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Abstract 

Large-scale cancer cell line screens have identified thousands of protein-coding genes (PCGs) as 

biomarkers of anticancer drug response. However, systematic evaluation of long non-coding 

RNAs (lncRNAs) as pharmacogenomic biomarkers has so far proven challenging. Here, we 

study the contribution of lncRNAs as drug response predictors beyond spurious associations 

driven by correlations with proximal PCGs, tissue-lineage or established biomarkers. We show 

that, as a whole, the lncRNA transcriptome is equally potent as the PCG transcriptome at 

predicting response to hundreds of anticancer drugs. Analysis of individual lncRNAs transcripts 

associated with drug response reveals nearly half of the significant associations are in fact 

attributable to proximal cis-PCGs. However, adjusting for effects of cis-PCGs revealed 

significant lncRNAs that augment drug response predictions for most drugs, including those with 

well-established clinical biomarkers. In addition, we identify lncRNA-specific somatic 

alterations associated with drug response by adopting a statistical approach to determine 

lncRNAs carrying somatic mutations that undergo positive selection in cancer cells. Lastly, we 

experimentally demonstrate that two novel lncRNA, EGFR-AS1 and MIR205HG, are 

functionally relevant predictors of anti-EGFR drug response.  
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Background 

LncRNAs are transcripts greater than 200 nucleotides in length that do not contain protein-

coding sequences. They act as key regulators of gene expression (Mattick and Rinn 2015), 

controlling a diverse set of transcriptional and post-transcriptional processes, including 

chromatin remodeling, RNA splicing and transport, and protein synthesis (Wang and Chang 

2011; Kopp and Mendell 2018). Although, less than 1% of lncRNAs have been functionally 

characterized (Quek et al. 2015), comprehensive characterization of lncRNA across thousands of 

tumors suggest pervasive dysregulation of the lncRNA transcriptome at rates similar to protein-

coding genes (PCGs) (Iyer et al. 2015; Yan et al. 2015). In addition, some lncRNAs function as 

either oncogenes or tumor suppressor genes in human cancers (Huarte 2015; Schmitt and Chang 

2016).  

Several large-scale cancer cell line screens systematically investigated the response to hundreds 

of drugs to identify genomic and transcriptomic biomarkers of cancer drug response (Barretina et 

al. 2012; Garnett et al. 2012; Basu et al. 2013; Seashore-Ludlow et al. 2015; Iorio et al. 2016b). 

These studies expanded the repertoire of somatic alterations and gene expression biomarkers 

linked with drug response but focused exclusively on PCGs.  Considering less than 2% of the 

genome codes for PCGs (Djebali et al. 2012) with nearly 70% of the genome transcribed into 

non-coding RNAs (Derrien et al. 2012), it seems that the mechanisms of anticancer drug 

response cannot be explained by PCGs alone (Malek et al. 2014). Subsequently, a recent study 

reported lncRNA models are better predictors of drug response compared to PCGs for several 

drugs (Wang et al. 2018). However, lncRNAs are expressed with a high degree of tissue-

specificity and the expression of genic lncRNAs tends to be strongly correlated with the 

expression of PCGs on complementary strands (Derrien et al. 2012). Therefore, the identification 
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of novel lncRNA biomarkers associated with anticancer drug response requires careful 

consideration of the potential confounding influence of the tissue lineage along PCGs proximal 

to the lncRNAs.  

Here we report the results of a systematic investigation of the lncRNA transcriptome and genome 

of cancer cell lines and large-scale drug screens to establish a pharmacogenomic landscape of 

lncRNAs. We use regularized regression models to predict drug response using lncRNA 

transcriptome to demonstrate its potency compared to PCGs. To guide the discovery of 

individual lncRNA biomarkers, we delineate the effects of cis-PCGs on drug-lncRNA 

associations in regression models. In addition, we identify lncRNA-specific somatic mutations 

undergoing positive selection in cancer cells and determine their associations with drug response. 

We further investigate the contribution of lncRNAs in predicting the response for drugs with 

clinically actionable PCG biomarkers. Based on our analysis, we highlight the role of EGFR-AS1 

and MIR205HG as predictors of anti-EGFR therapeutic response independent from EGFR 

somatic mutations and experimental confirm their potential as erlotinib-response biomarkers in 

lung cancer cells.  
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Results  

Despite the tremendous success of cancer cell line screens in discovering novel PCG biomarkers 

of drug response, the contribution of lncRNAs in cancer pharmacogenomics is poorly 

established. To systematically determine the relevance of lncRNAs as anticancer drug response 

biomarkers, we propose the following framework to delineate their contribution as response 

predictors while accounting for the effects of proximal cis-PCGs (within ±500kb) and known 

biomarkers (Figures 1A-D, Supplementary Figures 1A, B). In addition, we determine the 

contribution of somatic alterations specific to lncRNAs in drug response using a statistical 

approach to determine positively selected mutations (Figure 1E). Finally, we experimentally 

validate the functional role of two novel lncRNA predictors of anti-EGFR drug response (Figure 

1F).   
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Figure 1: Framework for novel lncRNA biomarker discovery. A. Datasets used in the study, 

including gene expression (PCG, lncRNA) and drug response profiles corresponding to 

Genomics of Drug Sensitivity in Cancer (GDSC) and Cancer Therapeutics Response Portal 

(CTRP) cell lines, and non-coding somatic variants from Catalogue of Somatic Mutations in 

Cancer (COSMIC). “N” indicates the number of cell lines in each dataset, while the number of 

lncRNA, PCGs or drugs with the area under the curve (AUC) of drug response in each dataset 

are indicated inside the colored boxes. B. Linear model for predicting drug response (AUC) 

using the PCG or lncRNA transcriptome C. Determining significance drug:lncRNA associations 
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after adjusting for the expression levels of neighboring cis-PCGs within a ±500kb window. D. 

Identification of significant drug:lncRNA associations after adjusting for the mutation or copy 

number variation status of clinically-established PCG biomarkers of drug response. E. A two-

step statistical approach to determine lncRNAs with somatic mutations that undergo positive 

selection in cancer cell lines. F. Experimental validation of candidate lncRNAs that augment 

clinical biomarkers of drug response 

 

Determining the contribution of lncRNA transcriptome as a predictor of anticancer drug 

response  

An important finding reported by the cancer cell line screens was the ability to implement 

machine-learning algorithms that accurately predicted drug response using the baseline PCG 

transcriptome of cancer cells. Thus, we first compared the ability of lncRNA transcriptome to 

predict response to 265 and 545 compounds from the GDSC and CTRP screens respectively.  In 

both screens, the lncRNA transcriptome was equally potent at predicting response to individual 

drugs as PCGs (CTRP Spearman’s ρ = 0.93; GDSC Spearman’s ρ = 0.98) (Figure 2A), with no 

difference in median prediction accuracies across all drugs (CTRP P = 0.17; GDSC P = 0.32) 

(Supplementary Figure 1C). The drug GSK-J4, a potent and highly selective inhibitor of H3K27 

histone demethylases JMJD3 and UTX, was an exception that was predicted with better accuracy 

using lncRNA transcriptome. For the set of drugs that were common to both screens, consistent 

prediction accuracies were achieved using both lncRNA (P = 0.24) and PCG models (P = 0.07) 

(Supplementary Figures 1D and 1E).  
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Next, we modeled drug response as a function of individual lncRNA transcripts to determine 

significant biomarkers. Across the set of drug-lncRNA pairs common to both CTRP and GDSC 

screens,  68% of the significant (FWER < 0.05) CTRP drug-lncRNA associations were also 

significant in GDSC at the nominal threshold (P < 0.05), while about 28% were significant at the 

FWER threshold (Figure 2B).  Both antisense and intergenic transcripts were represented in the 

cohort of top significant overlapping drug pairs; for example, vorinostat resistance was 

associated with the antisense lncRNA AC106786.2 or ruxolitinib sensitivity with the intergenic 

lncRNA LINC02285 (Figure 2B). The biotype of lncRNAs were nearly equally distributed 

between genic (including antisense) and intergenic RNAs, while antisense transcripts were over-

represented in the cohort of significant (family-wise error rate [FWER] < 0.05) drug-lncRNA 

pairs as compared to intergenic transcripts (Tukey’s P < 10-11) (Figure 2C, Supplementary Table 

1).  

Next, we evaluated the pharmacogenomic relevance of the well-characterized lncRNAs have 

been implicated as oncogenes or tumors suppressors in human cancers (Gutschner and 

Diederichs 2014) (Figure 2D, Supplementary Figure 1C). For example, the expression of 

putative tumor suppressor lncRNA MEG3 was associated with sensitivity to carboplatin and 5-

fluorouracil, while the putative oncogenes BCAR4 and HOTAIR were associated with resistance 

to carboplatin and 5-fluorouracil, respectively (Supplementary Table 3). These observations are 

in line with previous in vitro studies that show elevated MEG3 expression to be associated with 

sensitivity (Cheng et al. 2015; Li et al. 2017a) while high BCAR4 (Godinho et al. 2010) and 

HOTAIR (Kalinichenko et al. 2013) expression were linked with resistance to cytotoxic 

anticancer agents. Within in the cohort of significant cancer-associated lncRNAs, we observed 

the expression of GAS5 and ZEB2AS1 were associated with the sensitivity of more than 50 drugs 
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(Figure 2D), suggesting these lncRNAs could be candidates for further evaluation as multi-drug 

response predictors. These results suggest the potential of known cancer-associated lncRNAs to 

serve as determinants of anticancer drug response.  
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Figure 2: LncRNAs as predictors and biomarkers of anticancer drug response. A. 

Scatterplot of 545 CTRP (C) or 265 GDSC (D) prediction accuracies using PCG transcriptome 

(X-axis) or imputed lncRNA transcriptome (Y-axis) as predictors. Each point on the scatter plot 

shows the accuracy of predicting response to a drug by using models generated using PCG or 

lncRNA transcriptome. The bolded points are drugs common to both GDSC and CTRP. Grey 

lines indicate prediction accuracies with confidence intervals from a null model. B. Volcano 

plots of drug-lncRNA associations in the cohort of drug-lncRNA pairs common to CTRP and 

GDSC screens displaying effect sizes (X-axis) and P-values (Y-axis) of the regression analyses. 

The light-blue enlarged circles indicate significant (FWER adjusted) CTRP drug-lncRNA pairs 

also significant in GDSC at the nominal threshold, while dark-blue enlarged circles are 

significant in GDSC at the FWER threshold. C. Distribution of lncRNA biotypes across all cell 

lines and within the subset of significant drug-lncRNA pairs (FWER adjusted) identified from 

linear regression analysis of the CTRP screen adjusted for tissue-type. D. Volcano plot 

displaying effect sizes (X-axis) and P-values (Y-axis) of oncogenic and tumor suppressor 

lncRNAs associated with drug response after adjusting for cis-PCGs. The bar plots on the side 

indicate the frequency of drugs associated with the lncRNAs at the nominal threshold and 

FWER-adjusted threshold. 
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Supplementary Figure 1: Drug response prediction using lncRNA and PCG 

transcriptomes. A. Boxplot showing the accuracy of imputing lncRNA transcriptome of the 

GDSC cell lines using the Genentech Cell Screening Iniative (gCSI) RNAseq training dataset. 

Imputation accuracy is represented as Pearson’s correlation coefficient between measured and 

imputed lncRNA expression levels in the overlapping cell lines. B. Density plot for the 

significance of the correlation between gCSI measured and imputed lncRNA expression levels in 
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the GDSC dataset. Dashed grey line indicates the threshold of significance (FDR < 0.05). C. 

Boxplots showing the comparison of AUC prediction accuracies between PCG and lncRNA 

models for the GDSC and CTRP datasets. D. Comparison of AUC prediction accuracies of drugs 

that overlap CTRP and GDSC dataset using measured or imputed lncRNA expression 

respectively or E. PCG expression.  F. Comparison of GDSC AUC prediction accuracies 

between imputed lncRNA models from GDSC cell lines and measured lncRNA models from the 

overlapping set of gCSI cell lines. G. Visualization of the significance of association (top 

panels), direction and magnitude of effects (bottom panels) between CTRP and GDSC drugs 

with known oncogenic or tumor suppressor lncRNAs. The heatmap shows lncRNAs along Y-

axis and different drugs along X-axis. Colors on the top panel are scaled from white to red 

according to increasing magnitude of –log10 of the p-value, while bottom panel colors scaled 

from green to blue to indicate whether the lncRNA is correlated with resistance or sensitivity to a 

drug.  

 

Characterizing the impact of proximal cis-PCGs on drug-lncRNA associations 

The strong correlation between the expression levels of antisense lncRNAs and overlapping 

PCGs could potentially result in spurious associations with drug response. To deconvolute the 

contribution of lncRNAs from the effects of proximal PCGs, we next analyzed drug response as 

a function of lncRNA expression while adjusting for the effects of proximal cis-PCGs (any PCG 

located in the -500Kb region upstream of transcription start site to +500Kb downstream of 

transcript end). Nearly 50% of the remaining significant drug-lncRNA associations were affected 

by the expression levels of the cis-PCGs (Figure 3A). As expected, adjusting for cis-PCGs 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 10, 2019. ; https://doi.org/10.1101/666156doi: bioRxiv preprint 

https://doi.org/10.1101/666156


14 
 

mostly affected the proportion of significant antisense lncRNAs over intergenic transcripts 

(Figure 3A).  

Given the obvious influence of proximal PCGs on drug-lncRNA associations and to better 

understand the genome-wide distribution of lncRNA biomarkers relative to PCGs, we mapped 

the significant lncRNA and PCG biomarker for all drugs analyzed in the CTRP screen 

(Supplementary Figures 2A and 2B). For individual drug, we also mapped the top predictive 

lncRNA or PCG biomarkers based on their genomic loci (Figure 3B). Interestingly, we observed 

that for most drugs, the top lncRNAs and PCG biomarkers were located on distinct loci. In fact, 

the top lncRNA and PCG loci overlapped for only 5% of the drugs analyzed. As a case in point, 

we highlight the set of drugs with established clinically actionable biomarkers (Relling and 

Evans 2015). For example, the top PCG markers for gefitinib and crizotinib response were 

located on chromosomes 1 while the lncRNAs markers were located on 14 and 8, respectively. 

Based on these observations, we propose that despite the obvious impact of proximal cis-PCGs, 

it is possible to discover strong drug-lncRNA associations by carefully accounting for the effects 

of cis-PCGs.  

 

As additional examples, we zoom-in to highlight the top lncRNA associated with veliparib and 

idelalisib response along with the proximal cis-PCGs. The intergenic lncRNA AC023669.1 was 

associated with veliparib response (P = 3.9 × 10-17) after adjusting for the neighboring PCGs 

IGFBP1 (P = 0.7) and IGFBP3 (P = 0.08) (Figure 3C). The antisense lncRNA AL161781.2 was 

associated with idelalisib sensitivity (P = 2.9 × 10-20) while the expression levels of proximal cis-

PCGs showed considerably weaker association with the drug (e.g. PAX5 P = 0.002) (Figure 3C).  

 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 10, 2019. ; https://doi.org/10.1101/666156doi: bioRxiv preprint 

https://doi.org/10.1101/666156


15 
 

 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 10, 2019. ; https://doi.org/10.1101/666156doi: bioRxiv preprint 

https://doi.org/10.1101/666156


16 
 

Figure 3: Relevance of cis-PCG adjusted lncRNA biomarkers A. Distribution of significant 

lncRNAs associated with each CTRP drug (X-axis). The orange bars indicate a number of 

significant lncRNAs for a drug while the magenta bars indicate the number of lncRNAs that are 

statistically significant after adjusting for the expression levels of every cis-PCG (within 1 Mb) 

of the lncRNA transcript. Biotype distribution of the lncRNAs in the cohort of significant drug-

lncRNA pairs adjusted for cis-PCGs. B. Ideogram of the human chromosomes displaying the top 

lncRNA and PCG associated with each CTRP drug. P-values of the drug-gene associations are 

indicated as red bars for lncRNAs above the chromosomes and as blue bars for PCGs below the 

chromosomes at their respective locus. The yellow highlighted boxes indicate the cytobands with 

overlapping top lncRNA and PCG loci associated with a drug. Bolded letters (red = lncRNA, 

blue = PCG) indicate signals associated with the set of drugs with clinically actionable 

biomarkers. C. Examples of top lncRNA associated with veliparib and idelalisib response, with 

black bars indicating adjusted P-values for lncRNA and cis-PCGs.  
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Supplementary Figure 2: Genomic landscape of drug-lncRNA associations A. Genomic 

landscape of PCG and lncRNAs associated with CTRP drug response. Each bar indicates the 

significance of the association between a drug and either PCG (blue bar) or lncRNA (red bar) 

determined using regression analysis adjusting for tissue type. B. Histogram displaying the 

frequency of significant drugs associated with PCG (blue) and lncRNA (red) loci, grouped by 

cytobands.   

 

LncRNAs augment drug response predictions from known PCGs biomarkers 

Currently, a small number of PCG mutations and copy number variations (CNVs) are being used 

in the clinic as biomarkers to guide treatment decisions (Relling and Evans 2015). We evaluated 

if the top lncRNA biomarkers for such drugs provide any additional benefit over the clinical 

biomarkers. We modeled drug response as a function of lncRNA expression and known PCG 

biomarkers and compare the individual and combined contribution of each predictor at 

explaining the variability in drug response (Figure 4A). In the case of BCR-ABL targeting 

tyrosine kinase inhibitors (TKIs), like imatinib and nilotinib, the BCR-ABL1 fusion event was a 

stronger predictor compared to the top lncRNA. However, the response to dasatinib, a TKI with 

several other targets besides BCR-ABL, was better explained by the lncRNA. Similarly, BRAF 

mutations were strong predictors of response to dabrafenib and trametinib; and ERBB2 

mutations/CNVs for lapatinib sensitivity. In each of these cases, the addition of the lncRNA 

biomarker improved the proportion of variance explained by the model compared to the PCG 

biomarker alone. Other mutations and CNVs in genes like KIT, PDGFR, KRAS, ALK, and VHL 

actually explained a very small proportion of the variance of the respective drugs and were 

supplemented by the addition of lncRNA biomarkers. Interestingly, EGFR mutations and CNVs, 
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one of the most prominent examples of cancer pharmacogenomic biomarkers for the EGFR 

targeting TKIs, were also augmented by the inclusion of expression of the top lncRNA 

biomarker. These results provide strong evidence to support the utility of lncRNA expression as 

biomarkers for anticancer drugs beyond PCGs.  

 

We further evaluated the top lncRNA predictors of EGFR-targeting TKI response, as the 

inclusion of these lncRNAs in the model resulted in substantial improvement in the proportion of 

variability in drug response explained by EGFR mutations or CNVs alone. Somatic mutations in 

the EGFR tyrosine kinase domain, including in-frame deletions in exon 19, single nucleotide 

variations in exon 21 and amplification improve sensitivity, while an exon 20 (T790M) 

secondary mutation causes resistance to the anti-EGFR drugs gefitinib and erlotinib (Paez 2004; 

Pao et al. 2004; Liu et al. 2005; Moroni et al. 2005). However, these well-defined biomarkers 

can only explain a small proportion of the variance in drug response in (Figure 4A). This 

observation is consistent with data from non-small cell lung cancer (NSCLC) patients, where the 

response to anti-EGFR therapy is determined by EGFR activating mutations and CNVs in about 

10-30% of patients (Gazdar 2009). However, about 1 in 4 patients that respond to gefitinib or 

erlotinib do not carry these activating alterations (Sharma et al. 2007). We found two lncRNAs, 

the EGFR antisense RNA 1 (EGFR-AS1; ENSG00000224057) and the MIR205 host gene 

(MIR205HG; ENSG00000230937), as the top two candidates biomarkers of anti-EGFR drug 

response independent of known PCG biomarkers (Figure 4B). The addition of EGFR-AS1 and 

MIR205HG expression substantially improved the proportion of variance explained by the drug 

response models to 12-18% for erlotinib and 25-30% for gefitinib when combined with the 

EGFR functional events across all cell lines (Supplementary Figure 3A). Without considering 
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EGFR functional events, both EGFR-AS1 and MIR205HG expression levels were higher in the 

cells sensitive to gefitinib or erlotinib (Figure 4C, Supplementary Figure 3B). Moreover, the 

drug-lncRNA associations for EGFR-AS1 (erlotinib P = 1.37×10-10; gefitinib P = 2.2×10-16) and 

MIR205HG (erlotinib P = 2.04×10-4; gefitinib P = 2.2×10-16) were significant after adjusting for 

EGFR mutations and CNVs (Supplementary Figure 3C).  

 

Building on these results, we validated the correlation between EGFR-AS1 and MIR205HG 

expression with imputed erlotinib response in lung adenocarcinoma (LUAD) patients from the 

cancer genome atlas lung adenocarcinoma (TCGA) project (Geeleher et al. 2017). The analysis 

of imputed drug response showed higher expression of both EGFR-AS1 and MIR205HG were 

associated with sensitivity to erlotinib (Supplementary Figures 4A – D). The significance of 

correlation between the lncRNAs and erlotinib response was within the same order of magnitude 

as EGFR mutation status (Supplementary Figures 4E, F).  

 

We next evaluated the impact of the candidate lncRNA biomarkers for on patient survival 

outcomes, in comparison with EGFR mutation status. As expected in the TCGA LUAD cohort, 

the presence of EGFR secondary resistance mutation (T790M) or high EGFR expression were 

both associated with worse overall prognosis (Figure 4D). In contrast, the elevated expression of 

MIR205HG and EGFR-AS1 were associated with reduced risk of lung cancer death, a trend 

similar to the presence of EGFR activating mutations (Figure 4D). These results are consistent in 

the directionality suggested by our analysis, that is, the expression of both EGFR-AS1 and 

MIR205HG are indicative of improved sensitivity and better prognosis. Thus, further inquiry into 

the prognostic value of MIR205HG and EGFR-AS1 for anti-EGFR therapeutics will be crucial.  
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Figure 4: LncRNAs augment clinical drug response biomarkers. A. Barplots showing the 

proportion of variance in drug response (R2 of the regression model adjusted for tissue type) 

explained by the known PCG biomarker (blue bar), top lncRNA biomarker (red bar) or model 

combining the two (violet bar). The PCG biomarkers are listed above each sub-panel. B. 

Volcano plots showing lncRNAs associated with gefitinib or erlotinib response in the GDSC 

dataset adjusting for mutations and copy number variations in the EGFR gene. Each point on the 

plot represents a lncRNA-drug pair, with red points indicating lncRNAs common to both 

erlotinib and gefitinib above the nominal significance threshold of FDR < 0.05 (dashed grey 

line). C. Distribution of EGFR-AS1 (top panels) and MIR205HG (bottom panels) expression in 
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gefitinib or erlotinib resistant (AUC > 0.9) or sensitive (AUC < 0.9) cell lines. D. Hazard ratios 

obtained from Cox-proportional hazard models for overall survival of TCGA LUAD patients 

based on EGFR mutation status (top panel) or elevated expression levels of the EGFR, EGFR-

AS1 or MIR205HG genes. 

 

 

Supplementary Figure 3: lncRNAs associated with anti-EGFR drugs. A. Volcano plot 

showing lncRNAs associated with pelitinib response in the GDSC dataset adjusting for 

mutations and copy number variations in the EGFR gene. Each point on the plot represents a 

lncRNA-drug pair, with blue points indicating lncRNAs common to pelitinib and erlotinib or 

gefitinib above the nominal significance threshold of FDR < 0.05 (dashed grey line). B. Scatter 

plots showing correlations between measured expression levels of EGFR-AS1 or MIR205HG 

with erlotinib or gefitinib response (AUC) in the CTRP dataset. C. Results of the ANOVA 

analysis for erlotinib and gefitinib response (AUC) using imputed expression levels of either 
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EGFR-AS1 or MIR205HG while adjusting for EGFR functional events, including mutations and 

copy number variations. 

 

 

Supplementary Figure 4. Validation of erlotinib response prediction in TCGA A-B. Scatter 

plots comparing expression levels of EGFR-AS1 (A) or MIR205HG (B) with imputed erlotinib 

response in the TCGA LUAD cohort, with higher imputed response scores indicating poor 

response (similar to high AUC) and lower scores indicating a better response. The dashed grey 

line indicates a linear fit. C-E. Boxplots comparing imputed drug response in the TCGA LUAD 

patients grouped by EGFR-AS1 expression clusters (C), MIR205HG expression clusters (D) or 

EGFR mutation status (E). The clusters for the two lncRNAs were obtained using k-means 

clustering, with the centers of the clusters indicated in the bar plots below. F. ANOVA analysis 

of EGFR mutation status and lncRNA clusters showing independent associations with imputed 

erlotinib response 

 

Determining lncRNA-specific genomic alterations associated with drug response  
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The majority of the mutation profiles utilized in existing cancer pharmacogenomic studies were 

generated using exome sequencing. As a result, the impact of somatic variants that specifically 

affect the lncRNA genome has largely remained unexplored. The study of lncRNA variants is 

complicated by the lack of a clear definition of ‘passenger’ and ‘driver’ non-coding mutations. 

Two recent efforts attempted to identify driver lncRNA mutations that were positively selected 

in human cancers (Juul et al. 2017; Lanzós et al. 2017). In some form, each method identified 

non-coding loci or non-coding genes that were mutated at a frequency significantly greater than 

the background rate across all non-coding loci or across samples, respectively. We adopted a 

similar framework to define positively selected lncRNA-specific somatic variants using whole 

genome sequencing data from about 1000 catalog of somatic mutations in cancer (COSMIC) cell 

lines (Iorio et al. 2016b). We excluded all genic non-coding variants (intron, promoter or 

untranslated regions of PCGs) and identified lncRNA genes with mutation frequencies greater 

than the length-adjusted background non-coding mutation frequency.  

 

We analyzed drug response as a function of the mutation status of each candidate lncRNA 

(Figure 5A, Supplementary Figures 5A, B). In contrast with lncRNA expression, only a small set 

of lncRNA mutations undergoing positive selection were associated with drug response (Inset 

Figure 5A, Supplementary Figures 5C, 5D). In the case of drugs with actionable PCG 

biomarkers, we found drugs with a similar mechanism of actions tend to share the top lncRNA 

mutation predictors (Figure 5A). For example, AC007405.1 (ENSG00000234350) was the top 

lncRNA associated with sensitivity to both erlotinib and gefitinib (Figure 5B), suggesting a 

possible functional link between these lncRNA loci and the mechanism of action of the drugs.  
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We next determined associations for the lncRNAs with somatic mutation frequencies above the 

statistical threshold for positive selection (Figure 5A inset). As an example, the intergenic 

lncRNA BX284668.2 (ENSG00000228549) (P = 3.8×10-18) was associated with sensitivity to the 

PI3K inhibitor ZSTK-474 (P = 1×10-4) (Figure 5C). Similarly, mutations in the glucuronidase 

beta pseudogene 2 (ENSG00000241549) (P = 1.8×10-10) were linked with resistance to the CDK 

inhibitor indisulam (P = 5×10-4)(Figure 5D). Additionally, mutations in the programmed cell 

death 6 interacting protein pseudogene 2 (ENSG00000261377) were determined as positively 

selected in the COSMIC cell lines (P = 1.1×10-12) and predicted sensitivity to the MDM2 

antagonist JNJ-26854165 (P = 0.001) (Figure 5E). While the biological function of these 

lncRNAs is virtually unknown, these examples focusing on lncRNAs undergoing positive 

selection in cancer cells hint at the existence of PCG-independent associations between somatic 

alterations in the lncRNA genome and drug sensitivity. At the very least, it is clear that further 

studies are warranted to characterize the function of somatic lncRNAs variants and study their 

associations with anticancer drug response.   
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Figure 5: lncRNA-specific somatic variations and association with drug response. A. 

Volcano plot of drug-lncRNA associations based on somatic mutations in lncRNA genes, with 

the size of points scaled according to the frequency of mutations across all cell lines. Nominal P-

value thresholds are indicated by the horizontal dashed grey lines. The inset volcano plot shows 

lncRNAs satisfying the statistical threshold for positive selection in the COSMIC cell lines. 

Significant associations above the nominal threshold for drugs with clinically actionable PCG 

biomarkers are indicated with blue markers. B. The left panel shows chromosomal locus of the 

candidate lncRNA and frequency of non-coding variants identified in the COSMIC cancer cell 

lines. The exon structure of the proximal PCGs (green) and lncRNAs (blue) are displayed below 

the variants. The right panel shows the P-value distribution of the lncRNAs associated with 
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erlotinib and gefitinib sensitivity. C-E. Examples of lncRNAs with mutation frequencies above 

the statistical threshold for positive selection in the COSMIC cell lines, with the left panels 

showing frequency of non-coding variants and exon structure of proximal genes, and right panels 

showing the comparison of drug AUC in wild-type or mutant cell lines.  
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Supplementary Figure 5: Significant drug-lncRNA somatic mutation associations A-B. 

Heatmaps significance of the associations (-log10 P-value) between GDSC (A) and CTRP (B) 

drugs with lncRNAs with mutations above the statistical threshold for positive selection in the 

COSMIC cell lines. Darker shades of red indicate stronger associations. C-D. Boxplots 

comparing drug AUC in GDSC (C) and CTRP (D) screens based on the mutation status of the 

lncRNA.  

 

Experimental validation of the influence of EGFR-AS1 and MIR205HG expression on 

erlotinib response in lung cancer cells 

We determined the correlation between EGFR-AS1 and MIR205HG expression with erlotinib 

response in a cohort of 16 lung cancer cell lines (Supplementary Figure 6A). As expected, the 

cell lines with EGFR activating mutations (exon 19 deletions) including HCC 4006, HCC 2935 

and HCC 827, were most responsive to erlotinib treatment (Figure 6A). Our experiments yielded 

similar results as observed in the cancer cell line screens, with higher expression of both lncRNA 

transcripts associated with increased sensitivity to erlotinib (EGFR-AS1 PCC = -0.34, 

MIR205HG PCC = -0.26) (Figure 6A).  

 

Next, we measured the expression of the two lncRNAs in two erlotinib-resistant lines generated 

from erlotinib-sensitive parental lines (HCC 4006 and HCC 827) carrying EGFR-activating 

mutations (Figure 6B). The expression levels of EGFR-AS1 were about 50-60% lower in the 

resistant lines as compared to the parental HCC 4006 and HCC 827 cell lines (both P < 0.01). 

Similarly, MIR205HG expression levels were 60-90% lower in the resistant lines (HCC 4006 P < 
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0.01; HCC 827 P < 0.001). Based on these results, we hypothesized that these two lncRNAs 

have a functional influence on erlotinib response and not merely serve as predictive biomarkers.  

To confirm their functional impact, we performed anti-sense oligonucleotide (ASO) mediated 

knockdown (k.d.) of EGFR-AS1 and MIR205HG in two cell lines with different levels of 

erlotinib sensitivity – HCC 827 (strong response) and NCI H2228 (weak response) 

(Supplementary Figure 6B and 6C). The k.d. of both transcripts resulted in a reduction in the 

growth of the two cell lines over time, with significantly slower growth observed at 48 and 72 

hours (Figure 6C). However, in the presence of erlotinib, the rates of proliferation were elevated 

in both the EGFR-AS1 and MIR205HG k.d. cell lines as compared to control (Figure 6D). These 

results corroborate the outcome of our analyses and hint at a possible functional impact of the 

two lncRNAs on erlotinib response.  

 

To further investigate its functional role, we investigated the relative expression levels of two 

EGFR isoforms that were recently described as regulatory targets of EGFR-AS1 (Tan et al. 

2017). The relative ratio of these isoforms could affect the ligand-dependent activation of the 

EGFR signaling pathway (Reiter et al. 2001). The product of EGFR transcript 1 

(ENST00000275493.6 or NM_005228.5) translates into the full-length Isoform A of the protein 

while transcript variant 4 (ENST00000344576.6 or NM_201284.1) translates into the truncated 

Isoform D of the protein. Only the extracellular domain is present in the shorter isoform and 

lacks the tyrosine kinase domain. Thus, abundant expression Isoform D may act as an antagonist 

of ligand-dependent EGFR action.  
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In the EGFR-AS1 and MIR205HG k.d. cell lines, the expression levels of the consensus EGFR 

sequence were not significantly altered (Supplementary Figure 6D). While the Isoform A levels 

were lower, the reduction was not statistically significant in either lncRNA k.d. in each cell line 

(Supplementary Figure 6E). The expression levels of Isoform D were elevated in both EGFR-

AS1 and MIR205HG k.d. cell lines, but were significant only in HCC 827 cells (Supplementary 

Figure 6F). However, upon considering the ratios of Isoform A to Isoform D, we found a 

significant reduction in the relative abundance of the two isoforms in both NCI H2228 (EGFR-

AS1 k.d. P = 1×10-4; MIR205HG k.d. P = 1.6×10-3) and HCC 827 (EGFR-AS1 k.d. P = 1.6×10-6; 

MIR205HG k.d. P = 3.8×10-7) cells (Figure 6E). These results indicate a reduction in ligand-

dependent growth of the cells and, consequently, reduced impact of erlotinib on the cell lines 

with lncRNA k.d. (Figure 6F). It is interesting to note that the MIR205HG k.d. also resulted in a 

similar phenotypic impact as EGFR-AS1 k.d. along with reduced Isoform A:D ratio. Moreover, 

we observed a significant reduction in MIR205HG expression in the EGFR-AS1 k.d. cells, 

hinting at a possible mediatory role of MIR205HG that calls for further investigation.  
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Figure 6: In vitro validation of EGFR-AS1 and MIR205HG as determinants of erlotinib 

response. A. Scatter plots showing expression levels of EGFR-AS1 and MIR205HG along with 

erlotinib response (AUC) for 16 lung cancer cell lines labeled on the plot. Cell lines carrying 

EGFR-activating mutations (L858R, exon 19 del) are encircled in blue, while lines with 

resistance mutation (T790M) are encircled in red. The dashed grey line indicates a linear fit. B. 

Comparison of relative EGFR-AS1 and MIR205HG expression levels in two EGFR-responsive 

cell lines – HCC 4006 and HCC 827. Blue bars indicate expression levels in parental lines, while 

red bars indicate expression levels in derived, erlotinib-resistant, lines. C. Barplots indicating the 

growth of NCI H2228 and HCC 827 cells upon ASO-mediated k.d. of EGFR-AS1 or MIR205HG 

over a period of 72 hours post k.d. D. Effect of ASO-mediated EGFR-AS1 or MIR205HG k.d. on 

erlotinib response determined as proliferation rate relative to untreated NCI H2228 and HCC 827 
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cells measured over a period of 72 hours. E. The ratio of relative expression levels of EGFR 

Isoform A: Isoform D in NCI H2228 and HCC 827 cells with ASO-mediated EGFR-AS1 or 

MIR205HG k.d. F. Schematic of the proposed lncRNA-driven pathway that determines response 

to erlotinib in the presence (left panel) or absence (right panel) of EGFR-AS1 and MIR205HG 

mediated regulation of EGFR isoforms.  
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Supplementary Figure 6: Dose-response and qPCR experiments in lung cancer cell lines A. 

Dose-response curves of erlotinib treatment in 16 lung cancer cell lines. B-F. Expression levels 

of MIR205HG (B), EGFR-AS1 (C), EGFR (D), EGFR Isoform A (E), EGFR Isoform D (F) 

determined using qRT-PCR in NCI H2228 and HCC 827 cell lines with ASO-mediated k.d. of 

EGFR-AS1 and MIR205HG. The mean and t-test p-values were obtained from six independent 

biological replicates 
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Discussion 

Although representing over 80% of the human transcriptome, the pharmacogenomic relevance of 

lncRNAs in drug response is largely unknown. This gap in knowledge motivated us to 

comprehensively study the lncRNA transcriptome and genome to determine their relevance in 

cancer pharmacogenomics. Recent large-scale drug screening efforts (Barretina et al., 2012; 

Basu et al., 2013; Garnett et al., 2012; Iorio et al., 2016b; Seashore-Ludlow et al., 2015) 

generated invaluable response data for hundreds of drugs measured across over a thousand cell 

lines, along with exome sequencing and PCG expression data. We leveraged these datasets to 

perform an in-depth analysis of the relationship among the lncRNA transcriptome, genome and 

response to drugs. Previously, expression and somatic alterations of PCGs were successfully 

utilized to predict drug response using various machine-learning approaches (Costello et al., 

2014). From the early drug screens and subsequent prediction efforts, it is clear that the tissue 

lineage of cancer cell lines has a strong confounding effect on the drug response prediction 

models (Barretina et al. 2012). Considering the tissue-specific expression patterns of lncRNAs 

(Jiang et al. 2016), we emphasized the inclusion of tissue type of the cell lines as a covariate in 

all of our analyses. Moreover, we addressed the unique challenge of identifying drug response-

related lncRNAs that are independent of the effects of proximal cis-PCGs and well-established 

PCG biomarkers. Together with confounding effects of tissue-type, adjusting for effects of cis-

PCGs or known biomarkers is of critical importance in determining potential lncRNA 

biomarkers. These factors were not taken into account in previous attempts at predicting drug 

response using lncRNAs (Wang et al. 2018).  
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In this study, we first analyzed over 3.3 million drug-lncRNA expression associations in the 

CTRP screen and about 2.3 million associations in the GDSC screen. We determined a large 

proportion of significant drug-lncRNA associations overlapped in the two independent screens. 

Furthermore, we hypothesized and validated that the lncRNA transcriptome could effectively 

predict drug response with equal efficacy as PCGs in both screens.   

The physical proximity of a portion of lncRNAs to PCGs and redundant expression patterns raise 

concerns whether lncRNAs actually provide any additional information. We addressed this 

important concern by carefully accounting for the possible effects of neighboring PCGs. The 

choice of ±500Kb boundary that defined cis-PCGs in our study was based on the definition of 

cis-eQTLs from the genotype tissue expression project (Lonsdale et al. 2013). Based on this 

conditional analysis, we determined about half of the initially observed drug-lncRNA 

associations were redundant with cis-PCG expression. However, for most drugs, the genomic 

loci for the top lncRNA biomarker do not overlap with top the PCGs, including for the drugs 

with established clinical biomarkers.  

 

Among the known oncogenic and tumor suppressor lncRNAs, we found intriguing associations 

between GAS5 and ZEB2AS1 expression with >50 drugs in both GDSC and CTRP. The GAS5 

(growth arrest-specific 5) lncRNA acts as a tumor suppressor with various proposed mechanisms 

of action, including, cell cycle control (Liu et al. 2015; Mazar et al. 2016; Luo et al. 2017), 

proliferation (Kino et al. 2010; Li et al. 2017b) and regulation of epithelial to mesenchymal 

transition (EMT) program (Zhuang et al. 2015). Considering the multi-faceted mechanisms by 

which GAS5 functions as a tumor suppressor, it is plausible that its expression may be predictive 

of response to multiple drugs. In contrast, from what we know so far about ZEB2AS1, it appears 
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this transcript upregulates ZEB2 expression to induce EMT program in cancer cells (Beltran et 

al. 2008; Zhuang et al. 2015). One possible mechanism could be the expression of this transcript 

is indicative of aggressive cancer cells that generally show a better response to drugs in vitro. 

Nevertheless, both lncRNAs are candidates for experimental validation as multi-drug response 

prediction biomarkers.  

In addition to the lncRNA transcriptome, we study the associations between somatic alterations 

in the lncRNA region and drug response. Currently, there are no gold standards to distinguish 

driver vs. passenger non-coding somatic variants. Unlike PCGs, non-coding variants cannot be 

classified as synonymous or non-synonymous, which complicates identification of relevant 

variants. We attempted to identify lncRNA variants that did not overlap with any PCGs and were 

positively selected in the cell lines based on the total background non-coding mutation frequency 

and lncRNA mutation frequency across all cell lines. While preliminary, the emergence of 

significant somatic lncRNA associations with drug-response warrants future studies focusing on 

elucidating the biological role of such variants.  

In clinical practice, a handful of somatic variants are routinely profiled to guide treatment 

decisions in cancer patients (Relling and Evans 2015). Among these, somatic mutations that 

activate EGFR activity and their impact on anti-EGFR therapeutics like erlotinib and gefitinib 

are some of the first and extensively studied clinically actionable biomarkers (Jimeno and 

Hidalgo 2006). An important consideration in identifying novel lncRNA biomarkers is 

accounting for such well-known PCG somatic alterations to prevent redundancy. In this 

direction, we identified and characterized the impact of two lncRNAs, EGFR-AS1, and 

MIR205HG, which are strong predictors of response to erlotinib and gefitinib independent of 

EGFR somatic mutation status. A recent study proposed the theory that EGFR-AS1 stabilizes the 
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EGFR signaling pathway by influencing the transcript ratio of the full-length EGFR Isoform A to 

the truncated Isoform D (Tan et al. 2017). Our results lend support to this idea, demonstrating the 

effect of EGFR-AS1 k.d. on the ratio of the two isoforms. Moreover, we reported a shift in both 

the growth pattern and erlotinib sensitivity of cell lines upon EGFR-AS1 k.d. confirming the 

functional impact of this lncRNA on addiction to ligand-dependent EGFR signaling. The 

MIR205HG lncRNA undergoes post-transcriptional processing leading to the synthesis of 

miRNA-205. Several studies have focused on the functions of this miRNA, however, its 

mechanism of action remains conflicting, with both oncogenic and tumor suppressor activities 

proposed (Greene et al., 2014; Niu et al., 2015). Similar to EGFR-AS1, the k.d. of MIR205HG 

also resulted in a change in EGFR isoform ratio and phenotypic outcome. Additionally, 

MIR205HG expression levels were affected by EGFR-AS1 k.d., suggesting this gene could be an 

intermediator in EGFR isoform regulation. While miRNA-205 does not bind and regulate EGFR 

expression directly, it could modulate secondary transcriptional repressors that regulate the 

expression of the transcripts (De Cola et al. 2015) (Figure 6F). Besides an intriguing functional 

link with EGFR signaling, the expression of these two lncRNAs could predict response in 

patients who do not carry known activating EGFR mutations and thus are strong candidates for 

clinical evaluation.  

 

Conclusions 

We are still in the early stages of understanding the biology of lncRNAs, though sufficient 

evidence points towards the direction of altered lncRNA’s involvement in human cancers. By 

comprehensively analyzing the associations between lncRNA transcriptome, genome, and drug 

response, we have shown that lncRNAs are indeed biomarkers of drug response. Furthermore, 
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we have provided compelling evidence that these associations are not just dependent on the 

correlative structure with PCGs. Future studies focusing on the mechanism of lncRNA action 

would be invaluable in improving our understanding of cancer progression and drug response.         
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Materials and Methods 

Gene expression datasets and lncRNA imputation 

The original GDSC, CCLE and CTRP studies utilized microarrays to profile the transcriptome of 

cancer cell lines and identify associations between expression and drug response. In order to 

facilitate the analysis of lncRNA transcriptome with drug response, we developed a lncRNA 

expression imputation framework (LEXI) that enables accurate imputation of lncRNAs in 

uncharacterized samples only using PCG profiles (Nath et al. 2019). Briefly, our approach 

harnesses redundancy in PCG and lncRNA expression profiles to generate imputation models 

using machine learning. These models can then be implemented to generate lncRNA 

transcriptome of samples with only PCG data. We downloaded GDSC microarray gene 

expression data from https://www.cancerrxgene.org/, also available from ArrayExpress (E-

MTAB-3610), normalized using the RMA method. The PCG profiles from this dataset served as 

the training set for LEXI. We also obtained gCSI RNAseq gene expression data (RPKM) for 675 

cell lines available at http://research-pub.gene.com/KlijnEtAl2014/ and ArrayExpress (E-

MTAB-2706). We annotate genes from the gCSI RNAseq dataset based on GENCODE (release 

28) biotypes to classify genes as either PCGs or lncRNAs. PCGs were defined as genes with 

biotype “protein coding” and lncRNAs were defined as genes with transcripts products of length 

>200nt and including the biotypes “3prime_overlapping_ncrna”, “antisense_RNA”, 

“bidirectional_promoter_lncRNA”, “lincRNA”, “processed_transcript”, “retained_intron”, 

“sense_intronic”, or “sense_overlapping”. The PCG and lncRNA expression profiles from gCSI 

served a training dataset for imputing lncRNA transcriptome of GDSC cell lines.  

 

Predicting drug response using PCG or lncRNA expression 
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We obtained drug response data from GDSC (https://www.cancerrxgene.org/) and CTRP 

(https://portals.broadinstitute.org/ctrp/) portals for 265 and 545 anticancer agents respectively. 

Additional drug and cell line annotation regarding targets/pathways, disease and tissue-type were 

retrieved from the respective portals. In this study, we utilized the area under the curve (AUC) 

parameter from the dose-response data to construct a response vector Y for each drug tested in n 

cell lines. Next, we constructed prediction feature matrices of gene expression X measured in n 

cell lines. The feature matrix was constructed separately for PCGs and lncRNAs. For the 963 

GDSC cell lines, we used the measured microarray PCG expression data and lncRNA 

transcriptome imputed using gCSI as training data. We also used the subset of cell lines that 

overlapped between GDSC and gCSI sequencing data to compare the efficiency of predicting 

response using the measured lncRNA transcriptome. For the CTRP cell lines, we used measured 

PCG and lncRNA expression levels (RPKM) from RNAseq data of 1019 cell lines from CCLE 

(https://portals.broadinstitute.org/ccle/). For each dataset, we used the definition of PCG and 

lncRNA as defined above in the imputation section based on GENCODE annotation and 

transcript product length. The training matrices were processed to remove all features with 

variance = 0, and standardized such that each gene expression vector had a mean = 0 and 

standard deviation = 1. The model for the prediction analysis can be expressed in the form of the 

following linear equation:  

𝑦𝑦 =  𝛽𝛽0 + ∑ 𝛽𝛽𝑗𝑗𝑥𝑥𝑗𝑗
𝑝𝑝
𝑗𝑗=1 + 𝜀𝜀   

Where,  

𝑦𝑦 = 𝐴𝐴𝐴𝐴𝐴𝐴 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑜𝑜𝑜𝑜 𝑡𝑡ℎ𝑒𝑒 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑖𝑖𝑖𝑖 "𝑛𝑛" 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ,𝛽𝛽0 = 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝛽𝛽𝑗𝑗 =

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑗𝑗,  

𝑥𝑥𝑗𝑗 = expression vector of gene𝑗𝑗 , 𝑎𝑎𝑎𝑎𝑎𝑎 𝜀𝜀 = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  
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Since the number of features is much greater than the number of samples (p >> n), we used ridge 

regression for AUC prediction by cross-validation as this method was found to consistently 

outperform other methods with high computational efficiency in predicting drug sensitivity  

(Geeleher et al. 2014; Azuaje 2016). We fit the ridge model using PCG or lncRNA expression 

matrices as features by solving the following objective function using the R-package glmnet 

(Friedman et al. 2010):  

𝛽̂𝛽0
𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 =  𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 ∑ (𝑦𝑦𝑖𝑖 − 𝑥𝑥𝑖𝑖𝑇𝑇𝛽𝛽)2𝑛𝑛

𝑖𝑖=1 + λ∑ 𝛽𝛽𝑗𝑗2
𝑝𝑝
𝑗𝑗=1   

Where,  

𝛽̂𝛽0
𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, λ = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  

Here, the penalty parameter is determined by performing 10-fold cross-validation on the training 

dataset. Following the determination of optimal lambda, we use the cross-validation to determine 

prediction accuracy by calculating the average Spearman's correlation coefficient between 

predicted and actual AUC, and root means squared error (RMSE) of the model. The significance 

of prediction is determined based on a null distribution of prediction accuracies generated from 

the feature set of 5x106 randomized gene expression and 5x103 AUC values for 1000 samples, 

and correlations with P < 0.05 are considered significant.  

 

Determining significant lncRNAs associated with drug response  

Previous pharmacogenomic analyses in cancer cell line screens have revealed that the drug 

response is strongly linked with cell line lineages. In addition, lncRNAs are understood to be 

expressed in a highly tissue-specific manner. To address both these issues while identifying 

novel lncRNA transcripts that are associated with drug sensitivity or resistance, we use similar 

linear model used for drug prediction as above but with the addition of a covariate to adjust for 

tissue type: 
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𝑦𝑦 =  𝛽𝛽0 + ∑ 𝛽𝛽𝑗𝑗𝑥𝑥𝑗𝑗
𝑝𝑝
𝑗𝑗=1 +  𝛽𝛽𝑇𝑇 +  𝜀𝜀𝑖𝑖  

Where, 

 𝛽𝛽𝑇𝑇 = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑓𝑓𝑓𝑓𝑓𝑓 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡   

In addition, we identified lncRNAs biomarkers that are independent predictors of drug response 

from known PCG biomarkers. We utilized the cancer function events (CFE) information from 

(Iorio et al. 2016a), which included high-confidence cancer genes from the intOGen pipeline and 

(Wong et al. 2013),  recurring copy number alterations (van Dyk et al. 2013) and CpG islands. 

We used the binary event matrix of CFEs across all cell lines, and individual events that are 

associated with response to a specific drug were included in the model:  

𝑦𝑦 =  𝛽𝛽0 + ∑ 𝛽𝛽𝑗𝑗𝑥𝑥𝑗𝑗
𝑝𝑝
𝑗𝑗=1 +  𝛽𝛽𝑇𝑇 +  𝛽𝛽𝑀𝑀𝑀𝑀𝑀𝑀 +  𝛽𝛽𝐶𝐶𝐶𝐶𝐶𝐶 +  𝜀𝜀𝑖𝑖  

Where, 

 𝛽𝛽𝑀𝑀𝑀𝑀𝑀𝑀 = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑓𝑓𝑓𝑓𝑓𝑓 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝐶𝐶𝐶𝐶𝐶𝐶  

 𝛽𝛽𝐶𝐶𝐶𝐶𝐶𝐶 = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑓𝑓𝑓𝑓𝑓𝑓 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝐶𝐶𝐶𝐶𝐶𝐶  

For example, for the EGFR-targeting drugs erlotinib, gefitinib and pelitinib, we used mutations 

and amplification of the EGFR gene as CFEs. We solve the above two equations using multiple 

linear regression to obtain the coefficients and p-value associated with each drug-gene pair. 

Since the number of multiple comparisons is in order of 106, we used a Bonferroni adjusted 

threshold to determine statistically significant lncRNA-drug pairs. 

 

Determining the impact of proximal cis-PCGs on drug-lncRNAs associations  

We defined cis-PCGs as genes located within a 1 Mb boundary of the lncRNA transcript, i.e. all 

PCGs that start or end within 500kb upstream of the lncRNA transcription start site to 500kb 

downstream of the lncRNA transcript end. This definition of cis-PCGs is derived from the 1 Mb 

boundary used to determine cis-eQTLs in the GTEx project (Lonsdale et al. 2013). The genomic 
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and transcript coordinates of lncRNAs and PCGs were based on the human genome reference 

assembly GRCh38.p12. We analyzed the impact of cis-PCGs on significant drug-lncRNA 

associations by including the expression levels of all cis-PCGs for the lncRNA in the model: 

𝑦𝑦 =  𝛽𝛽0 + ∑ 𝛽𝛽𝑗𝑗𝑥𝑥𝑗𝑗
𝑝𝑝
𝑗𝑗=1 + ∑ 𝛽𝛽𝑘𝑘𝑥𝑥𝑘𝑘

𝑞𝑞
𝑘𝑘=1 +  𝛽𝛽𝑇𝑇 +  𝜀𝜀𝑖𝑖  

Where,  

 𝛽𝛽𝑘𝑘 = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑡𝑡ℎ𝑒𝑒 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑥𝑥𝑘𝑘  

The p-values (-log10) of the significance of association for each individual variable after 

adjusting for the covariates were deemed significant if P < 0.05 and mapped based on 

chromosomal coordinates using the R/Bioconductor package ‘karyoploteR’ (Gel et al. 2017).   

 

LncRNA-specific somatic mutations  

A number of statistical tools have been developed to identify driver somatic mutations in cancer 

cells. The general objective of these methods is identifying non-random mutations with 

functional impact on proteins of interest, usually relying on a statistical model that estimates 

background mutation rates based on distribution of synonymous and non-synonymous alterations 

(Dees et al. 2012; Gonzalez-Perez and Lopez-Bigas 2012; Lawrence et al. 2013; Reimand et al. 

2013). However, these methods, by definition, cannot infer somatic mutations in the non-coding 

genome. Recent efforts have been directed toward identifying somatic drivers that are 

specifically located in the lncRNA genome (Li et al. 2015; Lanzos et al. 2017). To identify 

lncRNA genes with positively selected somatic mutations in the cancer cell lines, we adopt a 

two-step approach that first selects lncRNA genes with variation frequency higher than the non-

coding genome background across all available cell lines, and second, scores lncRNA genes 

based on mutation frequency per cell line. While highly stringent, this approach can be expected 

to yield high-confidence somatic variants in the lncRNA region.  
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The somatic mutations used in our study were called from whole genome sequencing data of 

1015 COSMIC cell lines (https://cancer.sanger.ac.uk/cell_lines/download) using the Caveman 

and Pindel algorithms (Iorio et al. 2016a). The variants were additionally filtered based on read-

depth (≥15), mutant allele frequency (≥15%) and absence from reference normal samples, 1000 

genomes, and dbSNP. We annotated the remaining variants based on the GRCh38.p12 human 

reference genome and GENCODE 28 gene set using the Variant Effect Predictor tool (McLaren 

et al. 2016). We removed all variants that mapped on regions annotated as protein-coding genes 

or within genes that encoded transcripts less than <200nt in length. We further removed 

ambiguous variant locus overlapping protein-coding and lncRNA genes.  

We first identify lncRNA genes with a mutation frequency by solving the following equation for 

the Kolmogorov-Smirnov test (α = 0.05) for each n lncRNA, considering non-coding mutation 

for all m genes as background:    

𝐷𝐷𝜃𝜃𝑚𝑚,𝜇𝜇𝑛𝑛 = 𝑠𝑠𝑠𝑠𝑠𝑠
𝑥𝑥

|𝐹𝐹𝜃𝜃𝑚𝑚(𝑥𝑥) −  𝐹𝐹 𝜇𝜇𝑛𝑛(𝑥𝑥) |  

Where,  

𝐹𝐹𝜃𝜃𝑚𝑚 = 𝐸𝐸𝐸𝐸𝐸𝐸 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑚𝑚 𝑛𝑛𝑛𝑛𝑛𝑛−𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖𝑜𝑜𝑜𝑜 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ 𝑜𝑜𝑜𝑜 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑚𝑚 (𝑀𝑀𝑀𝑀)

  

𝐹𝐹 𝜇𝜇𝑛𝑛 =  𝐸𝐸𝐸𝐸𝐸𝐸 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑛𝑛 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ 𝑜𝑜𝑜𝑜 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑛𝑛 (𝑀𝑀𝑀𝑀)

  

(EDF, empirical distribution function) 

Next, we use a one-tailed hypergeometric distribution to test the probability whether a given 

lncRNA n is mutated at a greater frequency than the background frequency of all lncRNAs, at a 

significance threshold of p < 0.05, using the equation: 

𝑝𝑝𝑛𝑛 =  
�𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚 + 𝑇𝑇𝑇𝑇𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚

𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚
��𝑁𝑁𝑤𝑤𝑤𝑤 + 𝑇𝑇𝑇𝑇𝑇𝑇𝑤𝑤𝑤𝑤

𝑁𝑁𝑤𝑤𝑤𝑤
�

� 𝑇𝑇𝑇𝑇𝑇𝑇
𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚 + 𝑁𝑁𝑤𝑤𝑤𝑤

�
  

Where,  

𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑛𝑛  𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚,  
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 𝑁𝑁𝑤𝑤𝑤𝑤 = 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑜𝑜𝑜𝑜𝑡𝑡 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑛𝑛 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚,  

𝑇𝑇𝑇𝑇𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑎𝑎𝑎𝑎𝑎𝑎 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚,   

𝑇𝑇𝑇𝑇𝑇𝑇𝑤𝑤𝑤𝑤 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑜𝑜𝑜𝑜𝑜𝑜 𝑎𝑎𝑎𝑎𝑎𝑎 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑚𝑚𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢,  

𝑎𝑎𝑎𝑎𝑎𝑎,𝑇𝑇𝑇𝑇𝑇𝑇 =   𝑇𝑇𝑇𝑇𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚  +  𝑇𝑇𝑇𝑇𝑇𝑇𝑤𝑤𝑤𝑤   

The lncRNAs with somatic mutation frequencies above the background level were retained for 

further analysis using multiple linear regression analysis against drug response yielding 

coefficients and a p-value of association.  

 

TCGA lung adenocarcinoma (LUAD) analysis  

RNAseq (RSEM) expression levels of EGFR-AS1 and MIR205HG, and EGFR point mutation, 

copy number variation data, and survival data for 877 lung adenocarcinoma (LUAD) samples 

were retrieved using UCSC Xena platform for cancer genomics (Goldman et al. 2018). Imputed 

erlotinib drug sensitivities for TCGA LUAD were obtained from (Geeleher et al. 2017). 

Correlation, multiple regression, and ANOVA analyses were performed with or without 

including EGFR somatic mutations as covariates using either continuous expression data or 

samples clusters (K-means) based on expression levels of the lncRNAs. Kaplan-Meir (survival) 

curves were analyzed by the log-rank (Mantel-Cox) test using the ‘survival’ R package.    

 

Mammalian cell culture and reagents 

The human lung cancer cell lines A549, NCI H1563, NCI H1573, NCI H1650, NCI H1734, NCI 

H1975, NCI H2228, NCI H23, NCI H520, NCI H522, NCI H820, NCI H838, HCC 2935, HCC 

4006, HCC 827, SW900 were purchased from American Type Culture Collect (ATCC). A549 

cells were cultured in DMEM-HG, and the other cell lines were cultured in RPMI 1640 medium 

(Thermo Fisher Scientific) supplemented with 10% fetal bovine serum (FBS) (Gemini Bio-
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Products) and 1% penicillin and streptomycin (Life Technologies), maintained at 37°C in a 

humidified incubator with 5% CO2 atmosphere. Cell lines were observed microscopically to 

confirm morphology, and population-doubling times were determined by viable cell counting 

using trypan blue on the TC20™ Automated Cell Counter (Bio-Rad).  Aliquots of low-passage 

cells were cryopreserved within 2 weeks of receipt. Cells were cultured for no longer than 10 

total passages. All cell lines were periodically monitored for mycoplasma using the Universal 

Mycoplasma Detection Kit following the manufacturer’s protocol (ATCC). Culture health and 

identity were monitored by microscopy and by comparing population doubling times to baseline 

values recorded at the time of receipt. 

 

Generating erlotinib-resistant lung cancer cell lines  

Erlotinib resistant HCC 827 (harboring EGFR exon 19 deletions) and HCC 4006 (harboring 

EGFR exon 19 deletions) cell lines were generated by chronic exposure of the cells to a stepwise 

increasing dose of erlotinib to 3µM and 9µM respectively for up to 6 months. 

 

LncRNA knockdown using 2'-deoxy-2'-fluoro-arabinoguanosine (FANA) antisense 

oligonucleotides (ASOs) 

Knockdown of the EGFRAS1 and MIR205HG lncRNA transcripts was performed FANA ASOs 

provided by AUM BioTech (AUM BioTech, LLC, Philadelphia, PA). The target sequences for 

FANA-ASO-EGFR-AS1 and FANA-ASO-MIR205HG were 5’-

TATACATTTCATCCCATTGAC-3’ and 5’-AAGATTGAGCCACTGCACTCC-3’, 

respectively. FANA-ASO scramble served as the control. Knockdown efficiency was 

experimentally determined by treating HCC827 and NCI H2228 cells with different working 
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concentrations (1µM, 5µM, and 10µM) of FANA ASOs following the manufacturer’s protocol. 

Cells from both lines were seeded at 5x105 cells across three 6-well culture plates in RPMI 1640 

with 10% FBS and maintained at 37°C in a humidified incubator with 5% CO2 atmosphere for 

24hrs to allow cells to adhere. After 24hrs, the media was aspirated and replaced with fresh 

growth media containing the appropriate FANA-ASO at the desired working concentration. Cells 

were harvested at 24hr, 48hr, and 72hr after the addition of FANA-ASOs to determine 

knockdown efficiency.    

 

Quantitative real-time PCR  

For the experiments involving FANA-ASO mediated knockdown of EGFR-AS1 and MIR205HG 

expression, total RNA was extracted from cultured cells using the Quick-RNA MiniPrep Plus Kit 

(Zymo Research, Irvine, CA) and quantified on the NanoDrop ND-8000 8-channel 

spectrophotometer (Thermo Fisher Scientific, Waltham, MA). A total of 2µg of RNA was used 

to synthesize cDNA utilizing the High Capacity cDNA Reverse Transcription Kit (Thermo 

Fisher Scientific, Waltham, MA). The Sso-Advanced Universal SYBR Green SuperMix (Bio-

Rad, Hercules, CA) was used to conduct real-time PCR analyses following the manufacturer’s 

protocol. The PCR primers used to amplify target lncRNAs and housekeeping genes are as 

follows: EGFR-AS1 Forward 5’- GACCACACTGAGCACTCAATAA -3’, EGFR-AS1 Reverse 

5’- CATGCAGCACACACACATTC -3’, MIR205HG Forward 5’- 

GCTCACCCTTGACTTGGAAA -3’, MIR205HG Reverse 5’- 

GGAATTGAAGGAGAGGGAGTAAAG -3’, EGFR Forward 5’- 

GGTGACTCCTTCACACATACTC -3’, EGFR Reverse 5’- CCTGCCGCGTATGATTTCTA -

3’, EGFR Isoform-A Forward 5’- ACTCTGAGTGCATACAGTGC -3’, EGFR Isoform-A 
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Reverse 5’- TCGTTGGACAGCCTTCAAGAC -3’, EGFR Isoform-D Forward 5’- 

ACTCTGAGTGCATACAGTGC -3’, EGFR Isoform-D Reverse 5’- 

TGAAGGCATGAGGCTCAGTG -3’, GAPDH Forward 5’- GAACATCATCCCTGCCTCTAC 

-3’, GAPDH Reverse 5’- CCTGCTTCACCACCTTCTT -3’, ACTB (β-Actin) Forward 5’- 

GTGGCCGAGGACTTTGATT -3’,and ACTB (β-Actin) Reverse 5’- 

TTTAGGATGGCAAGGGAC TTC -3’. Q-real-time PCR and data collection were performed 

using the 7500 Real-Time PCR System (Applied Biosystems, Foster City, CA). All results were 

normalized with the expression of GAPDH and β-Actin as a reference panel. All PCR reactions 

were performed in triplicate, and each experiment was performed independently three times. 

Expression results were quantified using the ΔΔCt method relative to the scramble control.  

For the experiments measuring EGFR-AS1 and MIR205HG expression across 16 lung cancer cell 

lines and erlotinib-resistant cell lines, total RNA was isolated using Trizol reagent (Life 

Technologies) according to the manufacturer's instruction. Complementary DNA (cDNA) was 

generated with 1μg of total RNA using SuperScript III First-Strand Synthesis System (Thermo 

Fisher Scientific) according to the manufacturer's protocol. qPCR and lncRNA expression 

analysis was performed by the LightCycler® 480 System (Roche). Target lncRNA expression 

was calculated by the relative quantification method (ΔΔCT) with RNU44 as the reference 

control. 

 

Cell proliferation assays and drug response curves  

Lung cancer cell lines were seeded at a density of at 0.5-1x104 cells per well into 96-well plates 

and incubated for 24 hours at 37oC, followed by exposure to erlotinib at various concentrations 

for 72 hours. Cell viability was subsequently measured by incubation with WST-1 (Roche 
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Applied Science, Penzberg, Upper Bavaria, Germany) following the manufacturer’s protocol. 

Following a 2hr incubation at 37oC after WST-1 addition, absorbance at the 450nm wavelength 

was assessed using the Synergy HTX Multi-Mode Plate Reader (BioTek, Winooski, VT).  

To assess the impact of ASO-mediated knockdown of the lncRNAs on proliferation and erlotinib 

response, HCC827 and NCI H2228 cells were cultured in 96-well plates for 24hrs. Next, the 

cells were treated with media only or FANA-ASO at a working concentration of 5uM, followed 

by erlotinib treatment approximately 8 hr after FANA-ASO exposure. Cell proliferation was 

measured at 24hr, 48hr, and 72hr after FANA-ASO +/- erlotinib treatment by the cell 

proliferation reagent WST-1 as described above. Each experiment was performed in triplicates 

and measurements were reported as the average of three independent biological replicates.  

 

Statistical analysis and software 

All imputations, predictions and statistical analysis were performed in the R statistical computing 

environment. For multiple comparisons, family-wise error rates (FWER) were controlled using 

the Bonferroni method and false discovery rates (FDR) were determined using the Benjamini-

Hochberg method where specified. The drug sensitivity curves were plotted and analyzed to 

obtain the area under the curve (AUC) or IC50 values using GraphPad Prism 6.01. In order to 

ensure reproducibility and for complete transparency, we have provided links to publicly 

available datasets. Additionally, we have provided the scripts necessary to perform the analysis 

available at https://osf.io/wpsdu/ (https://doi.org/10.17605/OSF.IO/WPSDU).  
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