), 

14-(20%), 15-(20%) 

#8 53/f 4 equivalent 5 50.6 0 3 100 -50 Boston Scientific Vercise 

Directed 

8- 16- 

#9 61/m 13 equivalent 6 36.8 0 5 45.5 -166.7 Boston Scientific Vercise 

Directed 

1- 9- 

#10 64/f 14 akin.-rigid 5 39.8 27,27 -11 -220 63.6 Boston Scientific Vercise 

Directed 

5- (33%), 6- (34%),7- 

(33% 

13- (27%), 14- (45%), 

15- (28%) 

#11 56/m 4 trem.-dominant 5 43.3 90,19 0 0 -60 Boston Scientific Vercise 

Directed 

5- (40%), 6- (20%), 7- 

(40%) 

13- (26%), 14- (49%), 

15- (25%) 

#12 68/f 13 akin.-rigid 6 51 0 -1 -16.7 7.4 Boston Scientific Vercise 

Directed 

5- (34%), 6-(33%),7- 

(33% 

10- (30%), 11- (10%), 

13- (40%), 14- (20%) 

#13 49/f 8 akin.-rigid 5 44 45,81 -9 -450 10 Boston Scientific Vercise 

Directed 

7- 10- (25%), 11- (25%), 

12- (5%), 13- (20%), 

14- (25%) 

#14 57/m 10 trem.-dominant 5 66 37,5 3 50 -34.5 Boston Scientific Vercise 

Directed 

P1: 8-; P2: 4-(20%), 7- 

(80%) 

13-(20%), 14-(40%), 

15-(20%), 16-(20%) 

#15 72/m 11 akin.-rigid 5 42.2 53,33 -2 -33.3 -58.8 Boston Scientific Vercise 

Directed 

2- (18%), 3- (16%), 4- 

(16%), 5- (18%), 6- 

(16%), 7- (16%) 

13- (33%), 14- (33%), 

15- (34%) 

 

#16 71/f 13 akin.-rigid 6 61 75 0 0 -76.5 Boston Scientific Vercise 

Directed 

13- (27%), 14- (27%), 

15- (46%) 

2- (25%), 3- (15%), 4- 

(40%), 5- (10%), 7- 

(10%) 

#17 62/f 12 equivalent 5 47.5 42,86 1 9.1 21 Boston Scientific Vercise 

Directed 

5- (34%), 6-(33%), 7-

(33%) 

13- (10%), 14-(65%), 

15- (25%) 
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#18 67/m 9 akin.-rigid 5 57.1 50 0 0 55.6 Boston Scientific Vercise 

Directed 

2- (34%), 3- (33%), 4- 

(33%) 

10- (34%), 11- (33%), 

12- (33%) 

#19 70/m 10 akin.-rigid 5 65.3 75 6 75 57.1 Boston Scientific Vercise 

Directed 

2- (34%), 3- (33%), 4- 

(33%) 

13- (34%), 14- (33%), 

15- (33%) 

#20 76/f 18 equivalent 6 38.7 -33,76 -13 -325 41.2 Boston Scientific Vercise 

Directed 

2- (34%), 3- (33%), 4- 

(33%) 

10- (34%), 11-(33%), 

12- (33%) 

#21 59/m 8 akin.-rigid 5 56.3 25 -1 0 -314.3 Boston Scientific Vercise 

Directed 

5- (34%), 6-(33%), 7- 

(33%) 

13- (34%), 14- (33%), 

15- (33%) 

#22 62/m 9 akin.-rigid 6 59.2 13,33 1 9.1 -52.9 Boston Scientific Vercise 

Directed 

5- (34%), 6-(33%), 7- 

(33%) 

13- (34%), 14- (33%), 

15- (33%) 

#23 52/m 6 equivalent 6 8.6 0 1 50 -88.9 Boston Scientific Vercise 

Directed 

2- (34%), 3- (33%), 4- 

(33%) 

13- (34%), 14- (33%), 

15- (33%) 

#24 74/m 21 akin.-rigid 5 48 100 4 40 -13 Boston Scientific Vercise 

Directed 

2- (34%), 3- (33%), 4- 

(33%) 

10- (34%), 11-(33%), 

12- (33%) 

#25 73/m 11 akin.-rigid 6 61.1 83,33 -4 -28.6 45.5 Boston Scientific Vercise 

Directed 

5- (34%), 6-(33%), 7- 

(33%) 

13- (34%), 14- (33%), 

15- (33%) 

#26 NaN/m 17 akin.-rigid 6 66 -24,76 1 8,3 -300 Boston Scientific Vercise 

Directed 

2-(10%), 3-(10%), 4-

(10%), 5-(24%), 6-

(23%), 7-(23%) 

10-(10%), 11-(10%), 

12-(10%), 13-(24%), 

14-(23%),15-(23%) 

#27 75/f 10 akin.-rigid 6 26.5 0 -3 -60 31.3 Boston Scientific Vercise 

Directed 

2- (34%), 3- (33%), 4- 

(33%) 

10-(34%), 11-(33%), 

12-(33%) 

#28 71/f 7 equivalent 6 73.4 66,67 2 33.3 0 Boston Scientific Vercise 

Directed 

2- (10%), 3- (10%), 4- 

(10%), 5- (24%), 6-

(23%), 7- (23%) 

10- (10%), 11-(10%), 

12- (10%), 13- (24%), 

14- (23%), 15- (23%) 

#29 63/f 8 equivalent 6 49.4 50 4 25 -17.6 Boston Scientific Vercise 

Directed 

1- 10- (34%), 11-(33%), 

12- (33%) 

#30 58/f 8 equivalent 5 72.7 0 3 42.9 8 Boston Scientific Vercise 

octopolar 

5- R: 9-(19%), 10- (39%), 

11- (45%) 

#31 47/f 8 akin.-rigid 5 22 75 0 0 80 Boston Scientific Vercise 

octopolar 

3-/4- 11- (40%), 12- (30%), 

13- (30%) 

#32 63/f 13 equivalent 6 63.4 42,86 3 37.5 -54.5 Boston Scientific Vercise 

octopolar 

3-/4- P1: 11- (25%), 13- 

(75%); P2: 13-(50%), 

14-(50%) 

#33 61/m 8 trem.-dominant 5 39.2 0 2 15.4 54.3 Boston Scientific Vercise 

Directed 

5-/6-/7+ 13- (50%), 14- (50%), 

15+ (100%) 

#34 69/f 13 akin.-rigid 5 3.9 43,93 -1 -50 19.2 Boston Scientific Vercise 

Directed 

1- 9- 

#35 54/m 9 equivalent 5 41.2 33,33 -5 -38.5 -6,7 Boston Scientific Vercise 

Directed 

2-(10%), 3-(10%), 4-

(10%), 5-(24%), 6-

(23%), 7-(23%) 

10-(10%), 11-(10%), 

12-(10%), 13-(24%), 

14-(23%), 15-(23%) 

#36 61/m 13 akin.-rigid 5 50 100 -14 -200 17.4 Boston Scientific Vercise 

octopolar 

3- (40%), 4- (45%), 5- 

(15%) 

11- (20%), 10- (20%), 

12- (20%), 13- (20%), 

14- (20%) 

IPS – IDIOPATHIC PARKINSON’S SYNDROME; LEDD – LEVODOPA EQUIVALENT DAILY DOSIS; BDI-II – BECK’S DEPRESSION INVENTORY; UPDRS – UNIFIED PARKINSON’S DISEASE RATING SCALE; TREM.-DOMINANT – TREMORDOMINANT; AKIN.-RIGID – AKINETIC-RIGID; 
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CONNECTIVITY LINKS STN-DBS WITH DEPRESSION 

 
Supplement 1: Heterogeneous distribution an mean absolute BDI change before and under 
STN-DBS for the three cohorts.  
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